Membrane!Distillation!! - Duke...

16
Membrane Distillation Study of Membrane Distillation unit at the Duke Smart Home. Jack Larsson ABSTRACT The basic concept of a Membrane distillation unit is presented, thereafter improvement on the current configuration is presented. Department of Energy Technology Royal Institute of Technology Stockholm, Sweden

Transcript of Membrane!Distillation!! - Duke...

Page 1: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

   

 

 

 

 

 

 

 

 

 

Membrane  Distillation    Study  of  Membrane  Distillation  unit  at  the  Duke  Smart  Home.  

Jack  Larsson  

ABSTRACT  

The   basic   concept   of   a   Membrane   distillation   unit   is   presented,   thereafter  improvement  on  the  current  configuration  is  presented.      

Department of Energy Technology Royal Institute of Technology

Stockholm, Sweden    

Page 2: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  2  

 

Table  of  Contents  

Introduction ..............................................................................................................................3  Goal  of  the  project ............................................................................................................................. 3  

Working  principle  of  a  Membrane  distillation  process..............................................3  Characteristics.................................................................................................................................... 4  Different  setups ................................................................................................................................. 4  Mathematical  description............................................................................................................... 5  

System  layout ............................................................................................................................7  Current  system  layout ..................................................................................................................... 7  Improvements  on  current  prototype ......................................................................................... 9  Heat  exchanger ..................................................................................................................................................9  Heat  conduction  in  plates........................................................................................................................... 11  Insulation  of  cooling  plates........................................................................................................................ 11  Enclosed  volume. ........................................................................................................................................... 12  Minimize  the  distance. ................................................................................................................................. 13  Pumping  water................................................................................................................................................ 14  

Summarized/conclusions .................................................................................................. 15  Future  work............................................................................................................................ 15  Bibliography........................................................................................................................... 16    

 

Page 3: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  3  

Introduction    Membrane  distillation  processes  are  mainly  used  in  industry  applications  where  there  is  a  need  for  super  clean  water.  Although  there  are  hopes  that  membrane  distillation  will  be  a  cheap  technology  in  the   future   for   making   drinking   water.   In   USA   today   bottled   water   is   a   big   industry   and   Reverse  Osmosis   is   one   of   the   technologies   used   to   get   clean   water.   Reverse   Osmosis   although   is   a   very  electric  consuming  process  and  since  electricity  is  a  very  pure  energy  it’s  quite  wasteful  to  use  it  for  production  of  drinking  water.  One  of  the  big  advantages  with  Membrane  distillation  (MD)  is  that  the  process  can  be  run  with  low  graded  heat  as  the  main  energy  source.    For   this  specific  project  we  are   looking  at   implementing   this   technology   in   the  smart  house  on   the  Duke   campus.   Currently   the   house   has   warm   water   produced   by   solar   collectors   and   these   will  hopefully  supply  enough  heat  to  be  used  as  the  low  graded  heat  source  for  the  membrane  distillation  unit.  There  are  also  big  tanks  of  collected  rainwater  that  could  be  purified  into  drinking  water.  Today  the  rainwater  is  used  for  toilets,  washer,  and  irrigation.  One  of  the  goals  of  the  smart  home  is  to  go  “off  grid”;  this  will  most  probably  be  achieved  by  being  a  net  zero  house  where  most  of  the  electricity  would  be  provided  by  a  sterling  solar  engine  and  solar  panels.  The  sterling  engine  needs  cooing  and  this  would  be  a  perfect  opportunity  to  get  heat  to  the  Membrane  Distillation  unit.  However,   a   first   step   is   to   install   a   small  Membrane  Distillation  unit   that   runs  on   the   solar  heated  warm  water.  This  is  a  relatively  new  concept  and  no  earlier  examples  where  this  has  been  done  can  be  found.    

Goal  of  the  project  To  get  an  understanding  of   the  working  principles  of  a  MD  unit  and   find  out  how  the  yield  can  be  improved.   Find   out   how   the   prototype   constructed   at   Duke   and   suggest   improvements   on   it  according  to  the  theory.  

Working  principle  of  a  Membrane  distillation  process.  The  following  chapter  will  give  a  short  overview  to  the  working  principle  of  a  membrane  distillation.      Membrane   distillation   is   a   process   where   warm   water   flows   on   one   side   of   the   membrane   and  evaporates   through   the  membrane  due   to  a   lower  partial  pressure  of  water  on   the  other  side.  The  Figure   below   illustrates   the   process   where   the   warm   dirty   water   is   flowing   on   the   left   side   and  evaporating  through  the  membrane  in  to  the  right  side  where  it  is  condensed.  The  driving  force  of  the  process  is  the  partial  pressure  difference,  which  is  directly  linked  to  temperature  difference  between  the  warm  and  the  cold  side.  The  membrane  in  the  process  is  a  semipermeable  hydrophobic  membrane,  other  places  you  can  find  this  types  of  material  is  GORE-­‐TEX®  clothing  which  is  wide  spread.      

Page 4: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  4  

 Figure  1:  Illustrative  picture  of  the  distillation  process  (Chuanfeng Liu, 2005)  

Characteristics  Advantages:    

• 100%  (theoretical)  rejection  of  ions,  macromolecules,  colloids,  and  other  non-­‐volatiles.  • Lower  operating  temperatures  than  conventional  distillation  • Low  sensitivity  to  variations  in  process  (e.g.  pH  and  salts  (L.  Martinez,  2001))  • Good  to  excellent  mechanical  properties  and  chemical  resistance  • Potential  lower  capital  costs  compared  to  RO  (Reverse  Osmosis)    

Disadvantages:  • Higher  energy  intensity  (although  a  low  grade  heat  might  be  used)  • Low  yield  in  non-­‐batch  mode  • Sensitive  to  surfactants    • Volatiles  cannot  be  completely  separated  (such  as  Ammonia  and  carbonates)  • Not  yet  fully  commercialized      

Different  setups  There  are  4  different  types  of  Membrane  distillation  processes(Kevin  W.  Lawson,  1997):  

!"#$%&'#()!! ! !!

"!

!!!!

#$%&'()$

*(+!,$$-./0123$(/4)5!6007

8(7

90)-$).(/$

:(70;'!7<(.$

90064)5!6007

!!"#$%&'()' *+,&-./"+'01'-&-2%.3&'4"5/"66./"03'7%0+&558'9:&%0';<'

!"#$%&!'(!)*&'+'%,!-'#!$.%!+/00/1'23!($%)(!4567!!

! 8%#$!'(!$&#2()/&$%,!+&/9!$.%!:*0;!+0*',!$/!$.%!9%9:&#2%!(*&+#<%=!#2,!2/2-/0#$'0%!</9)/2%2$(!,'++*(%!+&/9!$.%!9%9:&#2%!(*&+#<%!$/!$.%!:*0;!

! "#$%&!'2!$.%!./$!</2$#'29%2$!(%<$'/2!%-#)/&#$%(!! "#$%&!-#)/&!,'++*(%(!$.&/*3.!$.%!9%9:&#2%!! "#$%&! -#)/&! ,'++*(%(! $.&/*3.! $.%! 3#)=! +&/9! $.%! 9%9:&#2%! (*&+#<%! $/! $.%!</2,%2(#$%!1#00!

! "#$%&!-#)/&!</2,%2(%(!/2!$.%!</2,%2(#$%!1#00!! 8%#$!'(!$&#2()/&$%,!$.&/*3.!$.%!</2,%2(#$%!1#00!$/!$.%!<//0#2$!

!!!!!!!

Page 5: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  5  

 • DCMD  (Direct  Contact  Membrane  Distillation)  • AGMD  (Air  Gap  Membrane  Distillation)  • SGMD  (Sweep  Gas  Membrane  Distillation)    • VMD  (Vacuum  Membrane  Distillation)  

   The  most  common  ones  are  DCMD  and  AGMD;   the   latter  one   is  preferable.  The  DCMD  has  relative  low  heat  utilization  due  to  conduction  through  the  membrane.  It  also  needs  clean  cold  water  on  the  cooling  side.  This  is  unsuitable  when  the  goal  is  to  get  clean  water.  A  problem  with  the  AGMD  is  that  it  has  a  relative  low  yield.    

Mathematical  description    A  prototype  of  AGMD-­‐type  has  been  tested  on  Duke  campus  and  is  therefore  the  one  of  the  biggest  interest   for   this   study.  A  mathematical  model   is  presented  here,   both   for   the  yield   and   the   energy  consumption  of  an  AGMD-­‐unit.    Mathematically   the   flux   and   the   energy   flow   can  be  described  by   equations   below,   if   seen   as   one-­‐dimensional  and  steady  state  (A.-­‐S  Jönsson,  1985).  According  to  the  Duke  students  a  steady  state  is  reached  after  approximately  15  [min],  (Eric  Esch,  2010).      

 

 (1)    

   

 

     (2)    

   

!"#$%&'#()!! ! !!

"!

!"#$%&'()*%#+,-.,//).,0*#1).%(#23(,4,5).,0*#.%56*0/078##

!"#$%&'()*+,-.$$

"#$%&'(#! )*+,*--',*.(! /"01! *+! '! (.2#-! 3',#&! 45&*6*7',*.(! 4&.7#++! %#*(8! *(2#+,*8',#)!3.&-)3*)#!'+!'!-.3!7.+,9!#(#&8:!+'2*(8!'-,#&(',*2#!,.!7.(2#(,*.('-!+#4'&',*.(!4&.7#++#+9!+57;! '+! )*+,*--',*.(<! =;#! %#(#6*,+! .6!"0! 7.$4'&#)! ,.! .,;#&! $.&#! 4.45-'&! +#4'&',*.(!4&.7#++#+!'&#! ,;#! 6.--.3*(8>! /?1!?@@A!/,;#.&#,*7'-1! &#B#7,*.(!.6! *.(+9!$'7&.$.-#75-#+9!7.--.*)+9! 7#--+9! '()! .,;#&! (.(C2.-',*-#+9! /D1! -.3#&! .4#&',*(8! ,#$4#&',5&#+! ,;'(!7.(2#(,*.('-!)*+,*--',*.(9!/E1!-.3#&!.4#&',*(8!4&#++5&#!,;'(!7.(2#(,*.('-!4&#++5&#C)&*2#(!$#$%&'(#! +#4'&',*.(! 4&.7#++#+9! /F1! &#)57#)! 7;#$*7'-! *(,#&'7,*.(! %#,3##(!$#$%&'(#!$#7;'(*7'-! 4&.4#&,:! &#G5*&#$#(,+9! '()! /H1! &#)57#)! 2'4.&! +4'7#+! 7.$4'&#)! ,.!7.(2#(,*.('-! )*+,*--',*.(! 4&.7#++#+! I?JK<! =;*+! ,;#&$'--:! )&*2#(! 4&.7#++! #$4-.:+! '!;:)&.4;.%*7! $*7&.4.&.5+! $#$%&'(#! ,.! +544.&,! '! 2'4.&C-*G5*)! *(,#&6'7#<! L6! '!,#$4#&',5&#!)*66#&#(7#!*+!$'*(,'*(#)!'7&.++!,;#!$#$%&'(#9!'!2'4.&!4&#++5&#!)*66#&#(7#!.775&+<!M+! '! &#+5-,9! -*G5*)! /5+5'--:!3',#&1! #2'4.&',#+! ',! ,;#! ;.,! *(,#&6'7#9! 7&.++#+! ,;#!$#$%&'(#! *(! ,;#! 2'4.&! 4;'+#! '()! 7.()#(+#+! ',! ,;#! 7.-)! +*)#9! 8*2*(8! &*+#! ,.! '! (#,!,&'(+$#$%&'(#!3',#&!6-5N<!!M!2'&*#,:!.6!$#,;.)+!$':!%#!#$4-.:#)!,.!*$4.+#!,;*+!2'4.&!4&#++5&#!)*66#&#(7#9!'()!*(!8#(#&'-!,;#&#!'&#!6.5&!O*()+!.6!"0!+:+,#$!7.(6*85&',*.(+!/P*85&#!D1!#<!8<!)*&#7,!7.(,'7,!$#$%&'(#! )*+,*--',*.(! /0Q"019! '*&! 8'4! $#$%&'(#! )*+,*--',*.(! /MR"019! +3##4! 8'+!$#$%&'(#!)*+,*--',*.(!/SR"01!'()!2'755$!$#$%&'(#!)*+,*--',*.(!/T"01<!!

!#$%&$'()*&+$),

#$%&$'-()*&+$),

./0.

#$%&$'()*&+$), 1$2!345

160.

/),'-,($,3!74**

#$%&$'()*&+$), 87--5!34(

860.

#$%&$'()*&+$), 94::&;

90.

0-;<24,-

!!"#$%&'()' *+,,+-' .+-/"#$%01"+-2' +/' ,&,3%0-&' 4"21"5501"+-'

6789''

'1! 0Q"0>!=;#!4#&$#',#!+*)#! .6! ,;#! $#$%&'(#!$':! 7.(+*+,! .6! '!7.()#(+*(8! 6-5*)! *(!)*&#7,!7.(,'7,!3*,;!,;#!$#$%&'(#!

%1! MR"0>!M!7.()#(+*(8!+5&6'7#!+#4'&',#)!6&.$!,;#! $#$%&'(#! %:! '(!'*&!8'4!/MR"01!

71! SR"0>!M!7.()#(+*(8!+5&6'7#!+#4'&',#)!6&.$!,;#! $#$%&'(#! %:! '!+3##4*(8!8'+!

)1! T"0>! ! ! ! M!7.()#(+*(8! +5&6'7#!+#4'&',#)! 6&.$! ,;#!$#$%&'(#! %:! '!2'755$!8'4<!

!

!!

Q = 4.1*10!3 * 1b(" * Th )

+ LTc

* ln 1!Vc1!Vh

#$%

&'(

E =1.5 *10!3 * (Th ! Tc )

b"# Th

$%&

'()+ L

Tc

+1.4 * ln 1!Vc1!Vh

$%&

'()*

b"# Th( )

b# Th

$%&

'()+ L

Tc

$%&

'()

Page 6: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  6  

Where:  Q  is  the  flux  E  is  the  energy  flow  L  is  the  distance  between  the  membrane  and  the  cooling  plate  ϕ is  the  porosity  of  the  membrane  Th  and  Tc  is  the  bulk  temperature  on  hot  resp.  cold  side  b  is  the  thickness  of  the  membrane  Vh  and  Vc  is  the  mole  fraction  of  water  vapor  on  the  hot  resp.  cold  side  And  γ  is  a  function  dependent  on  the  thermal  conductivity  of  the  membrane  and  the  porosity  and  the  overall  thermal  conductivity  that  is  varying  with  the  flow.      If  this  is  analyzed  further  we  can  see  that  to  gain  a  big  flux  the  distance  L  and  the  thickness  b  should  be  minimized.  What   is  optimal   is  hard  to  say  but  many  systems  today  use  L  of  approx  2  [mm]  and  thickness   of   0.2   [μm]   (Chuanfeng Liu, 2005).   In   figure   below   there   is   an   illustration   how   the   flux  varies  with  different  values  for  L  and  b.    

 Figure  2:  Flux  variation  of  b  and  L  (A.-­‐S  Jönsson,  1985)  

We   also   know   that   the   higher   the   temperature   the   higher   the   mole   fraction   gets.   Therefore,   we  should   try   and   increase   the   temperature   difference   as   much   as   possible.   This   can   be   seen   in  equations  (3)  and  (4),  where  (3)  tells  us  that  the  molar  fraction  is  the  same  as  the  partial  pressure  and  (4)  tells  us  how  the  partial  pressure  is  varying  with  the  temperature.  This  can  be  illustrated  in  a  graph  as  been  done  by  the  Duke  students  during  spring  2010,  see  Figure  3.      

 

 (3)  

   

 

 (4)  

   Where:  Pi  is  partial  pressure  of  water  vapor  Ptot  is  total  pressure  Ti  is  temperature  Vi  is  the  molar  fraction  

FLUX

20

10

=0.2 mm

(kg/m=h)

245

L = I mm

L=5 mm

O0 I I I 0.'2 0.4 0 .6 0.8 (mm) b

Fig. 6. The mass f lux as a function of the membrane thickness at T h = 60 °C,

T c = 20 °C, @ = 0.8 and kpTFE = 0.22 W/m K.

30

20

10

FLUX (kg/m=h)

L = 5 m y C,,... m

O• I I i I 0.2 0.4 0.6 0.8 ¢

Fig. 7. The mass f lux as a function of the ef fect ive net pore area at T h T c = 20 °C, b = 0.2 mm and kpTFE = 0.22 W/m K.

= 60 °C

PiPtot

= Vi

log10 Pi = 7.96681!1668.21228.0 + Ti

Page 7: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  7  

 Figure  3:  Flux  variation  (Eric  Esch,  2010)  

As  the  flux  increases  the  energy  flow  will   increase  in  the  system.  Although,  to  get  a  high  yield  for  a  minimum  energy  input,  i.e.  a  high  efficiency,  a  high  temperature  difference  should  be  used,  as  can  be  seen  in  figure  below.    

 Figure  4:  Heat  loss  as  a  function  of  Th  where  Tc  is  20[°C]  (A.-­‐S  Jönsson,  1985)  

 

System  layout  

Current  system  layout  The   main   concept   is   to   have   warm   dirty   water   inside   the   membrane,   evaporate   it   through   the  membrane,  condensing  it  on  the  other  side,  and  finally  capture  it.  A  schematic  drawing  below  shows  how  this  is  done  in  theory.  

Similar to p, it should rise with increasing hot flow, and eventually reach a maximum (in this case the conductivity of the “membrane - air gap - aluminum plate - copper pipe” that are in between the hot and cold flows.

This expected leveling off of k can be seen in the KTH data.

k-p model Assuming that k=f(flow) and p=g(flow), the model works as follows for predicting:

1) For a given flow rate, find both k and p 2) For the given hot and cold temperatures, find the corresponding vapor pressures, and take

the difference. 3) The flux is given by J=p*(vapor pressure difference) 4) With the latent heat of vaporization of water denoted by (L), the thermal energy

associated with vaporization is equal to times the flux. HV=L*J 5) The thermal energy lost by conduction is CondHeat=k(Thot-Tcold) 6) The efficiency is J/CondHeat

J has units of l/hr and CondHeat is power, with units of kW. As a result, our efficiency metric (and CTQ) is in units of L/kWh – specifically one liter of distillate.

Distillate Flux Predictions Using the above equations, and the “k-p” model, the KTH data was used to form our initial estimates of system performance, as well as to size out prototype (largely along distillate flux and thermal energy consumption).

Figure 14: Flow, Flux, and Cooling Plate Temperature

Figure 15: Flow, Feed Temperature, and Cooling Plate Temperature

248

In a s i m i l a r way the inc rease in the mass f l u x a t h igh temperatures r e s u l t s in a decrease in the heat loss when the temperature o f the hot s o l u t i o n is

increased (see Fig. I 0 ) .

800

600

40(

20(

£ 20 Th

HEAT LOSS (kJ/kg)

I I ! I | I |

40 6 0 8 0 (°C)

Fig . I0. The heat loss as a f u n c t i o n o f the temperature o f the hot s o l u t i o n at

T c = 20 °C, b = 0.2 mm, # = 0 .8 , kpTFE = 0.22 W/m K and L = 1 mm.

NOTATION

b = membrane th i ckness , m

c = molar c o n e n t r a t i o n , mole/m 3

Cp = heat c a p a c i t y , J /mole K D = d i f f u s i o n c o e f f i c i e n t f o r the wa te r vapour - a i r m i x t u r e , m2/s

E = energy f l u x , J/m 2 s

k = thermal c o n d u c t i v i t y , W/m K

kai r = thermal c o n d u c t i v i t y , W/m K

kpTFE = thermal c o n d u c t i v i t y , W/m K L = leng th o f the d i f f u s i o n path in the a i r gap, m

N = molar f l u x , mole/m 2

Page 8: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  8  

 Figure  5:  Schematic  drawing  of  membrane  distillation  unit  

Unfortunately  the  real  world   is  never  as  beautiful  as   the  theoretical  and  the  prototype  can  be  seen  below.  It  consists  mainly  of  4  different  parts  that  are  marked  in  Figure  6.  

 1. Immersive  heater  with  built  in  pump,  flow  rates  from  60  to  150  l/h,  temperatures  from  

room  temp  and  up.  2. Aluminum  condenser  areas  with  copper  tubing  attached  with  thermal  conducting  epoxy.    3. Frame  with  support  for  lower  and  upper  part  of  membrane  cassette.  4. Fresh  water  collector    

   

Figure 26: System Architecture Diagram

Construction The whole membrane distillation system is, as mentioned earlier, built onto a roller cart for ease of transportation. Functional parts of the system include the membrane cassette frame, including cooling plates, the hot water distilland reservoir with immersion heater/pump and the distilled water collection. The membrane cassette frame rests on some blocks of wood for elevation relative to the hot water tank, so that water build-up in the membrane cassette is minimized. The cart has been adjusted to allow gravity-fed clean distillate collection, by inversion of one of four upper cart walls.

Page 9: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  9  

 Figure  6:  Prototype  to  the  left  and  Solid  works  model  to  the  right  (Eric  Esch,  2010)  

The  conceptual  idea  is  that  the  water  is  heated  in  the  immersive  water  heater  and  then  pumped  by  the  built  in  pump  up  to  the  membrane,  there  it  enters  the  membrane  from  either  the  top  or  bottom.  Once  the  membrane  is  filled  with  water,  the  water  flows  back  to  the  heater  for  recirculation.  The  cold  side  currently  takes  water  from  the  tap  and  circulates  it  through  the  copper  pipes,  which  in  their  turn  cools  the  aluminum  plates,  and  finally  it  flows  in  to  the  drain.  The  condensing  plates  are  fixed  with  an  angle  so  that  when  the  condensed  water  has  dripped  down  to  the  bottom  edge  it  flows  out  towards  the  water-­‐collecting  bucket.    For  more   details   on   the  model   see   the   report   by   the  Duke   students   from   spring   2010,   (Eric   Esch,  2010).    

Improvements  on  current  prototype  The   current   prototype   has   a   very   low   yield   at   the   optimal   running   conditions   tested   by   the  Duke  students   the   yield  was   about   100  ml/h,  which   is   about   1/15   of  what   could   be   expected   from   this  membrane.      

Input  conditions     Duke   KTH  Cold  water  flow   57  l/h   ?  l/h  Hot  water  flow   60  l/h   546  l/h    Distance  between    cooling  plates  

1”   ???  mm  

Yield   100  ml/h   1.4-­‐1.9  l/h  ∆T  warm  water   ??     3-­‐5°C  Table  1:  Data  for  two  membrane  distillation  units  

Heat  exchanger  The   cooling   plates   today   are   run   as   a   type   of   counter   flow   heat   exchanger   but  with   the   flow   first  passing  one  side  then  the  second  side,  as  shown  in  Figure  7.    

Figure 27: SolidWorks Design of System

Figure 28: System and SolidWorks Design of System

The most important part of the assembly is the membrane cassette and frame, shown above on the left of the photo and SolidWorks model. The frame was assembled from 80/20 hardware,

2  1  

3    

4    

Page 10: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  10  

 Figure  7:  Water  flow  on  cold  side  current  prototype  

To  gain  maximum  flux  a  counter  flow  heat  exchanger  should  be  used,  (Alaa Kullab, 2007).  We  know  this  due  to  the  fact  that  the  flux  is  varying  with  the  temperature  difference  i.e.  the  bigger  the  ∆T  the  bigger  the  flux.  This  can  also  be  seen  in  normal  heat  exchangers  where  we  know  that  counter  flow  heat  exchangers  gives  the  biggest  energy  transfer,  (Burghardt,  1986).    In   this  prototype   then   it  means   that   the  coldest  water  should  enter  at   the  opposite  side   to   the  hot  water.  The  membrane  is  constructed  for  having  the  water   inflow  at  the  bottom  and  the  outflow  on  top.  To  get  as  equal  on  each  side  as  possible  the  water  flow  will  enter  on  the  top  left  one  the  be  led  to  the  top  right  one  then  second  from  the  top  on  the  right  over  the  second  on  the  top  to  the  right  and  so  on,  see  Figure  8.    

 Figure  8:  Water  flow  in  new  system  

rF ['

{a-

Fs'

sil

+* t\ (:) -\ F 5

16* ':r

:

q.,,'

,,,,,'

"

",o'

t'rrn

t'au

qa

Water  to  the  other  side  

Water  inflow    to  system.  

Page 11: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  11  

 The  system  will  be  reconfigured  so  it  behaves  as  a  counter  flow  heat  exchanger.  

Heat  conduction  in  plates.  The  students  at  Duke  did  a  really  nice  thermal  analysis  of   the  temperature  of   the  cooling  plates.   In  their   suggestion   the   plates  would   be   surrounded   by   a  medium  of   70°C   and   had   a   heat   convective  constant  of  50  [W/°C  m2].  In  the  report  it  is  also  assumed  that  the  temperature  of  the  copper  pipes  is  22   [°C].   This   for   the   whole   plate   would   give   a   heat   gain   of   310   [W],   according   to   equation   (5).  Although  if  we  analyze  the  results  for  KTH  we  can  se  that  the  temperature  drop  and  the  water  flow  in  Table  1  suggests  that  the  heat  gain  should  be  950  [W],  see  equation  (6).            (5)  

 Where:  Q  is  the  energy  flow  [W]  h  is  a  convective  constant  50  [W/K  m2]  A  is  the  area  of  the  cooling  plates  0.129  [m2]  ∆T  is  the  temperature  difference  set  to  48  [°C]      

 

 (6)  

 Where:  Q  is  the  energy  flow  [W]  cp  is  the  heat  capacity  of  water  4.2  [kj/kg]  ṁ is the mass flow of water 0.15 [kg/s] n is the number of the sides of the membrane that is 2 [-]  How   this   affects   the   results   is   hard   to   tell,   but   a   less   uniform   temperature  profile   is   probably   one  answer.  Now,  the  copper  pipes  only  have  a  line  of  conductive  contact  with  the  aluminum  plates  and  this  gives  a  small  area  for  the  heat  to  be  conducted  through.      Therefore  a  larger  area  of  the  copper  pipes  should  be  in  direct  contact  with  the  cooling  plates.  

Insulation  of  cooling  plates  At  the  moment  no  insulation  is  placed  on  the  outside  of  the  cooling  plates,  see  Figure  9.  This  causes  extra   heat   gains   on   the   cooling   plates   that   gives   a   lower   temperature   difference   between   the   hot  water   in  the  membrane  and  the  plates   i.e.  a   lower  yield.  Also  since  Durham  is  a  very  warm  place  a  problem  will  be  to  keep  the  cooling  side  cool  enough  to  have  a  good  yield.    

Q = hA!T

Q =

!mcp!Tn

Page 12: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  12  

 

 Figure  9:  Insulation  of  cooling  plates  

Therefore  insulation  should  be  purchased  and  placed  on  the  outer  surfaces  of  the  cooling  plates.  

Enclosed  volume.  The  prototype  today  is  open  to  the  surroundings,  which  means  that  water  that  evaporates  through  the  membrane  might  continue  right  out  into  the  surrounding.  This  is  not  preferable  and  is  as  of  this  moment  the  biggest  loss  in  the  system.  The  rig  at  KTH  is  sealed  from  both  the  sides  and  from  the  top.  The  model  at  Duke  has  a  semi  working  seal  at  the  top  and  no  seals  on  the  sides  see  Figure  10.    

 Figure  10:  Leakage  in  current  system  

 

,<J

C\

:* c\

B*6

(}- (-s

l

Q 3 6- B .Rt\

_T t] \ ) (\

(\ R -.) L_

l<

tr +--

(r

Page 13: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  13  

Therefore   sealing   material   should   be   purchased   for   the   sides,   preferably   some   type   of   cheap   plastic  material.  And  design  improvements/new  design  should  be  made  to  the  top  sealing.    

Minimize  the  distance.  As  stated  earlier,  the  air  gap  between  the  membrane  and  the  cooling  plates  should  be  approx  2  [mm].  In  the  current  prototype  a  much  bigger  air  gap  is  used.  As  it  could  be  seen  in  Figure  2  this  distance  should  be  minimized.  Construction  of  the  current  prototype  does  not  allow  small  distances  between  the  membrane  and  the  cooling  plates  for  several  reasons.  Firstly  the  lower  support  for  the  membrane  takes  up  space,  see  Figure  11.    

 Figure  11:  Cooling  plates  distance  due  to  lower  support  

The  cooling  plates  are  bent  at  the  bottom  for  collecting  the  condensed  water,  this  influences  the  distance  between  the  cooling  plates,  see  Figure  12.  

Page 14: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  14  

 

 Figure  12:  Distance  created  due  to  bending  and  bolts  

In  Figure  11-­‐Figure  12  we  can  also  se  the  bolts  that  are  holding  the  copper  tube  in  place.  These  bolts  take  up  a  lot  of  space  between  the  cooling  plates.    Therefore  the  bottom  support  should  be  removed,  the  plates  should  be  re-­designed  and  the  bolts  should  be  cut  off.    

Pumping  water.  As  seen  in  Table  1  there  is  a  major  difference  between  the  water  flow  in  the  system  at  Duke  and  the  one  at  KTH.  A  higher  flow  rate  increases  the  flux  in  the  system  as  can  be  seen  in,  (Eric  Esch,  2010),  but   it   also   increases   the   energy   consumption   due   to   a   bigger   pump.   Since   the   pump   is   the   main  energy   consumption   unit   of   high-­‐grade   energy   it   is   important   to   keep   the   size   of   this   as   small   as  possible.  The  pump  used  at  KTH  is  a  bit  extensive,  (Baklini,  2010),  and  since  the  running  parameters  will  be  worse  here  at  Duke  an  even  smaller  pump  could  be  used.    “Worse,”  here  means  that  the  hot  water  will  be  colder  and  the  cooling  plates  will  be  warmer.    A   pump   will   also   be   needed   for   the   system   implementation   in   the   duke   smart   home   since   the  immersive  heater  would  not  heat  the  rainwater.    Therefore  a  new  pump  should  be  purchased  and  implemented  to  the  system  but  the   immersive  heater  should  still  be  as  heat  source  for  further  testing.      

Page 15: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  15  

Summarized/conclusions    Form   the   theoretical   study  we   can   see   that   improvements   to   the   current   prototype   can   be  made.  Although  it’s  not  that  surprising  since  the  first  model  was  built  to  make  connections  between  theory  and  real  life.    Ways  to  improve  the  yield  in  the  current  prototype  are:    

• The  system  will  be  reconfigured  so  it  behaves  as  a  counter  flow  heat  exchanger.  • A  larger  area  of  the  copper  pipes  should  be  in  direct  contact  with  the  cooling  plates.  • Insulation  should  be  purchased  and  placed  on  the  outer  surfaces  of  the  cooling  plates.  • Sealing   material   should   be   purchased   for   the   sides,   preferably   some   type   of   cheap   plastic  

material.  And  design  improvements/new  design  should  be  made  to  the  top  sealing.  • Bottom  support  should  be  removed,  the  plates  should  be  re-­designed  and  the  bolts  should  be  cut  

off.    

Future  work  Construct  an  improved  prototype  from  the  suggested  improvements.  Make  an  implementation  plan  for  the  MD  unit  in  the  smart  home.  Validate  the  water  quality  for  implementation.  Examine  the  water  system  and  quality  in  the  smart  home.  

Page 16: Membrane!Distillation!! - Duke Universitysmarthome.duke.edu/sites/smarthome.duke.edu/files/Larsson_MDreport.pdfMembrane!distillation!! ! Duke!incollaborationwithKTH!!JackLarsson! 3!!

Membrane  distillation       Duke  in  collaboration  with  KTH  

  Jack  Larsson      Tuesday,  June  22,  2010  16  

 

Bibliography  A.-­‐S   Jönsson,   R.  W.-­‐C.   (1985).   A   theoretical   Study   of   Evaporation   through  microporus  membrane.  Desalination  56  ,  237-­‐249.    Alaa  Kullab,  A.  M.   (2007).  Membrane  Distillation  and  Applications   for  Water  Purification   in  Thermal  Cogeneration  -­  Pilot  Plant  Trials.  Stockholm:  Värmeforsk  Service  AB.    Baklini,  D.  (2010,  06  02).  Master  student  working  with  MD  unit  at  KTH.  (J.  Larsson,  Interviewer)    Burghardt,  M.  (1986).  Engineering  Thermodynamics  with  Applications  -­  Third  Edition.  New  York,  NY  10022,  USA:  Harper  &  Row.    Chuanfeng  Liu,  A.  M.  (2005).  Membrane  Distillation  and  Applications  for  Water  Purification  in  Thermal  Cogerneration  -­  A  Per-­study.  Stockholm:  Värmeforsk  Service  AB.    Eric  Esch,  J.  F.  (2010).  Membrane  Distillation.  Durham:  Duke  University  Pratt  School  of  Engineering.    Kevin  W.  Lawson,  D.  R.  (1997).  Review  of  Membrane  Distillation.  Journal  of  Membrane  Science  .    L.  Martinez,  F.  G.-­‐D.   (2001).  Theoretical  and  experimental   studies  on  desalination  using  membrane  distillation.  Desalination  139  ,  373-­‐379.