Metal Properties and Tests

download Metal Properties and Tests

of 27

Transcript of Metal Properties and Tests

  • 8/11/2019 Metal Properties and Tests

    1/27

    Physical properties of metalsDr. Dmitri Kopeliovich

    Optical properties

    Physical state

    Electrical properties

    Thermal properties

    Thermal Conductivity

    Coefficient of Thermal Expansion

    Specific Heat Capacity

    Magnetic properties

    Optical properties

    Optical propertiesMetals reflect equally nearly all visible electro-magnetic waves. Therefore the color of the

    most of the metals is white or silvery-white (except copper and gold).

    Metals are lustrous due to themetallic bonding,contributingfree electronsto the

    metalcrystal structureand providing an ability of metals to reflect light when polished.

    to top

    Physical stateMetals are solid at normal temperatures (except mercury).

    Metals transform to liquid from solid and to gas from liquid at definite temperatures(melting

    and boiling points), which are high for most of metals (except mercury, sodium and

    potassium).

    Most of metals have relatively high densities (except sodium and potassium with densities

    lower, than density of water).

    to top

    Electrical propertiesMetals have high electrical conductivity, provided by free electrons available in the metal

    crystal structure.

    Peltier effect:When there is an electric current, passing through a junction of two different metals, one of

    them evolves heat and another absorbs heat.

    Thomson effect:

    A current is produced in a metal conductor when there is a temperature gradient along its

    length.

    http://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#optical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#optical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#physical_statehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#physical_statehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#electrical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#electrical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#thermal_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#thermal_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#thermal_conductivityhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#thermal_conductivityhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#specific_heat_capacityhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#specific_heat_capacityhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#magnetic_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#magnetic_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#optical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#optical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#optical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#magnetic_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#specific_heat_capacityhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#coefficient_of_thermal_expansionhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#thermal_conductivityhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#thermal_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#electrical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#physical_statehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals#optical_propertieshttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovich
  • 8/11/2019 Metal Properties and Tests

    2/27

    The Peltier and Thomson effects are widely used in thermocouples.

    to top

    Thermal propertiesThermal Conductivity

    Thermal Conductivity ()is amount of heat passing in unit time through unit surface in adirection normal to this surface when this transfer is driven by unite temperature gradient

    under steady state conditions.

    Thermal conductivity may be expressed and calculated from the Fouriers law:

    Q/ t =*S *T/ x

    Where

    Q-heat, passing through the surface S;

    t- change in time;

    - thermal conductivity;

    S- surface area, normal to the heat transfer direction;

    T/x-temperature gradient along xdirection of the heat transfer.

    Fouriers law is analogue of the First Ficks law, describing diffusion in steady state.

    Metals have high thermal conductivity. Heat is transferred through the metalcrystalbyfree

    electrons.Compare:

    of alumina = 47 BTU/(lb*F) (6.3 W/(m*K)).

    of Al = 1600 BTU/(lb*F) (231 W/(m*K)).

    to top

    Coefficient of Thermal Expansion

    Thermal Expansion (Coefficient of Thermal Expansion) is relative increase in length

    per unite temperature rise:

    = L/ (LoT)

    Where

    -coefficient of thermal expansion (CTE);

    Llength increase;

    Loinitial length;

    Ttemperature rise.

    Thermal expansion of metals is generally higher, than that ofceramics.

    Compare:

    CTEof SiC = 2.3 F (4.0 C).

    CTEof Al = 13 F (23 C).

    to top

    Specific Heat Capacity

    Heat Capacityis amount of heat required to raise material temperature by one unit.

    http://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals
  • 8/11/2019 Metal Properties and Tests

    3/27

    Specific Heat Capacity is amount of heat required to raise temperature of unit mass of

    material by one unit:

    c= Q/(mT)

    Where

    c-specific heat capacity;Qamount of heat;

    mmaterial mass;

    Ttemperature rise.

    Specific Heat Capacity of metals is lower, than that of ceramics.

    Compare:

    cof alumina = 0.203 BTU/(lb*F) (850 J/(kg*K)).

    cof steel = 0.115 BTU/(lb*F) (481 J/(kg*K)).

    to topMagnetic propertiesMost of metals are slightly magnetic, but only few of them (iron, nickel, cobalt and their

    alloys) display pronounced magnetic properties, called ferromagnetism.

    Magnetically soft metals metals, which are demagnetized after the magnetic field is

    removed. Magnetically soft metals are used in electric motors and transformers.

    Magnetically hard metals metals, retaining their magnetization after the magnetic

    field is removed.Magnetically hard metals are used for permanent magnets.

    Magnetostriction effect of changing dimensions of a ferromagnetic metal when its

    magnetization is changed.to top

    Tensile test and Stress-Strain DiagramDr. Dmitri Kopeliovich

    Stress-Strain Diagramexpresses a relationship between a load applied to a material and

    the deformation of the material, caused by the load .

    Stress-Strain Diagram is determined by tensile test.

    Tensile tests are conducted in tensile test machines, providing controlled uniformly

    increasing tension force, applied to the specimen.

    The specimens ends are gripped and fixed in the machine and its gauge length L0(a

    calibrated distance between two marks on the specimen surface) is continuously measured

    until the rupture.

    Test specimen may be round or flat in the cross-section.

    In the round specimens it is accepted, that L0= 5 * diameter.

    The specimen deformation (strain) is the ratio of the increase of the specimen gauge length

    to its original gauge length:

    http://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metalshttp://www.substech.com/dokuwiki/doku.php?id=physical_properties_of_metals
  • 8/11/2019 Metal Properties and Tests

    4/27

    = (L L0) / L0

    Tensile stressis the ratio of the tensile load Fapplied to the specimen to its original cross-

    sectional area S0:

    = F / S0

    The initial straight line (0P)of the curve characterizes proportional relationship between the

    stress and the deformation (strain).

    The stress value at the point Pis called the limit of proportionality:

    p= FP/ S0

    This behavior conforms to the Hooks Law:

    = E*

    Where Eis a constant, known as Youngs ModulusorModulus of Elasticity.

    The value of Youngs Modulus is determined mainly by the nature of the material and is

    nearly insensitive to theheat treatmentand composition.

    Modulus of elasticity determines stiffness- resistance of a body to elastic deformation

    caused by an applied force.

    The line 0Ein the Stress-Strain curve indicates the range of elastic deformation

    removal of the load at any point of this part of the curve results in return of the specimen

    length to its original value.

    The elastic behavior is characterized by the elasticity limit(stress value at the point E):

    el= FE/ S0

    For the most materials the points Pand Ecoincide and therefore el=p.

    http://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=tensile_test_and_stress-strain_diagram&cache=cache&media=tensile_specimen.pnghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment
  • 8/11/2019 Metal Properties and Tests

    5/27

    A point where the stress causes sudden deformation without any increase in the force is

    called yield limit (yield stress, yield strength):

    y= FY/ S0The highest stress (point YU) , occurring before the sudden deformation is called upper

    yield limit.

    The lower stress value, causing the sudden deformation (point YL) is called lower yield

    limit.

    The commonly used parameter of yield limit is actually lower yield limit.

    If the load reaches the yield point the specimen undergoesplastic deformationit does not

    return to its original length after removal of the load.

    http://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=tensile_test_and_stress-strain_diagram&cache=cache&media=stress-strain_diagram.pnghttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformation
  • 8/11/2019 Metal Properties and Tests

    6/27

    Hard steels and non-ferrous metals do not have defined yield limit, therefore a stress,

    corresponding to a definite deformation (0.1% or 0.2%) is commonly used instead of yield

    limit. This stress is calledproof stress or offset yield limit (offset yield strength):

    0.2%= F0.2%/ S0The method of obtaining the proof stress is shown in the picture.

    As the load increase, the specimen continues to undergo plastic deformation and at a

    certain stress value its cross-section decreases due to necking (pointSin the Stress-

    Strain Diagram). At this point the stress reaches the maximum value, which is

    called ultimate tensile strength(tensile strength):

    t= FS/ S0

    Continuation of the deformation results in breaking the specimen - the point B in the

    diagram.

    The actual Stress-Strain curve is obtained by taking into account the true specimen cross-section instead of the original value.

    Other important characteristic of metals is ductility- ability of a material to deform under

    tension without rupture.

    Two ductility parameters may be obtain from the tensile test:

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=tensile_test_and_stress-strain_diagram&cache=cache&media=proof_stress.png
  • 8/11/2019 Metal Properties and Tests

    7/27

    Relative elongation - ratio between the increase of the specimen length before its rupture

    and its original length:

    = (LmL0) / L0

    Where Lmmaximum specimen length.

    Relative reduction of area - ratio between the decrease of the specimen cross-section

    area before its rupture and its original cross-section area:= (S0Smin) / S0

    Where Sminminimum specimen cross-section area.

    to top

    Hardness test methodsDr. Dmitri Kopeliovich

    Hardness is resistance of material toplastic deformationcaused by indentation.

    Sometimes hardness refers to resistance of material to scratching or abrasion.

    In some cases relatively quick and simple hardness test may substitutetensile test.

    Hardness may be measured from a small sample of material without destroying it.

    There are hardness methods, allowing to measure hardness onsite.

    Principle of any hardness test methodis forcing an indenter into the sample surface

    followed by measuring dimensions of the indentation (depth or actual surface area of the

    indentation).

    Hardness is not fundamental property and its value depends on the combination ofyield

    strength, tensile strengthandmodulus of elasticity.

    Benefits of hardness test:

    Easy

    Inexpensive

    Quick

    Non-destructive

    May be applied to the samples of various dimensions and shapes

    May be performed in-situ

    Depending on the loading force value and the indentation dimensions, hardness is defined

    as a macro- , micro- or nano-hardness.

    Macro-hardness tests (Rockwell, Brinell, Vickers) are the most widely used methods

    for rapid routine hardness measurements. The indenting forces in macro-hardness tests are

    in the range of 50N to 30000N.

    Micro-hardness tests (micro-Vickers, Knoop)is applicable when hardness ofcoatings,

    surface hardness, or hardness of differentphasesin the multi-phase material is measured.

    Small diamond pyramid is used as indenter loaded with a small force of 10 to 1000gf.

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=coating_technologieshttp://www.substech.com/dokuwiki/doku.php?id=coating_technologieshttp://www.substech.com/dokuwiki/doku.php?id=coating_technologieshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=coating_technologieshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram
  • 8/11/2019 Metal Properties and Tests

    8/27

    Nano-hardness test uses minor loads of about 1 nano-Newton followed by precise

    measuring depth of indentation.

    Brinell Hardness Test

    Rockwell Hardness Test

    Rockwell Superficial Hardness Test Vickers Hardness Test

    Knoop Hardness Test

    Shore Scleroscope Hardness Test

    Brinell Hardness Test

    In this test a hardened steel ball of 2.5, 5 or 10 mm in diameter is used as indenter.

    The loading force is in the range of 300N to 30000N (300N for testing lead alloys, 5000N for

    testing aluminum alloys, 10000N for copper alloys, 30000N for testing steels). The Brinell

    Hardness Number (HB) is calculated by the formula:

    HB = 2F/ (3.14D*(D-(D - Di)))

    Where

    F- applied load, kg

    Dindenter diameter, mm

    Diindentation diameter, mm.In order to eliminate an influence of the specimen supporting base, the specimen should be

    seven times (as minimum) thicker than indentation depth for hard alloys and fifteen times

    thicker than indentation depth for soft alloys.

    Rockwell Hardness Test

    http://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#brinell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#brinell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_superficial_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_superficial_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#knoop_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#knoop_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#shore_scleroscope_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#shore_scleroscope_hardness_testhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=brinell.pnghttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#shore_scleroscope_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#knoop_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#vickers_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_superficial_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#rockwell_hardness_testhttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods#brinell_hardness_test
  • 8/11/2019 Metal Properties and Tests

    9/27

    In the Rockwell test the depth of

    the indenter penetration into the specimen surface is measured. The indenter may be either

    a hardened steel ball with diameter 1/16, 1/8 or a spherical diamond cone of 120 angle

    (Brale).

    Loading procedure starts from applying a minor load of 10 kgf (3kgf in Rockwell Superficial

    Test) and then the indicator, measuring the penetration depth, is set to zero. After that the

    major load (60, 100 or 150 kgf)is applied. The penetration depth is measured after removal

    of the major load.

    Hardness is measured in different scales (A, B, C, D, E, F, G, H, K) and in numbers, having

    no units (in contrast to Brinell and Vickers methods).

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_c.pnghttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_b.pnghttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_c.pnghttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_b.png
  • 8/11/2019 Metal Properties and Tests

    10/27

    Aluminum alloys,copper alloysand softsteelsare tested with 1/16 diameter steel ball at

    100 kgf load (Rockwell hardness scale B).

    Harder alloys and hard cast iron are tested with the diamond cone at 150 kgf (Rockwell

    hardness scale C).

    An example of Rockwell test result: 53 HRC. It means 53 units, measured in the scale C by

    the method HR (Hardness Rockwell).

    Rockwell Superficial Hardness TestRockwell Superficial Test is applied for thin strips, coatings, carburized surfaces.

    Reduced loads (15 kgf, 30 kgf, and 30 kgf) as a major load and deduced preload (3kgf) are

    used in the superficial test.

    Depending on the indenter, two scales of Rockwell Superficial method may be used: T

    (1/16 steel ball) or N (diamond cone).

    62 R30T means 62 units, measured in the scale 30T (30 kgf, 1/16 steel ball indenter) by

    the Rockwell Superficial method (R).

    Vickers Hardness TestThe principle of the Vickers Hardness method is similar to the Brinell method.

    The Vickers indenter is a 136 degrees square-based diamond pyramid.

    The impression, produced by the Vickers indenter is clearer, than the impression of Brinell

    indenter, therefore this method is more accurate.

    The load, varying from 1kgf to 120 kgf, is usually applied for 30 seconds.

    The Vickers number (HV) is calculated by the formula:

    http://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=rockwell_superficial.pnghttp://www.substech.com/dokuwiki/doku.php?id=steels_and_cast_ironshttp://www.substech.com/dokuwiki/doku.php?id=copper_alloyshttp://www.substech.com/dokuwiki/doku.php?id=aluminum_alloys
  • 8/11/2019 Metal Properties and Tests

    11/27

    HV = 1.854*F/ D

    Where

    F-applied load, kg

    Dlength of the impression diagonal, mm

    The length of the impression diagonal is measured by means of a microscope, which isusually an integral part of the Vickers Tester.

    Knoop Hardness Test

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=vickers.png
  • 8/11/2019 Metal Properties and Tests

    12/27

    A diamond pyramid indenter with angles 130 and 17030 is used in this method.

    The Knoop Hardness Test is applied for testing soft material and thin coating, since the

    penetration depth is very small (about 1/30 of the impression length).

    The loading force in the Knoop method are usually in the range of 10 gf to 1000gf (micro-

    hardness range).

    The Knoop number (HK) is calculated by the formula:

    HK = 14.229*F/L

    Where

    F-applied load, kg

    Llong diagonal of the impression, mm

    Shore Scleroscope Hardness TestThe Shore Scleroscope hardness is associated with theelasticityof the material.

    The appliance consists of a diamond-tipped hammer, falling in a graduated glass tube from

    a definite height. The tube is divided into 140 equal parts.

    The height of the first rebound is the hardness index of the material.

    The harder the material, the higher the rebound.

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=hardness_test_methods&cache=cache&media=knoop.pnghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagram
  • 8/11/2019 Metal Properties and Tests

    13/27

    The Shore method is widely used for measuring hardness of large machine components like

    rolls, gears, dies, etc.

    The Shore scleroscope is not only small and mobile, it also leaves no impressions on the

    tested surface.

    to top

    Hardness Conversion Table(submitted by the website administration)

    RA

    60

    Brale

    RB

    100

    1/16

    RC

    150

    Brale

    RD

    100

    Brale

    R15N

    Brale

    R30N

    Brale

    R45N

    Brale

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB

    50010mm

    HB

    300010mm

    HV

    Diamond

    Pyramid

    Shore

    92 - 80 87 97 92 87 - - - - - 1865 -

    92 - 79 86 96 92 87 - - - - - 1787 -

    91 - 78 85 96 91 86 - - - - - 1710 -

    91 - 77 84 96 91 85 - - - - - 1633 -

    90 - 76 83 96 90 84 - - - - - 1556 -

    90 - 75 83 95 89 83 - - - - - 1478 -

    89 - 74 82 95 89 82 - - - - - 1400 -

    89 - 73 81 95 88 81 - - - - - 1323 -

    88 - 72 80 95 87 80 - - - - - 1245 -

    87 - 71 80 94 87 79 - - - - - 1160 -

    87 - 70 79 94 86 78 - - - - - 1076 101

    86 - 69 78 94 85 77 - - - - - 1004 99

    85.6 - 68 76.9 93.2 84.4 75.4 - - - - - 940 97

    85 - 67 76.1 92.9 83.6 74.2 - - - - - 900 95

    84.5 - 66 75.4 92.5 82.8 73.3 - - - - - 865 92

    83.9 - 65 74.5 92.2 81.9 72 - - - - 739 832 91

    83.4 - 64 73.8 91.8 81.1 71 - - - - 722 800 88

    82.8 - 63 73 91.4 80.1 69.9 - - - - 705 772 87

    82.3 - 62 72.2 91.1 79.3 68.8 - - - - 688 746 85

    81.8 - 61 71.5 90.7 78.4 67.7 - - - - 670 720 83

    81.2 - 60 70.7 90.2 77.5 66.6 - - - - 613 697 81

    80.7 - 59 69.9 89.8 76.6 65.5 - - - - 599 674 80

    80.1 - 58 69.2 89.3 75.7 64.3 - - - - 587 653 78

    79.6 - 57 68.5 88.9 74.8 63.2 - - - - 575 633 76

    79 - 56 67.7 88.3 73.9 62 - - - - 561 613 75

    RA

    60

    Brale

    RB

    100

    1/16

    RC

    150

    Brale

    RD

    100

    Brale

    R15N

    Brale

    R30N

    Brale

    R45N

    Brale

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB

    50010mm

    HB

    300010mm

    HV

    Diamond

    Pyramid

    Shore

    http://www.substech.com/dokuwiki/doku.php?id=hardness_test_methodshttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methodshttp://www.substech.com/dokuwiki/doku.php?id=hardness_test_methods
  • 8/11/2019 Metal Properties and Tests

    14/27

    78.5 120 55 66.9 87.9 73 60.9 - - - - 546 585 74

    78 120 54 66.1 87.4 72 59.8 - - - - 534 577 72

    77.4 119 53 65.4 86.9 71.2 58.6 - - - - 519 560 71

    76.8 119 52 64.6 86.4 70.2 57.4 - - - - 500 544 69

    76.3 118 51 63.8 85.9 69.4 56.1 - - - - 487 528 68

    75.9 117 50 63.1 85.5 68.5 55 - - - - 475 513 67

    75.2 117 49 62.1 85 67.6 53.8 - - - - 464 498 66

    74.7 116 48 61.4 84.5 66.7 52.5 - - - - 451 484 64

    74.1 116 47 60.8 83.9 65.8 51.4 - - - - 442 471 63

    73.6 115 46 60 83.5 64.8 50.3 - - - - 432 458 62

    73.1 115 45 59.2 83 64 49 - - - - 421 446 60

    72.5 114 44 58.5 82.5 63.1 47.8 - - - - 409 434 58

    72 113 43 57.7 82 62.2 46.7 - - - - 400 423 57

    71.5 113 42 56.9 81.5 61.3 45.5 - - - - 390 412 56

    70.9 112 41 56.2 80.9 60.4 44.3 - - - - 381 402 55

    70.4 112 40 55.4 80.4 59.5 43.1 - - - - 371 392 54

    69.9 111 39 54.6 79.9 58.6 41.9 - - - - 362 382 52

    69.4 110 38 53.8 79.4 57.7 40.8 - - - - 353 372 51

    68.9 110 37 53.1 78.8 56.8 39.6 - - - - 344 363 50

    68.4 109 36 52.3 78.3 55.9 38.4 - - - - 336 354 49

    67.9 109 35 51.5 77.7 55 37.2 - - - - 327 345 48

    67.4 108 34 50.8 77.2 54.2 36.1 - - - - 319 336 47

    66.8 108 33 50 76.6 53.3 34.9 - - - - 311 327 46

    RA

    60

    Brale

    RB

    100

    1/16

    RC

    150

    Brale

    RD

    100

    Brale

    R15N

    Brale

    R30N

    Brale

    R45N

    Brale

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB

    50010mm

    HB

    300010mm

    HV

    Diamond

    Pyramid

    Shore

    66.3 107 32 49.2 76.1 52.1 33.7 - - - - 301 318 44

    65.8 106 31 48.4 75.6 51.3 32.5 - - - - 294 310 43

    65.3 105 30 47.7 75 50.4 31.3 - - - - 286 302 42

    64.7 104 29 47 74.5 49.5 30.1 - - - - 279 294 41

    64.3 104 28 46.1 73.9 48.6 28.9 - - - - 271 286 40.5

    63.8 103 27 45.2 73.3 47.7 27.8 - - - - 264 279 40

    63.3 103 26 44.6 72.8 46.8 26.7 - - - - 258 272 38

    62.8 102 25 43.8 72.2 45.9 25.5 - - - - 253 266 37.5

    62.4 101 24 43.1 71.6 45 24.3 - - - - 247 260 37

    62 100.5 23 42.1 71 44 23.1 - - - - 243 254 36

    61.5 100 22 41.6 70.5 43.2 22 93 82 72 201 237 248 251

    61 99 21 40.9 69.9 42.3 20.7 92.5 81.5 71 195 231 243 246

    60.5 98.5 20 40.1 69.4 41.5 19.6 92.4 81.2 70.5 192 228 238 243

  • 8/11/2019 Metal Properties and Tests

    15/27

    60 98 20 - - - - 92.3 81 70 189 226 237 241

    59.5 97 19 - - - - 92 80.5 69 184 222 234 236

    59 96 18 - - - - 91.8 80 68 179 216 230 231

    58 95 16 - - - - 91.5 79 67 175 210 222 226

    57.5 94 14 - - - - 91.3 78.5 66 171 205 213 221

    57 93 13 - - - - 91 78 65.5 167 200 208 216

    56.5 92 11 - - - - 90.5 77.5 64.5 163 195 200 211

    56 91 10 - - - - 90.8 77 63.5 160 190 196 206

    RA

    60

    Brale

    RB

    100

    1/16

    RC

    150

    Brale

    RD

    100

    Brale

    R15N

    Brale

    R30N

    Brale

    R45N

    Brale

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB

    50010mm

    HB

    300010mm

    HV

    Diamond

    Pyramid

    Shore

    toNext page of Hardness Conversion Table

    Hardness Conversion Table (second page)RA 60Brale

    RB 1001/16

    RC 150Brale

    RE 1001/8

    R15T1/16

    R30T1/16

    R45T1/16

    HB 50010mm

    HB 300010mm

    HV DiamondPyramid

    Knoop

    55.5 90 9 - 90 76 62.5 157 185 192 201

    55 89 8 - 89.5 75.5 61.5 154 180 188 196

    54 88 7 - 89.3 75 60.5 151 176 184 192

    53.5 87 6 - 89 74.5 59.5 148 172 180 188

    53 86 5 - 88.5 74 58.5 145 169 176 184

    52.5 85 4 - 88.3 73.5 58 142 165 172 180

    52 84 3 - 88 73 57 140 162 168 176

    51 83 2 - 87.5 72 56 137 159 164 173

    50.5 82 1 - 87.3 71.5 55 135 156 160 170

    50 81 - - 87 71 54 133 153 156 167

    49.5 80 - - 86.5 70 53 130 150 152 164

    49 79 - - 86.3 69.5 52 128 147 148 161

    48.5 78 - - 86 68 51 126 144 144 158

    48 77 - - 85.5 68 50 124 141 141 155

    47 76 - - 85.3 67.5 49 122 139 139 152

    46.5 75 - - 85 67 48.5 120 137 137 150

    46 74 - - 84.8 66 47.5 118 135 135 147

    45.5 73 - - 84.5 65.5 46.5 116 132 132 145

    45 72 - - 84 65 45.5 114 130 130 143

    44.5 71 - 100 83.8 64 44.5 112 127 127 141

    RA 60

    Brale

    RB 100

    1/16

    RC 150

    Brale

    RE 100

    1/8

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB 500

    10mm

    HB 3000

    10mm

    HV Diamond

    PyramidKnoop

    44 70 - 99.5 83.5 63.5 43.5 110 125 125 139

    http://www.substech.com/dokuwiki/doku.php?id=hardness_conversion_table_2http://www.substech.com/dokuwiki/doku.php?id=hardness_conversion_table_2http://www.substech.com/dokuwiki/doku.php?id=hardness_conversion_table_2http://www.substech.com/dokuwiki/doku.php?id=hardness_conversion_table_2
  • 8/11/2019 Metal Properties and Tests

    16/27

    43.5 69 - 99 83 62.5 42.5 109 123 123 137

    43 68 - 98 82.8 62 41.5 107 121 120 135

    42.5 67 - 97.5 82.5 61.5 40.5 106 119 118 133

    42 66 - 97 82 60.5 39.5 104 117 116 131

    41.8 65 - 96 81.8 60 38.5 102 116 115 129

    41.5 64 - 95.5 81.5 59.5 37.5 101 114 114 127

    41 63 - 95 81 58.5 36.5 99 112 113 126

    40.5 62 - 94.5 80.8 58 35.5 98 110 112 124

    40 61 - 93.5 80.5 57 34.5 96 108 111 122

    39.5 60 - 93 80.3 56.5 33.5 95 107 110 120

    39 59 - 92.5 80 56 32 94 106 108 118

    38.5 58 - 92 79.5 55 31 92 104 107 117

    38 57 - 91 79.3 54.5 30 91 102 106 115

    37.8 56 - 90.5 79 54 29 90 101 105 114

    37.5 55 - 90 78.5 53 28 89 99 104 112

    37 54 - 89.5 78.3 52.5 27 87 - 103 111

    36.5 53 - 89 78 51.5 26 86 - 102 110

    36 52 - 88 77.5 51 25 85 - 101 109

    35.5 51 - 87.5 77.3 50.5 24 84 - 100 108

    35 50 - 87 77 49.5 23 83 - 100 107

    RA 60

    Brale

    RB 100

    1/16

    RC 150

    Brale

    RE 100

    1/8

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB 500

    10mm

    HB 3000

    10mm

    HV Diamond

    PyramidKnoop

    34.8 49 - 86.5 76.5 49 22 82 - 99 106

    34.5 48 - 85.5 76.3 48.5 20.5 81 - 98 105

    34 47 - 85 76 47.5 19.5 80 - 97 104

    33.5 46 - 84.5 75.5 47 18.5 79.5 - 96 103

    33 45 - 84 75.3 46 17.5 79 - 95 102

    32.5 44 - 83.5 75 45.5 16.5 78 - 95 101

    32 43 - 82.5 74.5 45 15.5 77 - 94 100

    31.5 42 - 82 74.3 44 14.5 76 - 93 99

    31 41 - 81.5 74 43.5 13.5 75 - 92 98

    30.8 40 - 81 73.5 43 12.5 74.5 - 91 97

    30.5 39 - 80 73.3 42 11 74 - 90 96

    30 38 - 79.5 73 41.5 10 73 - 90 95

    29.5 37 - 79 72.5 40.5 9 72 - 89 94

    29 36 - 78.5 72.3 40 8 71.5 - 88 93

    28.5 35 - 78 72 39.5 7 71 - 88 -

    28 34 - 77 71.5 38.5 6 70 - 87 -

  • 8/11/2019 Metal Properties and Tests

    17/27

    27.8 33 - 76.5 71.3 38 5 69 - 87 -

    27.5 32 - 76 71 37.5 4 68.5 - 86 -

    27 31 - 75.5 70.8 36.5 3 68 - 86 -

    26.5 30 - 75 70.5 36 2 67 - 85 -

    26 29 - 74 70 35.5 1 66.5 - 85 -

    RA 60

    Brale

    RB 100

    1/16

    RC 150

    Brale

    RE 100

    1/8

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB 500

    10mm

    HB 3000

    10mm

    HV Diamond

    PyramidKnoop

    25.5 28 - 73.5 69.8 34.5 - 66 - 84 -

    25 27 - 73 69.5 34 - 65.5 - 84 -

    24.5 26 - 72.5 69 33 - 65 - 83 -

    24.3 25 - 72 68.8 32.5 - 64 - 83 -

    24 24 - 71 68.5 32 - 63.5 - 82 -

    23.5 23 - 70.5 68 31 - 63 - 82 -

    23 22 - 70 67.8 30.5 - 62.5 - 81 -

    22.5 21 - 69.5 67.5 29.5 - 62 - 81 -

    22 20 - 68.5 67.3 29 - 61.5 - 80 -

    21.5 19 - 68 67 28.5 - 61 - 80 -

    21.3 18 - 67.5 66.5 27.5 - 60.5 - 79 -

    21 17 - 67 66.3 27 - 60 - 79 -

    20.5 16 - 66.5 66 26 - 59.5 - 78 -

    20 15 - 65.5 65.5 25.5 - 59 - 78 -

    - 14 - 65 65.3 25 - 58.5 - 77 -

    - 13 - 64.5 65 24 - 58 - 77 -

    - 12 - 64 64.5 23.5 - 57.7 - 76 -

    - 11 - 63.5 64.3 23 - 57.3 - 76 -

    - 10 - 62.5 64 22 - 57 - 75 -

    - 9 - 62 63.8 21.5 - 56.7 - 75 -

    - 8 - 61.5 63.5 20.5 - 56.3 - 74 -

    - 7 - 61 63 20 - 56 - 74 -

    - 6 - 60.5 62.8 19.5 - 55.5 - 73 -

    - 5 - 60 62.5 18.5 - 55 - 73 -

    - 4 - 59 62 18 - 54.7 - 72 -

    - 3 - 58.5 61.8 17 - 54.3 - 72 -

    - 2 - 58 61.5 16.5 - 54 - 71 -

    - 1 - 57.5 61 16 - 53.5 - 71 -

    - - - 57 60.8 15 - 53 - 70 -

    RA 60

    Brale

    RB 100

    1/16

    RC 150

    Brale

    RE 100

    1/8

    R15T

    1/16

    R30T

    1/16

    R45T

    1/16

    HB 500

    10mm

    HB 3000

    10mm

    HV Diamond

    PyramidKnoop

  • 8/11/2019 Metal Properties and Tests

    18/27

    Fracture ToughnessDr. Dmitri Kopeliovich

    Fracture is a process of breaking a solid into pieces as a result ofstress.

    There are two principal stages of the fracture process:

    Crack formation

    Crack propagation

    Ductile fractureDuctilematerials undergo observableplastic deformationand absorb significant energy

    before fracture.

    A crack, formed as a result of the ductile fracture, propagates slowly and when the stress is

    increased.

    Plastic deformation of a multi-phasematerial causes formation and coalescence of voids on

    the phase and inclusions boundaries. These voids are responsible for the specificappearance of the ductile fracture surface, consisting of numerous spherical micro-cavities

    (dimples), initiating formation of the crack.

    Tensile specimenfractured by the ductile mechanism is characterized by the cap and

    coneappearance of the fracture.

    Single-phasealloysand pure metals are more ductile, than metals, containing second

    phases or inclusions.

    Brittle fracture

    http://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=ductile_and_brittle_fracture.pnghttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovich
  • 8/11/2019 Metal Properties and Tests

    19/27

    Brittle fracture is characterized by very low plastic deformation and low energy absorption

    prior to breaking.

    A crack, formed as a result of the brittle fracture, propagates fast and without increase of

    the stress applied to the material.

    The brittle crack is perpendicular to the stress direction.

    There are two possible mechanisms of the brittle

    fracture: transcrystalline(transgranular, cleavage) orintercrystalline

    (intergranular).

    Cleavagecracks pass alongcrystallographic planesthrough thegrains.

    Intercrystallinefractureoccurs through thegrain boundaries,embrittled bysegregated

    impurities,second phase inclusions and other defects.

    The brittle fractures usually possess bright granular appearance.

    ToughnessToughnessis ability of material to resist fracture.The general factors, affecting the toughness of a material are: temperature,strainrate,

    relationship between thestrengthand ductility of the material and presence of stress

    concentration (notch) on the specimen surface.

    Fracture toughness is indicated by the area below the curve onstrain-stress diagram(see

    the figure):

    http://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_strain-stress_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=microsegregationhttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=metals_crystal_structure
  • 8/11/2019 Metal Properties and Tests

    20/27

    As seen from the diagram toughness of the ductile materials is higher than toughness of

    brittle materials.

    Stress-intensity Factor (K) is a quantitative parameter of fracture toughness determininga maximum value of stress which may be applied to a specimen containing a crack (notch)

    of a certain length.

    Depending on the direction of the specimen loading and the specimen thickness, four types

    of stress-intensity factors are used: KC, KICKIICKIIIC.

    KCstress-intensity factor of a specimen, thickness of which is less than a critical value.

    KCdepends on the specimen thickness. This condition is called plane stress.

    KIC,KIIC, KIIICstress-intensity factors, relating to the specimens, thickness of which is

    above the critical value therefore the values of KICKIICKIIIC do not depend on the specimen

    thickness. This condition is called plane strain.

    KIICand KIIICstress-intensity factors relating to the fracture modes in which the loading

    direction is parallel to the crack plane. These factors are rarely used formetalsand are not

    used forceramics;

    KICplane strain stress-intensity factor relating to the fracture modes in which the loading

    direction is normal to the crack plane. This factor is widely used for both metallic and

    ceramic materials.

    KICis used for estimation critical stress applied to a specimen with a given crack length:

    CKIC/(Y( a))

    http://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=metalshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=toughness.pnghttp://www.substech.com/dokuwiki/doku.php?id=ceramicshttp://www.substech.com/dokuwiki/doku.php?id=metals
  • 8/11/2019 Metal Properties and Tests

    21/27

    Where

    KICstress-intensity factor, measured in MPa*m;

    Cthe critical stress applied to the specimen;

    athe crack length for edge crack or half crack length for internal crack;

    Ygeometry factor.Impact test

    Impact test is used for measuring toughness of materials and their capacity of resisting

    shock.

    In this test the pendulum is swing up to its starting position (height H) and then it is

    allowed to strike the notched specimen, fixed in a vice. The pendulum fractures the

    specimen, spending a part of its energy. After the fracture the pendulum swings up to a

    height H.

    The impact toughnessof the specimen is calculated by the formula:

    a = A/ S

    Where

    a-impact toughness,

    Athe work, required for breaking the specimen ( A = M*g*H0M*g*H),

    M- the pendulum mass,

    S- cross-section area of the specimen at the notch.

    One of the most popular impact tests is the Charpy Test, schematically presented in the

    figure below:

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=pendulum_test.png
  • 8/11/2019 Metal Properties and Tests

    22/27

    The hammer striking energy in the Charpy test is 220 ft*lbf (300 J).

    to top

    FatigueDr. Dmitri Kopeliovich

    Fatigue is a type of failure of a material, occurring under alternating loads.

    Most of the failures of machine details are caused by fatigue.

    Fatigue life is the number of cyclingstresses,causing failure of the material.

    Frequency of these stresses is not important.

    Fatigue limit is the maximum value of repeatedly applied stress that the material can

    withstand after an infinite number of cycles (10-20 mln. Cycles in practice).

    http://www.substech.com/dokuwiki/doku.php?id=fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughnesshttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fracture_toughness&cache=cache&media=charpy.pnghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=fracture_toughness
  • 8/11/2019 Metal Properties and Tests

    23/27

    Fatigue strength at N cycles is the load, producing the material fracture after N cycling

    applications of the load.

    Fatigue limit of a material is much lower, than its ultimate tensile strength.

    Fatigue tests are carried out in the Whler-type machine, schematically shown in the

    picture.

    The rotating specimen in form of a cantilever is driven by an electric motor. The specimen is

    loaded by the force F, applied to the ball bearing, mounted on the end of the specimen.

    Since the force direction does not change, the direction of the stress applied to the

    specimen will be reversed each 180 of the shaft rotation.

    This scheme provides cycling loading of the specimen, presented in the equivalent scheme.

    To find the fatigue limit the fatigue test is repeated at different loads.

    http://www.substech.com/dokuwiki/lib/exe/detail.php?id=fatigue&cache=cache&media=fatigue_test.png
  • 8/11/2019 Metal Properties and Tests

    24/27

    The tests results are presented in form of S-N curve(stress vs. number of cycles):

    Fatigue fracture is characterized by presence of two different types of the surface:

    One part is smooth and discolored with ripple-like marks, indicating slow crack growth from

    the center of the crack formation. Another part of the surface has coarse crystalline

    appearance resulted from the final catastrophic crack propagation.

    The following factors affect fatigue fracture:

    Surface factor

    Fatigue cracks form and initiate on the specimen surface therefore hardened and smooth

    surface (without stress concentrations - notch, flaw) will increase the fatigue limit.

    Compressive stress

    Compressive stresses, produced in the specimen surface byShot peening,cold workorheat

    treatmentresult in considerable increase of fatigue limit.

    Micro-structure defects

    Non-metallic inclusionsand other micro-defects may initiate formation of fatigue cracks.

    Environmental factor

    Fatigue in the presence of corrosive environment (Corrosion fatigue)occurs at lower cycling

    stresses and after lower number of cycles.

    to top

    CreepDr. Dmitri Kopeliovich

    Creepis a phenomenon of slowplastic deformation(elongation) of a metal at high

    temperature under a constant load.

    The creep mechanism:

    At lowstressesthe creep is controlled by thediffusionof atoms through thegrain

    boundaries.At higher stresses the creepstrainproceeds due to thedislocationsmovement.

    http://www.substech.com/dokuwiki/doku.php?id=shot_peeninghttp://www.substech.com/dokuwiki/doku.php?id=shot_peeninghttp://www.substech.com/dokuwiki/doku.php?id=shot_peeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=non-metallic_inclusions_in_steelhttp://www.substech.com/dokuwiki/doku.php?id=non-metallic_inclusions_in_steelhttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatiguehttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatiguehttp://www.substech.com/dokuwiki/doku.php?id=fatiguehttp://www.substech.com/dokuwiki/doku.php?id=fatiguehttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=fatigue&cache=cache&media=s-n_curve.pnghttp://www.substech.com/dokuwiki/doku.php?id=imperfections_of_crystal_structurehttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=grain_structurehttp://www.substech.com/dokuwiki/doku.php?id=diffusion_in_alloyshttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=fatiguehttp://www.substech.com/dokuwiki/doku.php?id=corrosion_fatiguehttp://www.substech.com/dokuwiki/doku.php?id=non-metallic_inclusions_in_steelhttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatmenthttp://www.substech.com/dokuwiki/doku.php?id=basic_principles_of_heat_treatment#hardeninghttp://www.substech.com/dokuwiki/doku.php?id=shot_peening
  • 8/11/2019 Metal Properties and Tests

    25/27

    The rate of creepis a function of the material, the applied stress value, the temperature,

    and the time exposure.

    Considerable creep deformation, causing damage of machines and structures occur at high

    temperatures (about a half of the melting point measured in the absolute temperature

    scale). Therefore this phenomenon is taken into account in design and operation of heat

    exchangers, steam boilers and pipes, jet engines and other loaded equipment, working athigh temperatures.

    Soft metals (lead, tin) may experience creep at room temperature.

    A typical creep behavior is presented in the diagram:

    The initial strain is not time dependent and it is caused mainly byelastic deformation.

    The first stage creep is characterized by relatively fastplastic deformationoccurring at

    decreasing rate. During this stage resistance creep increases causing decrease the

    deformation rate.

    The second stage creep occurs at a constant and relatively low deformation rate. This

    rate is used in the engineering design.

    The rate of creep at the second stage depends on both the load (stress) and thetemperature.

    The third stage creep is associated with accelerated strain rate caused by decrease of the

    cross sectional area of the specimen (necking). This stage is finalized by the specimen

    fracture.

    At room temperature creep is negligible at any stress below the yield point.

    http://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=creep&cache=cache&media=creep.pnghttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagramhttp://www.substech.com/dokuwiki/doku.php?id=plastic_deformationhttp://www.substech.com/dokuwiki/doku.php?id=tensile_test_and_stress-strain_diagram
  • 8/11/2019 Metal Properties and Tests

    26/27

    The quantity, which is used in precise design of machines and structures working at

    elevated temperatures, is creep strength.

    Creep strengthis a stress which causes a definite creep strain after a specified period of

    time at a given temperature.

    Creep strength of a material is much lower, than its tensile strength.

    If a large amount of deformation is tolerated rupture strength is used in design.

    Rupture strengthis a stress which causes a fracture of a metal after a specified period of

    time at a given temperature.

    Creep strength and rupture strength are determined in stress-rupture tests conducted in

    [Tensile test and Stress-Strain Diagram|tensile test]] machines equipped with a furnace

    providing uniform heating of the tested specimens.

    This machine records amount of strain at every moment after the test has started and until

    the specimen failure.

    to top

    http://www.substech.com/dokuwiki/doku.php?id=creephttp://www.substech.com/dokuwiki/doku.php?id=creephttp://www.substech.com/dokuwiki/lib/exe/detail.php?id=creep&cache=cache&media=stress_rupture.pnghttp://www.substech.com/dokuwiki/doku.php?id=creep
  • 8/11/2019 Metal Properties and Tests

    27/27

    Chemical Composition EvaluationDr. Dmitri Kopeliovich

    Spectrometry is an analytical technique used in chemistry for quantitative and qualitative

    analysis of substances by means studying the electromagnetic spectra either absorbing

    (absorbtion spectroscopy) or radiating (emission spectroscopy) by the substance.

    Spark or arc spectroscopy is a method of metals andalloysanalysis, using an electric

    spark (or arc) passing through the metal sample, heating its surface and causing emission

    of light by the excited atoms of the sample.

    The waves of the emitted light are analyzed by spectroscopic methods.

    X-Ray Fluorescence (XRF, X-Ray Emission) Spectroscopy is an analytical non-

    destructive spectral method, using irradiation of the sample by intensive x-rays, causing

    emission of fluorescent x-rays by the sample atoms.

    The emitted x-rays are detected and analyzed by a spectrometer.

    The qualitative analysis is based on either wavelength or energies of the emitted x-rays.

    The quantities of the sample components are determined by intensities of the emitted x-

    rays.

    Atomic absorption is a destructive analytical method where a light of a definite

    wavelength is passed through the atomized sample.

    The waves transmitted by the sample are analyzed as compared to the waves passed

    through the sample. Thus the energy, absorbed by the sample is determined.

    The amount of the absorbed energy is related to the concentration of the certain

    component.

    http://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovichhttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=solid_solutionshttp://www.substech.com/dokuwiki/doku.php?id=dmitri_kopeliovich