Membrane Surface Character is at Ion by Contact Angle

14
ELSEVIER Journal of Membrane Science 131 (1997) 167-180 ~ E SCIENCE Membrane surface characterisation by contact angle measurements using the immersed method M.J. Rosa*, M.N. de Pinho Chemical Engineering Department, lnstituto Superior Tdcnico, 1096 Lisboa Codex, Portugal Received 8 November 1996; received in revised form 30 January 1997; accepted 4 February 1997 Abstract A new concept of contact angle measurem ents by the immersed method is applied to membrane surface characterisation. The general system of two immiscible liquids is used wherein a droplet of CCI4 is deposited on the membrane surface imm ersed in an aqueous solution. When the solution is pure water, membrane hydrophilicity is evaluated. With aqueous solutions of a cationic surfactant (below its critical micelle concentration) at different pH values, membrane titration curves are obtained. From these curves we obtain the acid-base behaviour of each membrane and the pH value at which half of the membrane surface groups are ionised, pK1/2. This method is tested with five nanofiltration membranes, a series of three cellulose acetate membranes, CA -316, with increasing hydraulic permeabilities and two commercial thin film composite membranes, CD-NF-50 of poly(trans-2,5-dimethyl)piperazin hiofurazanamide/polyethersulfone and H R-98-PP of polyamide/ polysulfone. The results show that the method (i) is easy to perform and avoids dynamic measurements (requires 5 min o f drop deposition); (ii) is reproducible (maximal deviations of 7°); (iii) simulates multiple membrane technical environments (e.g. pure water, aqueous solutions); (iv) is not affected by the presence of pores in the nanofiltration range of operation; and (v) is sensitive to membrane hydrophilicity and membrane acidity/basicity (titration curves and pKu2 values). Furthermore, the results show the direct effect of the annealing treatment on the acidity of the CA-316 membranes and they evidence the importance of the mem brane chemical properties (hydrophilicity, acidity/basicity) on the mem brane perm eation performance. Keywords: Membrane surface characterisation; Contact angles; Immersed method; Hydrophilicity; Surfactant; Acid-b ase interactions; Nanofiltration 1. State of the art Characterisation of the surface chemistry is a cru- cial issue in membrane science and technology, because it is well known that membrane performance depends not only on feed hydrodynamics and steric hindrances, but also on membrane surface chemistry *Corresponding author. 0376-7388/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved. P I I S0376-7388(97)00043-4 (hydrophilicity, membrane surface charge) and on membrane-solute(s)-solvent chemical interactions. Contact angle is a measure of the wettability of an ideal surface. It is one of the most easy, common and reliable methods of determining solid surface proper- ties when it is possible to separate intrinsic variations from apparent variations. These apparent variations are induced by surface porosity and roughness, surface morphologic alterations during the measurement (e.g.

Transcript of Membrane Surface Character is at Ion by Contact Angle

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 1/14

ELSEVIER Journal of Me mb rane Science 131 (1997) 16 7-180

~ ESCIENCE

Membrane surface characterisation by contact angle

measurements us ing the immersed method

M.J. Rosa*, M .N. de Pinho

Chemical Eng ineering Department, lns t i tuto Superior Tdcnico, 1096 Lisboa Codex, Portugal

Received 8 Nov emb er 1996; received in revised form 30 Janua ry 1 997; accepted 4 February 1997

Abstract

A n e w c o n c e p t o f c o n t a c t a n g l e m e a su re m e n t s b y t h e im m e rs e d m e th o d i s a p p l i e d t o m e m b ra n e su r fa c e c h a ra c t e ri sa t i o n .

T h e g e n e r a l s y s t e m o f t w o i m m i s c i b l e l iq u i d s is u s e d w h e r e i n a d r o p l e t o f C C I 4 i s d e p o s i t e d o n t h e m e m b ra n e su r fa c e

im m e rse d i n a n a q u e o u s so lu t i o n . W h e n th e so lu t i o n i s p u re wa ter , m e m b ra n e h y d ro p h i l i c i t y i s e v a lu a te d . Wi th a q u e o u s

so lu t i o n s o f a c a t i o n i c su r fa c t a n t (b e lo w i t s c r i t i c a l m ic e l l e c o n c e n t ra t i o n ) a t d i f f e re n t p H v a lu e s , m e m b ra n e t i t r a t i o n c u rv e s

a re o b t a in e d . F ro m th e se c u rv e s we o b t a in t h e a c id -b a s e b e h a v io u r o f e a ch m e m b ra n e a n d t h e p H v a lu e a t wh ic h h a l f o f th e

m e m b ra n e su r fa c e g ro u p s a re i o n i se d , pK1 /2 . Th i s m e th o d i s t e s t e d wi th f i v e n a n o f il t r a ti o n m e m b ra n e s , a se r i e s o f t h re e

c e l l u lo se a c e t a te m e m b ra n e s , CA -3 1 6 , wi th i n c re a s in g h y d ra u l i c p e rm e a b i l i t i e s a n d two c o m m e rc i a l th in f i lm c o m p o s i t e

m e m b r a n e s , C D - N F - 5 0 o f poly(trans-2,5-dimethyl)piperazin h i o f u ra z a n a m i d e /p o l y e th e r s u l fo n e a n d H R - 9 8 - P P o f p o l y a m i d e /p o ly su l fo n e . Th e r e su l t s sh o w th a t t h e m e th o d ( i ) i s e a sy to p e r fo rm a n d a v o id s d y n a m ic m e a su re m e n t s ( r e q u i r e s 5 m in o f d ro p

d e p o s i t i o n ) ; ( i i) i s r e p ro d u c ib l e (m a x im a l d e v i a t i o n s o f 7 °) ; ( i i i ) s im u la t e s m u l t i p l e m e m b ra n e t e c h n ic a l e n v i ro n m e n t s ( e .g .

p u re w a te r , a q u e o u s so lu t i o n s ); ( i v ) is n o t a f f e c t e d b y t h e p re se n c e o f p o re s i n t h e n a n o f i l t ra t i o n r a n g e o f o p e ra t i o n ; a n d (v ) i s

se n s i t i v e t o m e m b ra n e h y d ro p h i l i c i t y a n d m e m b ra n e a c id i t y /b a s i c i t y ( t i tr a t i o n c u rv e s a n d p K u 2 v a lu e s ) . Fu r th e rm o re , t h e

re su l t s sh o w th e d i r e c t e f f e c t o f t h e a n n e a l in g t r e a tm e n t o n t h e a c id i t y o f t h e CA -3 1 6 m e m b ra n e s a n d t h e y e v id e n c e t h e

im p o r t a n c e o f t h e m e m b ra n e c h e m ic a l p ro p e r t i e s (h y d ro p h i l i c it y , a c id i t y /b a s i c i t y ) o n t h e m e m b ra n e p e rm e a t io n p e r fo rm a n c e .

Keywords: M e m b ra n e su r fa c e c h a ra c t e r isa t i o n ; Co n ta c t a n g l e s ; Im m e rse d m e th o d ; Hy d ro p h i l i c i t y ; Su r fa c t a n t; Ac id -b a se

in t e ra c ti o n s ; Na n o f i l t r a t i o n

1 . S t a t e o f th e a r t

C h a r a c t e r i s a t i o n o f t h e s u r f a c e c h e m i s t r y i s a c ru -

c i a l i s s u e in m e m b r a n e s c i e n c e a n d t e c h n o lo g y ,

b e c a u s e i t i s w e l l k n o w n t h a t m e m b r a n e p e r f o r m a n c e

d e p e n d s n o t o n l y o n f e e d h y d r o d y n a m i c s a n d s t e r i c

h i n d r a n c e s , b u t a ls o o n m e m b r a n e s u r f a c e c h e m i s t r y

*Corresponding author.

0376-7388/97/$17.00 © 1997 Elsevier Science B.V. All r ights reserved.

P I I S 0 3 7 6 - 7 3 8 8 ( 9 7 ) 0 0 0 4 3 - 4

( h y d r o p h i l i c it y , m e m b r a n e s u r f a c e c h a rg e ) a n d o n

m e m b r a n e - s o l u t e ( s ) - s o l v e n t c h e m i c a l i n t er a ct io n s .

C o n t a c t a n g l e i s a m e a s u r e o f t h e w e t t a b i l i t y o f a n

i d e a l s u rf a c e. I t is o n e o f t h e m o s t e a s y , c o m m o n a n d

r e l i a b l e m e t h o d s o f d e t e r m i n i n g s o l i d s u r f a c e p r o p e r -

t i e s w h e n i t i s p o s s i b l e t o s e p a r a t e i n t r i n s i c v a r i a t i o n s

f r o m a p p a r e n t v a r i a t i o n s . T h e s e a p p a r e n t v a r i a t i o n s

a r e i n d u c e d b y s u r f a c e p o r o s i t y a n d r o u g h n e s s , s u r f a c e

m o r p h o l o g i c a l t e r a t io n s d u r in g t h e m e a s u r e m e n t ( e . g .

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 2/14

168 M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180

r e s u l ti n g f ro m s u r f ace d ry i n g ) , s u r f ace h e t e ro g en e i t y

and con taminat ions o f the so lu t ion(s ) and /or so l id

surface .

U n t i l n ow , mo s t o f th e co n t ac t an g l e meas u rem en t s

fo r memb ran e ch a rac t e r i s a t i o n h av e b een mad e o nh y d r o p h o b i c m e m b r a n e s u s e d f o r p e r v a p o r a t io n o r g a s

p e rme a t i o n [1 -4 ] an d o n p o ro u s h y d ro p h i l i c o r h y d ro -

p h o b i c memb ran es u s ed i n mi c ro f i l t r a t i o n (MF) o r

u l t ra f i lt ra t ion (UF) [5 ,6 ]. Fan e e t a l . [5 ] cor re la ted f lux

d ec l i n e w i t h t h e v a r ia t i o n o f me mb ran e h y d ro p h i l i c i t y

w h i l e O l d an i an d Sch o ck [6 ] s h o w ed t h a t h y d ro p h i l ic

memb ran es d o h av e b e t t e r f l u x r eco v e r i e s . H o w ev e r ,

t h e s e s t u d i e s h av e s o me d raw b ack s b ecau s e t h ey a r e

p e r f o r m e d w i t h d r y M F o r U F m e m b r a n e s a m p l e s ,

meas u r i n g t h e co n t ac t an g l e o f a d ro p l e t o f w a t e r o n

memb ran e s u r f ace . U s i n g d ry s amp l e s , t h e i n fo rma-

t ion i s l es s re levan t than tha t co l l ec ted in a t echn ica l

en v i ro n men t o f a MF / U F o p e ra t i o n , i. e . me mb ran e i n

co n t ac t w i t h an aq u eo u s s t r eam. Bes i d es , d ry i n g may

i r r ev e r s i b l y d amag e t h e mo rp h o l o g i ca l s t r u c t u r e o f

s o me memb ran es , e . g . c e l l u l o s e ace t a t e memb ran es

p rep a red b y p h as e - i n v e r s io n u s i n g t h e w e t p ro ces s . I n

ad d i ti o n , f o r M F/ U F mem b ran es , t h e s u r f ace p o ro s i t y

an d s u r f ace ro u g h n es s may a f f ec t t h e co n t ac t an g l e

an d u n d e r co v e r i n t r i n s i c v a r i a t i o n s o f memb ran e

hydrophi l i c i ty .

In t h e 7 0 ' s , H ami l t o n [7 ] p ro p o s ed t h e i mmers ed

co n t ac t an g l e me t h o d w h e reb y h e o b t a i n ed t h e mag -

n i t u d e o f t h e p o l a r in t e r ac t i o n b y m eas u rem en t o f t h e

co n t ac t an g l e o f n -o c t an e ( co mp o u n d w i t h a d i s p e r s i v e

surface t ens ion equal to water ) on so l id su r faces

i mmers ed i n w a t e r . D av i d an d Mi s r a [8 ] u s ed t h e

r ev e r s ed s y s t em, t h ey meas u red t h e co n t ac t an g l e o f

w a t e r o n t h e s u r f ace s i mmers ed i n n -o c t an e . Ma t s u -

naga and Ikada [9 ] and Toussa in t and Luner [10]

ev a l u a t ed t he d i s p e r s iv e co m p o n en t o f t h e s u r f ace f r ee

en e rg y o f ce l l u l o s e ma t e r i a ls an d t h e i r n o n -d i s p e r s i v e

in terac t ion wi th d i f feren t po lar l iqu ids (water , g ly -

ce ro l , amo n g o t h e r s ) b a s ed o n a s e r ie s o f co n t ac t an g l ev a l u es o f t h e p o l a r l i q u id o n s o l id s u r f ace s i mm ers ed

i n d i ff e r en t h y d ro ca rb o n s . T h i s s o l i d -w a t e r -h y d ro ca r -

b o n s y s t em i s v e ry ad v an t ag eo u s . I t a l lo w s t h e d e t e r -

mi n a t i o n o f b o t h d i s p e r s i v e an d n o n -d i s p e r s i v e

i n t e r ac ti o n s ( s i n ce h y d ro ca rb o n s d o n o t i n t e r ac t sp e -

c i f i ca l ly wi th the so l id su r face) and i t does no t requ i re

d y n ami c meas u remen t s a s t h e eq u i l i b r i u m b e t w een

the two immisc ib le l iqu ids and the so l id su r face i s

p ro mp t l y r each ed [9 , 1 0 ] . Mo reo v e r , i t t h o ro u g h l y

av o i d s t h e p o l y mer co n t ac t w i t h a i r mo i s t u r e ( s i n ce

s a t u r a t ed i mmers i o n l i q u i d s a r e u s ed ) an d t h e r e fo re ,

t h e s u r f ace s p r ead i n g p r e s s u re may b e n eg l ec t ed

[9,11].

In s t ead o f u s i n g t h e t w o - l iq u i d s i mm ers i o n s y s t em,Z h an g an d H a l l s t r rm [4 ] an d G ek as e t a l . [ 1 2 ] mea -

s u red co n t ac t an g l e s o f a i r o n memb ran e s u r f ace

i mm ers ed i n w a t e r ( cap ti v e b u b b l e me t h o d ) . H o w e v e r ,

t h is s y s t em, a s w e l l a s th e H a mi l t o n ' s m e t h o d r eq u i r e a

mo re s o p h i s t i c a ted apparatus w h e r e t h e m e m b r a n e i s

s u s p en d ed o n t h e t o p o f th e i mm ers i o n ch am b er [4 ] ( in

t h e ca s e o f a s y mmet r i c memb ran e s u s p en d ed u p - s i d e

d o w n w i t h t h e ac t i v e l ay e r f ac i n g t h e b u l k s o l u t io n ) ,

b ecau s e t h e a i r b u b b l e o r t h e n -o c t an e d ro p l e t a r e b o t h

l e ss d en s e r t h an t h e i m mers i o n s o l u t io n o f w a t er .

S t i l l w i t h t h e a i r b u b b l e - l i q u i d -memb ran e s y s t em,

K eu ren t j e s e t a l. [ 1 3 ] d ev e l o p ed a s i mp l e m e t h o d fo r

i n d i r ec t d e te rmi n a t i o n o f t h e co n t ac t an g le . T h ey u s ed

the s t i ck ing bubble t echn ique , i . e . they measured the

p e rcen t ag e o f a i r b u b b l e s t h a t s t ick t o t h e mem b ran e

s u r f ace p l aced o n t h e b o t t o m o f a ce l l , u si n g d i f f e r en t

i mm ers i o n l i q u id s . P l o t t i n g t h e p e r cen t ag e o f s t i ck i n g

bubbles vs . the su r face t en s ion o f the l iqu id they

obta ined the su r face t ens ion o f the l iqu id a t the po in t

o f d e t ach men t , f r o m w h i ch , u s i n g t h e fo r ce b a l an ce ,

t h ey co mp u t e t h e co n t ac t an g l e . T h i s me t h o d i s n o t

i n f l u en ced b y t h e p r e s en ce o f t h e p o re s an d s o i t i s

e s p ec i a l l y ad eq u a t e t o ev a l u a t e t h e h y d ro p h o b i c i t y o f

p o ro u s ma t e r i a l s , s u ch a s MF an d U F memb ran es .

H o w ev e r , i t i s mu ch t o o l ab o r i o u s an d t i me co n s u m i n g

an d i t is n o t w o r t h fo r d en s e m emb ran es , s u ch a s t h o s e

of nanof i l t ra t ion and reverse osmo s i s . In add i t ion , the

a i r b u b b le s w o u l d n o t s t i ck t o h y d ro p h i li c mem b ran es

i mm ers ed i n aq u eo u s s o l u t i o n s b ecau s e t h e w a t e r w e t s

t h e s u r f ace ( a l mo s t ) co mp l e t e l y [1 3 ] , r en d e r i n g t h i s

me t h o d i n ad eq u a t e fo r m o s t p r ac t i c a l s i tu a t io n s .

2 . D e v e l o p m e n t o f a n e w i m m e r s i o n s y s te m f o r

c o n t a c t a n g l e m e a s u r e m e n t

T h e ma i n o b j ec t i v e o f th e p r e s en t w o rk i s t o d ev e l o p

a s i mp l e me t h o d o f d e t e rmi n i n g t h e s u r f ace ch em i ca l

p ro p e r t ie s , n am e l y r e l a t i v e h y d ro p h i l i c i t y an d ac i d i t y /

b a s i c i t y , o f n an o f i l t r a t i o n memb ran es . T h e me t h o d

s h o u l d p r e f e r ab l y a l l o w t h e ev a l u a t i o n o f mem-

b ran e - s o l v en t - s o l u t e ( s ) ch emi ca l i n te r ac t io n s . T h e re -

fo r e , b a s ed o n t h e p r ev i o u s w o rk r ep o r t ed i n t h e

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 3/14

M.J. Rosa, M.N. de Pinho/Journal o f Membrane Science 131 (1997) 167-180 16 9

a q u e o u s s o lu t io n ( w ) ~ T ° w

_- . Tmw i ~ x .~ u~

m o- -" V / / / / / / / / / ' / / / /7 / / / / / / / / ~ ' / / / / / / / / / /# e m b r a n e ( m )/

F i g . 1 . F i n a l f o r m o f a d r o p l e t o f a n o r g a n i c ( C C1 4 ) o n a m e m b r a n e i m m e r s e d i n a n a q u e o u s s o l u t i o n : c o n t a c t a n g l e a n d m e m b r a n e - - C C l 4 -

so l u t i o n i n t e r fa c i a l fo rc e s .

l i te r a t u re , w e d es i g n ed a t w o - l iq u i d s i m m ers i o n s y s -

t em s en s i ti v e t o p H v a r i a t i o n s an d t o t h e p re s en ce o f a

d i sso lved so lu te .

T h e g en e ra l s y s t em co n s i s t s o f a d ro p o f a n eu t r a l

o rg an i c (o ) , w h i ch i s w a t e r i m m i s c i b l e an d h eav i e r

than water , e .g . carbon te t rach lor ide , p laced on the

m em b ran e s u r f ace (m ) i m m ers ed i n an aq u eo u s s o l u -

t ion (w) . Fig . 1 i l lus t ra tes the conta ct ang le , /9 , o f C C 1 4

o n t h e m em b ran e s u r f ace i m m ers ed i n t h e aq u eo u s

so lu t ion and the in ter rac ia l fo rces : membrane--CCl4 ,

7 m o ; m e m b ra n e - s o l u t i o n , 7 m w ; an d C C 1 4 - s ol u ti o n ,

7 ow . T h e s u r f ace f r ee en e rg y w h i ch i s l o s t w h e n s o l u te

i s ad s o rb ed o n m em b ran e s u r f ace i s r ep re s en t ed b y A d

(w h en t h e i m m ers i o n s o l u t i o n is p u re w a t e r t h e re i s n o

co n t am i n an t an d s o l u t e ad s o rp t i o n (A d ) i s ze ro ) .

C o n t ac t an g l e s s m a l l e r t h an 9 0 ° co r r e s p o n d t o h y d ro -

p h o b i c m em b ran es w h i l e co n t ac t an g l e s l a rg e r t h an

9 0 ° co r r e s p o n d t o h y d ro p h i l i c m em b ran es .

T h e re a r e t w o m a i n r eas o n s fo r ch o o s i n g t h i s s y s -

t em :

( i ) t h e n eed t o s i m u l a t e t h e m em b ran e t ech n i ca l

en v i ro n m en t (w a t e r i m m ers ed ) an d , s i m u l t an eo u s l y ,

t o k eep t h e m em b ran es w e t , av o i d i n g r i s k y an d t i m e

co n s u m i n g d ry i n g p ro ces s es ;

( ii ) th e o p p o r t u n i t y t o t ak e ad v an t ag e f ro m s u r f aceco n t am i n a t i o n (u s u a l l y an u n d es i r ed e f f ec t ) w i t h

so lu te adsorp t ion .

T h e fo rce b a l an ce t o t h e i n t e r face y ie l d s th e Y o u n g -

D u p r6 eq u a t i o n , m o d i f i ed t o i n c l u d e s o l u t e ad s o rp t io n

(A d )

7 o w C O S 0 = 7 m w - - '7 m o - - A d (1 )

Fo r h y d ro p h i l i c s u r f aces ( s u ch a s m o s t o f t h e m em -

branes ) a nd po lar l iqu ids (such as water ) , the adhes ive

fo rces ac t in g o n t h e i n t e r f ace a r e n o w -a -d ay s co n s i d -

e r ed t o h av e a n o n -p o l a r L i f s h it z -V an -d e r -W aa l s an d

a n a c i d - b a s e ( s u c h a s h y d ro g e n b o n d in g ) c o m p o n e n t

[ 1 4 -1 6 ] . T h e ac i d -b as e i n t e r ac t io n r eq u i r e s t h a t ac i d i c

s i tes o f one ph ase in tera ct wi th bas ic s i tes o f the o ther ,

so that i f e i ther phase i s neu t ra l o r i f bo th phases have

o n l y b as i c o r o n l y ac i d i c s it e s, t h e re can b e n o ac i d -

base in teract ion [16] .

M o s t m em b ran e p o l y m ers h av e ac i d i c (u s u a l l y ,

carboxyl ic , su lphonic) and bas ic (usual ly , amine)

g ro u p s an d t h e g l o b a l ch a rac t e r i s d ep en d en t o n t h e

p H o f t h e i m m ers i o n s o l u t io n . Wi t h i n c reas i n g p H , t h e

m em b ran e can g o f ro m p o s i t i v e l y ch a rg ed (b as i c

ch a rac t e r ) t o n eg a t i v e l y ch a rg ed ( ac i d i c ch a rac t e r ) .

W h e n t h e m e m b r a n e i s i m m e r s e d i n a n a q u e o u s

s o l u t i o n , t h i s g l o b a l ch a rac t e r d e t e rm i n es m em -

b ran e - s o l u t e ad s o rp t i o n , t h e re fo re co n d i t i o n i n g t h e

f inal con tact ang le o f C C 1 4 . F i g . 2 i l lustrates the

re l a t i o n s h i p b e t w een ca t i o n i c s u r f ac t an t ad s o rp t i o n

o n an i o n i s ab l e m em b ran e s u r f ace an d t h e co n t ac t

an g l e o f C C 1 4 w h en ( a ) t h e m em b ran e an d t h e s u r f ac -

tan t are bo th pos i t ive ; (b ) the mem bran e i s neu t ra l , low

ad s o rp t i o n ; ( c ) t h e m em b ran e h as a n eg a t i v e ch a rg e ,

c o m p l e t e m o n o l a y e r f o r m a t io n . D e p e n d i n g o n m e m -

b ran e an d s u r f ac t an t ch a rac t e r i s t i c s , w h en t h e m em -b ran e s u r f ace i s h i g h l y n eg a t i v e l y ch a rg ed t h e fo r -

m a t i o n o f a d o u b l e l ay e r (F i g. 2 (d ) ) m ay o ccu r [1 7 ] .

Plo t t ing contact ang les agains t so lu t ion pH resu l t s

i n m em b ran e t i tr a t io n cu rv e g en e ra l l y rep re s en t ed i n

Fig . 3 fo r a bas ic membrane (Fig . 3 (a) ) , fo r an ac id ic

m em b ran e (F ig . 3 (b ) ) an d fo r an am p h o t e r i c (b o t h

acid ic and bas ic) mem bra ne (Fig . 3 (c) ) . In th i s f igure ,

the no tes 2 (a) -2(d) correspond to the s i tua t ions i l lu -

s t ra ted in Fig . 2 and pKt/2 i s t h e p H v a l u e a t w h i ch

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 4/14

17 0 M . J . R o s a , M . N . d e P i n h o / J o u r n a l o f M e m b r a n e S c i e n c e 1 3 1 ( 1 9 9 7 ) 1 6 7 - 1 8 0

f ° . ° b o n . O \4444( a )

~ / ~ . u t r a , m e m b r a n e ~

I o o o o o I

( b )

( c )

/ / ; e m b r a n e ~ ( ~ ,

TTTTTTTW(d )

Fig . 2 . I l lus t r a t ion of the r e la t ionship be twe e n c a t ionic sur fa c ta n t a dsorp t ion on a ion i sa ble m e m bra ne sur fa c e a nd the c onta c t a ngle of CC14:

( a ) m e m b r a n e a n d s u r f a ct a n t w i th t h e s a m e c h a r g e ; ( b ) n e u tr a l m e m b r a n e ; ( c ) m e m b r a n e w i t h o p p o s i t e c h ar g e , c o m p l e t e m o n o l a y e r f o r m a t i o n ;( d ) m e m b r a n e w i t h m a x i m u m o p p o s i t e c h a rg e , d o u b l e l a y e r f o r m a ti o n .

0

2 ( a )i

b a s e 2 ( b ) a c i d

f~ 2 (c ) , , • c )

,, , ~ _ 2 ( c )a c i d - b a s e ,

I

pK 1/2 pK 1/2 pK 1/2p H " -

( a ) ( b ) ( c )F i g . 3 . M e m b r a n e t i t r a ti o n c u r v e s o b t a i n e d w i t h c o n t a c t a n g l e o f C C 1 4 o n m e m b r a n e s u r f ac e i m m e r s e d i n a c a t i o n i c s u rf a c t an t s o l u t i o n a t

s e ve ra l pH v a lue s for ( a) ba s ic m e m b ra ne ; (b) a c id ic m e m bra ne ; ( c ) a m pho te r ic m e m b ra ne (2(a ) -2(d ) a re the s i tua t ions i l lus t r a te d in F ig . 2) .

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 5/14

M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180 1 7 l

5 0 % o f t h e g ro u p s a r e i o n i s ed [1 8 ]. Fo r ex am p l e , f o r

an A H ac i d, t h e eq u i l i b r i a i n v o l v ed a r e :

p H < pKu2 [A H ] > > [A - ]

p H = p K / 2 [ A n ] = [ A - ]

p H > pK,/2 [A H ] < < [A - ]

O t h e r t y p es o f t i t r a t i o n cu rv es w e re o b t a i n ed

by Whi tes ides e t a l . [18] based on con tac t ang le

meas u remen t s u s i n g b u f f e r ed w a t e r a s i mmers i o n

so lu t ion .

In t h e p r e s en t w o rk , t w o t y p es o f imm ers i o n s o l u -

t i o n s a r e u s ed ( i ) p u re w a t e r , t o ev a l u a t e memb ran e

re la t ive hydroph i l i c i ty , and ( i i ) an aqueous so lu t ion o f

a ca t i o n i c s u r f ac t an t a t d i f f e r en t p H v a l u es t o ev a l u a t e

membrane ac id i tyPoas ic i ty .T h e me t h o d i s t e s t ed w i t h f i v e n an o f i lt r a t io n (N F)

mem b ran es (p o re d i ame t e r i n th e r an g e o f 1 0 -9 m ) o f

d i f feren t mater i a l s and poros i t i es . A CA-316 ser i es o f

t h r ee ce l lu l o s e ace t a t e (CA ) m emb ran es w i t h in c r ea s -

ing hydrau l i c permeabi l i t i es ( i . e . wi th increas ing por-

o s i t i e s ) a r e p r ep a red i n t h e l ab o ra t o ry b y t h e p h as e

i n v e r s i o n me t h o d . T w o co mmerc i a l t h i n f i l m co mp o -

s i t e memb ran es a r e u s ed , CD -N F-5 0 o f poly(trans-

2 , 5 -d i me t h y l )p i p e raz i n t h i o fu razan ami d e / p o l y e t h e r -

s u lf o n e ( T F Z / P E S ) a n d H R - 9 8 - P P o f p o l y a m i d e / p o ly -

s u l fo n e (PA / PS) . W i t h t h e s e t o f mem b ran es ch o s en ,

w e t e s t t h e me t h o d fo r w eak l y ac i d i c (CA ) , p r ed o m i -

n an t l y ac i d i c (T FZ ) an d p r ed o mi n an t l y b a s i c (PA )

p o l y mer s an d , f o r t h e s ame p o l y mer , w e s t u d y t h e

e f f ec t o f p o ro s i ty i n t h e r an g e o f n an o m e t e r s (CA -3 1 6

series) .

3. Experimental

3.1. Membranes

L a b o r a t o r y - m a d e a n d c o m m e r c i a l m e m b r a n e s w e r e

inves t iga ted .

A s e r ie s o f f i a t - sh ee t c e l lu l o s e ace t a t e a s y m met r i c

mem b ran es , l ab e l l ed CA -3 1 6 s e ri e s, w e re p r ep a red i n

t h e l ab o ra t o ry b y t h e p h as e i n v e r s i o n me t h o d a s

d es c r i b ed b y K u n s t an d So u r i r a j an [1 9 ] . T h e i n d i v i -

d u a l CA -3 1 6 memb ran es a r e i d en t i f i ed b y t h e n u m-

bers 50 , 68 , and 86 tha t cor respond to the anneal ingt emp era t u r e i n °C . T h i s an n ea l in g w as p e r fo rm ed to

o b t a i n mem b ran es o f d i f f e r en t p e rmeab i l it i e s . D e t a i ls

o n t h e p r ep a ra t i o n an d an n ea l i n g co n d i t i o n s a r e l i s t ed

in Tab le 1 .

T h e ce l l u l o s e ace t a t e ( 3 9 . 8 % ace t y l co n t en t ) w as

s u p p l i ed b y E as t man n K o d ak , MW 3 0 2 7 0 . T h i s i s a

l i n ea r g la s s y p o l y m er w i t h a d eg ree o f s u b s t it u t io n o f

2 .5 , i . e . 2 .5 o f the th ree hydroxyl g roups on the

an h y d ro g l u co s e r i n g b ea r an ace t y l (CH 3 CO -) s u b -

s t i tuen t ins tead o f the hydrogen tha t i s found in the

n a t i v e ce ll u l o se . H y d ro x y l g ro u p s a r e r e s p o n s i b l e fo r

C A - 3 1 6 m e m b r a n e h y d r o p h i l i c it y an d w e a k l y a c i d ic

ch a rac t e r ( -O H d i s s o c i a ti o n co n s t an t i s a ro u n d 1 0 -1 °

to 10 12) . Ac ety l subs t i tuen t s a re res pons ib le fo r

T a b l e 1

F i l m c a s t i n g c o n d i t io n s o f t h e C A - 3 1 6 s e r i es m e m b r a n e s

M e m b r a n e C A - 3 1 6 - 50 C A - 3 1 6 - 6 8 C A - 3 1 6 - 86

C a s t i n g s o l u t i o n ( w t % )

P o l y m e r : C A 3 9 8

S o l v e n t : A c e t o n e

A d d i t i v e : M g ( C 1 O a ) 2 / H 2 0

C a s t i n g c o n d i t i o n s

T e m p e r a t u r e o f s o l u t io n ( ° C )

T e m p e r a t u r e o f a t m o s p h e r e ( ° C )

H u m i d i t y o f a t m o s p h e r e ( % )

S o l v e n t e v a p o r a t io n t i m e ( m i n )

G e l a t i o n m e d i u m

A n n e a l i n g c o n d i t io n s

A n n e a l i n g m e d i u m

A n n e a l i n g t i m e ( m i n )

T e m p e r a t u r e o f m e d i u m ( ° C )

1 7 ( i n a l l c a se s )

6 9 . 2 ( i n a l l c a s e s )

1 . 4 5 /1 2 . 3 5 ( i n a l l c a se s )

9 - 1 2 ( i n a l l c a s e s )

2 2 - 2 3 ( i n a l l c a s e s )

5 0 - 6 5 ( i n a l l c a s e s )

1 ( i n a l l c a s e s )

I c e c o l d w a t e r ( 1 - 2 h ) ( i n a l l c a s e s )

H o t w a t e r ( i n a l l c a s e s )

1 1 ( i n a l l c a se s )

5 0 6 7 . 5 8 6

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 6/14

17 2 M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180

m e m b r a n e h y d r o p h o b i c i t y . A t e x t r e m e p H v a l u e s

( ac i d o r a l k a l i n e ) t h e ace t y l g ro u p s may h y d ro l y s e

t o h y d ro x y l g ro u p s an d , t h e r e fo re , CA -3 1 6 m em -

b ran es can n o t b e s u b j ec t ed t o s ev e re p H fo r l o n g

p e r i o d s o f t ime t o av o i d i r rev e r s i b l e ch an g es i n m em -b ran e ch a rac t e r is t ic s . M em b ran e h y d ro p h i l i c i t y w o u l d

i n c rea s e an d t h e p o re r ad iu s a s w e l l , b ecau s e t h e -O H

ster i c h indrance i s lower than tha t o f CH3CO-- .

U s u a l l y , t h e r eco mmen d ed p H l i mi t s o f o p e ra t i o n

a re 2 -8 , t o en s u re a r ea s o n ab l e memb ran e l i f e t i me ,

w h i ch i s 2 -3 y ea r s i n mo s t c a s e s. Fo r v e ry s h o r t ti me

per iods (e .g . 1 -2 days ) , i t i s safe to use a pH in ter va l o f

3 - 1 1 .

T h e t w o co m me rc i a l mem b ran es a r e b o t h t h in f i lm

c o m p o s i t e m e m b r a n e s.

T h e C D - N F - 5 0 m e m b r a n e ( s u p p l i e d b y S e p a r e m ,

I t a l y ) h a s an ac t i v e l ay e r o f T FZ (po ly( t rans-2 ,5 -

d i me t h y l )p i p e raz i n t h i o fu razan ami d e ) ca s t ed o n an

u l t r a f i l t r a t i o n PE S (p o l y e t h e r s u l fo n e ) memb ran e .

T h e C D - N F - 5 0 i s a n a m p h o t e r i c m e m b r a n e w i t h a

p red o mi n an t a c i d i c ch a rac t e r f r o m t h e ca rb o n y l an d

s u l p h u r g ro u p s o f T FZ .

T h e H R - 9 8 - P P m e m b r a n e ( s up p li e d b y D o w / D D S ,

D en mark ) h a s an ac t i v e l ay e r o f PA (p o l y ami d e )

ca s t ed o n a PS (p o l y s u l fo n e ) s up p o r t . I t i s an am p h o -

t e r i c memb ran e w i t h a p r ed o mi n an t b a s i c ch a rac t e r

f ro m t h e ami d e g ro u p s .

T h e f i v e mem b ran es a r e a l l n an o f i lt r a t io n / r ev e r s e

o s mo s i s memb ran es a s ex p re s s ed b y t h e i r h y d rau l i c

p e rmeab i l i t i e s an d av e rag e p o re r ad i i s h o w n i n

Table 2 .

H y d rau l i c p e rmeab i l i t y w as d e t e rmi n ed b y t h e

s l o p e o f t h e p u re w a t e r f l ux v s . t ran s m emb ran e p r e s -

Table 2

Membrane pe rmea t ion cha rac te r i s t i c s ( f rom [20,21] (pre s sure=

3 MPa , t empera ture =2 98 K, f eed t angent i a l ve loc i ty=0.11 m/s ,

f e ed c o n c e n t r a t i o n = 0 . 3 k g / m 3 , m e m b r a n e s u r fa c e a r e a =

13 . 2× 10 4m 2)

M e m br a ne Hydraulic Average

perm eabi l i ty ore radius

(m) ( ,~)

CA-316 -50 1 .55 4 .4

CA-316-68 0.90 4.0

CA-316 -86 0 .16 3 .3

CD-NF-50 2.34 4.2

HR-98-PP 1.63 2.8

s u re [2 0 ] . Memb ran e p o re r ad i u s w as d e t e rmi n ed b y

mo d e l l i n g t h e ex p e r i m en t a l d a t a o f d i l u t e s o l u ti o n s o f

s u g a r s ( e t h an o l , g l y ce ro l , g l u co s e , s acch a ro s e an d

ra f f i n o s e ) b y an i n t eg ra t ed t r an s p o r t mo d e l f o r U F/

N E In t h is mo d e l , t h e av e rag e p o re r ad iu s i s a g l o b a lp a r a m e t e r r e l a t e d t o t h e m e m b r a n e m o r p h o l o g i c a l

s t ru c t u r e ( i . e . p o l y mer mo l ecu l a r a r r an g emen t )

r e s p o n s i b l e fo r t h e d i f fu s i v e an d co n v ec t i v e s t e r i c

h i n d r a n c e s a n d f o r t h e m e m b r a n e - s o l u t e - w a t e r c h e -

mi ca l i n t e rac t i o n s. T h e i n t eg ra ted t r an s p o r t mo d e l , a s

w e l l a s t h e N F ex p e r i men t a l s e t -u p an d p ro ced u re h av e

b een a l r ead y d es c r i b ed b y R o s a an d d e P i n h o [2 0 , 2 1 ].

3 .2 . Sur fa ctan t so lu t ion

A ca t i o n i c s u r f ac t an t w as s e l ec t ed b ecau s e mo s t

c o m m e r c i a l N F m e m b r a n e s h a v e a n a c i di c c h a ra c t e r

a n d w e w a n t e d t o p r o m o t e m e m b r a n e - s u r f a c t a n t

a t t r ac t i o n . T h e s u r f ac t an t u s ed w as N - c e t y l - N ~ , N -

t r i m e t h y l a m m o n i u m b r o m i d e ( C 1 6 T A B ), p r o a n a l y-

s is , f r o m M erck . I n t h e p H r an g e s t u d i ed o f 3 -1 1 t h is

sur fac tan t p resen t s l i t tl e o r no s ign i f i can t pH sens i t iv -

i ty [17] . The sur fac tan t so lu t ion has to be be low the

v a l u e o f c r i ti c a l mi ce l l e co n cen t r a t i o n (CMC ) . O t h e r -

w i s e , t h e s u r f ac t an t mo l ecu l e s w i l l i n t e r ac t w i th eac h

o t h e r f o rmi n g mi ce l l e s i n s t ead o f i n t e r ac t in g w i t h t h e

memb ran e s u r f ace fo rmi n g ad s o rp t i o n l ay e r s . U s i n g

t h e K l ev en s eq u a t i o n [1 7 ] t h e v a l u e o f CMC fo r

C1 6 T A B i s 0 . 8 3 mM . Fo r s a f e t y r ea s o n s , an d b ecau s e

fo r mo s t i o n i c s u r f ac t an t s CMC d ec rea s e s w i t h t h e

i o n i c s t r en g t h o f t h e s o l u t i o n (p ro mo t ed b y t h e p H

ad j u s tmen t ) , a co n cen t r a t i o n o f 0 .3 m M w as u s ed ,

w e l l be l o w t h e C M C o f 0 .8 3 m M .

So l u t i o n p H w as ad j u s t ed w i t h N aO H an d H N O 3

co v e r i n g t h e r an g e o f 3 t o 1 1. D e i o n i s ed w a t e r w i t h a

co n d u c t i v i t y l o w er t h an 0 . 2 ~ tS /cm w as u s ed .

Co n ce rn i n g t h e ab i l i t y t o fo rm a d o u b l e l ay e r ,

a l though th i s i s no t a typ ica l behav iour o f th i s c l ass

o f s u r f ac t an ts d u e t o t h e h i g h v o l u m e o f t h e p o l a r h ead ,C1 6 T A B c an fo rm a d o u b l e l ay e r b ecau s e o f it s lo n g

al iphat i c chain . In fac t , i t i s 32 t imes a C-C leng th

agains t the sphere rad ius o f the po lar head . In add i t ion ,

there i s a lways an ex cess o f su r fac tan t in so lu t ion . Fo r

a mi n i ma l v o l u me o f s o lu t i o n o f 1 ml an d a m i n i ma l

p o l a r h ead r ad i u s o f 1 ~, an d fo r a max i m a l me mb ran e

area o f 2 cm 2 , there are ca . 30 t ime s mo re a d s o r b a b l e

m a t er i a l a r ea (po lar heads ) than a d s o r b en t a r ea (area

avai l ab le fo r adsorp t ion) ( i .e . 0 .3 x 10 -3 ×

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 7/14

M.J. Rosa, M.N. de Pinho /Journal o f Membrane Science 131 (1997) 167-180 17 3

1 0 - 3 x 6 . 0 2 2 x 1 0 2 3 × 3 .1 4 x 1 0 - 2 ° / 2 × 1 0 - 4 = 2 9 . 3 ) .

T h e fo rma t i o n o f a t h i rd l ay e r o f ad s o rp t i o n i s n o t

p o s s i b l e b ecau s e t h e p o l a r h ead s o f t h e d o u b l e l ay e r

a r e f ac i n g t h e b u l k s o l u t i o n , t h e r e fo re r ep e l l i n g t h e

surfac tan t in so lu t ion .

3.3. Contact angles measurements

M e m b r a n e s a m p l e s h a v e 0 . 5 - 1 c m 2 o f s u r f ac e a r e a.

P r i o r t o t h e meas u remen t s an d b e t w een d i f f e r en t

s o l u t i o n s , t h e memb ran es w e re w as h ed i n an u l t r a -

s o u n d b a t h w i t h d e i o n i s ed w a t e r (< 0 .2 g S / cm ) fo r t w o

t i m e s , 1 5 m i n e a c h . T h e m e m b r a n e s w e r e t h e n

i mmers ed i n t h e aq u eo u s s o l u t i o n , a t r o o m t emp era -

t u r e (2 0 °C) , f o r a t i me p e r i o d o p t i mi s ed t o en s u re t h e

s t ab i l i s a t i o n o f memb ran e - s o l u t i o n i n t e r ac t i o n s .

A f t e rw ard s , t h ey w ere p u t o n a s i n t e r ed g l a s s p l a t e ,

wi th the ac t ive l ayer up , and t rans fer red to a spec t ro -

p h o t o me t r i c q u a r t z ce l l f i l l ed w i t h t h e i mmers i o n

s o l u ti o n . A d ro p l e t ( 2 -5 mm h e i g h t ) o f C C1 4 (p ro

an a l y s is , Merck ) w as d e l i v e r ed b y a mi c ro s y r i n g e .

A f t e r a f i x ed d ep o s i ti o n t ime , t h e i m ag e w as r eco rd ed .

Bo t h s t ab i l i s a t i o n an d d ep o s i t i o n t i mes w e re o p t i -

mi s ed i n p r i o r ex p e r i men t s d e s c r i b ed b e l o w (p o i n t

3 .4 .) . Specia l care was t aken whe n manipu la t ing CC14,

b e i n g a l w ay s av o i d ed t h e d i r ec t co n t ac t ( u s i n g ey e ,

sk in and c lo thes p ro tec t ion) and vapours inhala t ion .

T h e ex p e r i men t a l s e t -u p i n t eg ra t e s a co l o u r v i d eo

c a m e r a J V C O m o u n t e d o n a m i c r o s c o p e W i l d M 3 Z

w h ere t h e q u a r t z ce l l w as ad ap t ed . T h e v i d eo s i g n a l i s

t r an s mi t t ed t o a V i d eo P i x F rameg rab l e r f r o m Su n

Mi c ro s y s t em s , u s in g a co m p u t e r Su n S p a rc s t a ti o n IPC

t o i mp o r t t h e d ro p i mag e . T h e co n t ac t an g l e s w e re

o b t a i n ed b y t h e s e s s i le d ro p m e t h o d u s i n g t h e s o f t w a re

A D S A - P ( A x i s y m m e t r i c D r o p S h a p A n a l y s is - P ro f il e )

d e v e l o p e d b y N e u m a n n a n d c o - w o r k e rs .

Each va lue p resen ted i s the resu l t o f a s t a t i s t i ca l t -

t es t an a lys i s (9 5% conf id ence) , 0 4 - (~ n-1 t95%/v/ -n ) .

T h e n u m b er o f s amp l e s , n , is r e l a ti v e t o t h e n u mb er o fd ro p l e t s d ep o s i t ed in t w o d i f f e r en t mem b ran e s amp l e s

an d n i s a l w ay s eq u a l o r h i g h e r t h an 8 (n > 8 ) .

3.4. Optimisation of the drop deposition time and

stabilisation time

Co n t ac t an g l e s o f C C I 4 o n m e m b r a n e a c t i v e l a y e r

i mm ers ed i n p u re w a t e r (< 0 . 2 ~ tS /cm) w ere m eas u red

af ter 1 , 5 , 60 and 90 ra in o f d rop depos i t ion . Th e

T a b l e 3

C o n t a c t a n g l e s o f C C 14 o n m e m b r a n e a c t i v e l a y e r im m e r s e d i n p u r e

w a t e r ( < 0 . 2 ~ tS /c m , p H = 6 . 5 , i m m e r s i o n t i m e > l w e e k , w a t e r d a i l y

c h a n g e d ) m e a s u r e d a f te r 1 , 5 , 6 0 a n d 9 0 m i n o f d r o p d e p o s i t io n

M e m b r a n e T i m e ( m i n ) 0 ( °)

C A - 3 1 6 - 5 0 1 9 9 4 - 2

5 1004-3

6 0 9 9 4 - 3

9 0 1 0 0 ± 3

C D - N F - 5 0 1 1264-3

5 1 2 7 + 2

60 1254-1

90 1274-3

resu l t s a re show n in Tab le 3 . We tes ted on ly two

m e m b r a n e s , C A - 3 1 6 - 5 0 a n d C D - N F - 5 0 , b e c a u s e

amo n g t h e f i v e memb ran es s t u d i ed t h ey h av e t h e

l a rg e r p o re s ( s ee T ab l e 2 ), t h u s b ecau s e t h e o n es fo r

w h o m t h e re i s a p o s s ib l e v a r i a t io n o f t h e co n t ac t an g l e

w i t h d ep o s i t i o n t i me . T h e memb ran es w e re fu l l y

h y d ra t ed s i n ce t h ey h ad b een s t o r ed i n w a t e r f o r , a t

l e a st , o n e w eek ( t h e w a t e r b e i n g ch an g ed e v e ry d ay ) .

F ro m T ab l e 3 , f iv e mi n u t e s a r e m o re t h an s u f f i c ien t

t o r each t h e eq u i l i b r i u m b e t w een t h e t w o i mmi s c i b l e

s o l u t i o n s an d t h e s u r f ace . T h e re fo re , d y n ami c mea -

s u remen t s a r e n o t n eces s a ry , t hi s b e i n g o n e o f t h e g r ea t

ad v an t ag es o f t h e t w o - l i q u i d s i mmers i o n me t h o d , a s

d i scussed p rev ious ly .

The s t ab i l i sa t ion t ime was op t imised wi th a d i lu te

(0 .3 k g / m 3 ) aq u eo u s s o l u t io n o f 2 - ch l o ro b en z o i c ac i d

(pro analys i s , Merck) , one o f the so lu tes tha t wi l l be

i m p o r t a n t t o s t u d y in t e r m s o f m e m b r a n e - s o l u t e c h e -

mi ca l i n t e r ac t i o n s . Co n t ac t an g l e s o f C C 1 4 o n m e m -

b ran e ac t i v e l ay e r i mmers ed i n ch l o ro b en zo i c ac i d

s o l u t io n fo r d i f f e r en t p e r i o d s o f t i me w ere m eas u red

a f t e r 5 mi n o f d ro p d e p o s i t i o n t ime . T h e r e s u lt s a r e

p re s en t ed i n T ab l e 4 .

F ro m T ab l e 4 w e c o n c l u d e t h a t th e o p t i m u m s ta -b i l is a t io n t i me i s 2 4 4 8 h . L o n g e r t ime p e r i o d s m ay

cause neg at ive s ide ef fec t s , such as so lu te degra dat ion

an d / o r memb ran e d eg rad a t i o n .

Co m p ar i n g T ab l e s 3 an d 4 w e co n c l u d e t h a t th e

v a l u es o b t a i n ed w i t h p u re w a t e r a r e d i f f e r en t f r o m

t h o s e o b t a i n ed w i t h 2 - ch l o ro b en zo i c ac i d s o l u ti o n , i .e .

t h e t w o - l i q u i d s i mmers i o n me t h o d d ev e l o p ed i s s en -

s i t ive to the var ia t ion o f the immers ion so lu t ion (p re-

s en ce o f s o l u te an d / o r s o l u t i o n p H ) .

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 8/14

174 M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180

Table 4

Contact angles of CC14 on mem brane active layer imm ersed in 2-chlorobenzoic acid solution (pH= 2.9) for different periods of time

(values measured at room temperature, after 5 min of drop

deposition)

Membrane Time (h) 0 (°)

CA-316-50 1 94±5

24 95±3

48 94±3

CA-316-68 1 98±3

24 97±4

48 95±3

Table 5Contact angles of CC14on mem brane active ayer immersed in pure

water (<0.2 gS/cm, pH =6.5, im mersion time>l week, water daily

changed, values measured at room temperature, after 5 min o f drop

deposition)

Membrane 0 (°)

CA-316-50 100+3

CA-316-68 1045:2

CA-316-86 107± 1

CD-NF-50 127±2

HR-98-PP 146±3

CA-316-86

CD-NF-50

HR-98-PP

1 99±3

24 102±4

48 101 ± 9

14 1394-5

38 141±5

86 141±3

14 140-4-10

38 145±5

86 147±6

4 . R e s u l t s a n d d i s c u s s i o n

4 . 1. I m m e r s i o n s y s t e m I." C C 1 4 - m e m b r a n e - w a t e r

T a b l e 5 s h o w s t h e r e s u l t s r e l a t i v e t o t h e C C 1 4 -

m e m b r a n e - w a t e r s y s te m . F o u r m a i n c o n c l u s io n s

c a n b e d r a w n .

F i r s t , t h e m e t h o d i s r e p r o d u c i b l e a n d h y s t e r e s i s i s

c o n t r o l l e d a s t h e v a l u e s o f c rn - 1 t 9 5 % / x / n r a n g e f r o m 1

t o 3 ° T h e s e v a l u e s a r e s i m i l a r t o ( o r e v e n l o w e r t h a n )

t h o s e r e p o r t e d i n t h e l i t e r a t u r e ( e . g . 0 . 5 - 2 ° [ 9 ] , 4 - 1 6 °

[ 1 2 ]) a n d c o n s i d e r e d t o b e p o s s i b l e t o o b t a i n b y a u t h o r

( i. e . 2 ° [ 2 2 ] ). B e c a u s e t h e y a r e r e l a t i v e t o , a t l e a s t , t w o

m e m b r a n e s a m p l e s t h e y i n d i c a t e t h e m a c r o s c o p i c

h o m o g e n e i t y o f t h e m e m b r a n e a c t iv e l a ye r.S e c o n d , t h e c o n t a c t a n g l e s a r e l a r g e r t h a n 9 0 ° f o r a l l

t h e m e m b r a n e s , t h e r e b y t h e m e m b r a n e s d o p re f e r th e

a q u e o u s s o l u t i o n t o C C 1 4 , i . e . t h e f i v e m e m b r a n e s

s t u d i e d a r e h y d r o p h i l i c . I n a d d i t i o n , t h e s e r e s u l t s

i n d i c a t e t h e r e l a t iv e h y d r o p h i l i c i t y o r d e r o f t he

m e m b r a n e s :

C A - 3 1 6 - 5 0 < C A - 3 1 6 - 6 8 _< C A - 3 1 6 - 8 6

< C D - N F - 5 0 < H R - 9 8 - P P

T h i r d , f o r th e C A - 3 1 6 s e r ie s t h e c o n t a c t a n g l e

i n c r e a s e s w i t h t h e i n c r e a s e o f th e a n n e a l i n g t e m p e r a -

t u re . A c c o r d i n g t o T a b le 2 , t h e m e m b r a n e p o r e r a d i u s

d e c r e a s e s w i t h t he a n n e a l i n g t e m p e r a t u r e . A s a r e su l t ,

i n th is s e r ie s o f h o m o l o g o u s m e m b r a n e s o f th e s a m e

p o l y m e r t h e c o n t a c t a n g l e d e c r e a s e s w i t h t he i n c r e a s e

o f m e m b r a n e p o r e r a d i u s ( s e e T a b l e s 2 a n d 5 ). I n t u m ,

t h e c o n t a c t a n g l e d e v i a t i o n , ~ r n - t t 9 5 % / v ~ , d e c r e a s e s

t h r o u g h C A - 3 1 6 s e r i e s , w h i c h m u s t b e d u e t o t h e

h i g h e r m e m b r a n e s u r f a c e h o m o g e n e i t y o b s e r v e d f o r

m e m b r a n e s w i t h l o w e r a v e r a g e p o r e r a d i u s [ 2 2 ] .

T h e v a r i a t i o n o f th e c o n t a c t a n g l e t h r o u g h C A - 3 1 6

s e r i e s , a l t h o u g h i t i s n o t m u c h p r o n o u n c e d ( 7 ° ) ,

r e v e a l s a n in t r in s i c d e c r e a s e o f t h e m e m b r a n e h y d r o -

p h i l± c i t y w i t h t h e p o r e r a d i u s . I f a n a p p a r e n t e f f e c t

s u c h a s m e m b r a n e r o u g h n e s s w a s i n q u e s t i o n , t h e

o p p o s i t e t r e n d w o u l d b e o b s e r v e d , i . e . t h e c o n t a c t

a n g l e w o u l d i n c r e a s e w i t h p o r e r a d i u s , b e c a u s e w h e n

t h e t r u e a n g l e i s > 9 0 ° th e a p p a r e n t a n g l e o n a r o u g h

s u r f a c e i s g r e a t e r t h a n t h e t r u e v a l u e [ 1 7 ] .

O n t h e o t h e r h a n d , i t is n o t r e a s o n a b l e t o j u s t i f y

t h e o b s e r v e d t r e n d b a s e d o n d r o p p e n e t r a t i o n

e f f e c t s . T h e m e m b r a n e p o r e r a d i i a p p r o a c h m o l e c u l a r

d i m e n s i o n s a n d i t i s n o t p o s s i b l e f o r a C C 1 4 d r o p t o

p e n e t r a t e t h e p o r e s o n l y b y c a p i l l a r y f o r c e s . W h e n

i m m e r s e d i n w a t e r , a C C I 4 d r o p l e t 5 m m h e i g h tw i l l e x e r t a g r a v i t a t i o n a l f o r c e o f a b o u t 3 0 N / m 2

( A p = A p g h , w i th A p ~ 6 0 0 k g /m 3 ). A c c o r d i n g

t o t h e L a p l a c e e q u a t i o n f o r c y l i n d r i c a l p o r e s ( w h i c h ,

i n f a c t , i s m o r e a d e q u a t e f o r m i c r o p o r o u s s u r f a c e s

w i t h r m a x "~ 1 0 - 6 m ) , t h is g r a v i t a t i o n a l f o r c e

w o u l d c o r r e s p o n d t o a " ~ ow c o s / 9 v a r i a t i o n o f

7 5 x 1 0 - 1 ° N / m ( i. e. 1 / 2 A p r m a x w i t h r m a x = 5 ,~ ), a

r a t h e r s m a l l v a l u e c o m p a r e d t o t h e u s u a l 3 'o w r a n g e o f

1 0 - 3 N / m .

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 9/14

M.J. Rosa, M.N. de Pinh o/Jo urna l o f Mem brane Science 131 (1997) 167 -180 175

Thus , the in t r ins ic var i a t ion o f the hyd roph i l i c i ty in

CA -3 1 6 s e r i e s mu s t b e r e l a t ed t o t h e an n ea l i n g t em-

p e ra t u r e u s ed t o o b t a i n mem b ran es w i t h d i f f e r en t p o re

rad ius .

Actual ly , i t i s repor ted in the l i t e ra tu re tha t mem-b ran es o f t h e s ame p o l y mer can p r e s en t s i g n i f i c an t

var ia t ions o f hydrophi l i c i ty [13] because d i f feren t

co n d i t i o n s o f p r ep a ra t i o n ( e . g . an n ea l in g t emp era -

t u r e s ) c an i n d u ce co n fo rm a t i o n a l ch an g es i n t h e mem -

b ran e p o l y mer i c ma t r i x [2 3 -2 6 ] . I n ad d i t i o n , t h e

au t h o r s o b s e rv e d r ecen t l y t h e i n f l u en ce o f t h e an n ea l -

i n g t emp e ra t u r e o n t h e o p t i ca l an i so t ro p y , an d t h e r e -

fo r e o n t h e ma c ro m o l ecu l a r o rg an i s a ti o n o f t h e ac t iv e

l ay e r o f t h e s e CA -3 1 6 m em b ran es [2 7] .

In fac t , the an neal ing cons i s t s on the in t rodu ct ion o f

t h e rma l en e rg y w h i ch cau s e s t r an s l a t i o n a l mo t i o n o ft h e mac ro m o l ecu l e s an d a l l o w s t h e ap p ro ach o f th e

p o l a r g ro u p s t o fo rm v i r t u a l c ro s s - l i n k s b y d i p o l e -

d ipo le in terac t ions [25] . These cross - l inks t end to

decrease the chain mobi l i ty and , as the anneal ing i s

p e r f o r m e d i n a w a t e r b a th ( a n o n -s o l v e n t m e d i u m f o r

ce l lu lose ace ta te) , they resu l t in an i r revers ib le mem-

brane shr inkage . Th i s sh r inkage i s respons ib le fo r a

d ec rea s e i n t h e av e rag e p o re r ad i u s ( s ee T ab l e 3 )

w h i ch h i n d e r s t h e w a t e r t r an s p o r t t h ro u g h t h e mem-

b ran e ma t r i x an d t h u s r ed u ces t h e memb ran e w a t e r

p e rmeab i l i t y . A T R/ FT IR s t u d i e s w i t h t h e s e CA -3 1 6

mem b ran es s h o w ed t h a t , in f ac t , b o t h t h e w a t e r co n -

t en t an d t h e s t a t e o f w a t e r s o rb ed i n t h e memb ran e

act ive l ayer vary wi th the an neal ing ( i . e . wi th increas -

ing t empera tu re there i s a los t in water con ten t

t o g e t h e r w i t h a d ec rea s e i n h y d ro g en b o n d i n g an d

c l u s t e r s iz e o f t h e w a t e r s o rb ed b y t h e ac t i v e l ay e r o f

t h e memb ran e ) [2 8 ] . N ev e r t h e l e s s , t h e memb ran e

s h r i n k ag e i s a l s o r e s p o n s i b l e fo r a mac ro s co p i c

i n c r ea s e o f th e -O H s u r f ace d ens i ty , w h i ch i n c r ea s e s

t h e memb ran e s u r f ace h y d ro p h i l i c i t y ( i . e . i n c r ea s e s

t h e co n t ac t an g l e ).

T h i s i n c r ea s e i n mem b ran e h y d ro p h i l i c i t y w i t h t h ean n ea l i n g t emp era t u r e i s a v e ry i mp o r t an t r e s u l t

b ecau s e i t ch emi ca l l y f av o u r s t h e w a t e r t r an s p o r t

(memb ran e -w a t e r ch emi ca l i n t e r ac t i o n s a r e f av o u red ,

an d s o a r e t h e w a t e r t r an s p o r t an d t h e memb ran e

c l ean i n g w i t h aq u eo u s s o l u t i o n ) , t h u s en h an c i n g t h e

r e l a t i v e memb ran e p e rmea t i o n p e r fo rman ce . T h i s i s ,

C A - 3 1 6 - 8 6 m e m b r a n e i s le s s p e r m e a b l e th a n C A - 3 1 6 -

5 0 m e m b r a n e ( C A - 3 1 6 -8 6 h a s a d e n s e r p o ly m e r i c

s t ruc tu re , wi th h igher s t e r i c h indrances ) bu t i t would

p ro b ab l y p r e s en t h i g h e r r e l a t i v e f l u x es (p e rm ea t e f l u x

w i t h t h e aq u eo u s s o l u t io n o v e r t h e p u re w a t e r f l ux ) an d

f lux recover ies ( ra t io o f f ina l to in i t i a l pure water

f l u xes d e t e rmi n ed , r e s p ec t iv e l y , a f t e r an d b e fo re p e r -

mea t i n g t h e s o l u t i o n ) t h an CA -3 1 6 -5 0 memb ran e .T h e fo u r t h co n c l u s i o n t o b e t ak en co n ce rn s t h e

c o r r e l a t i o n o f m e m b r a n e p e r m e a t i o n p e r f o r m a n c e

( i n t e rms o f h y d rau l i c p e rmeab i l i t y , T ab l e 2 ) w i t h

me mb ran e h y d ro p h i l i c i t y (T ab l e 5 ). T h e r e s u l ts r e l a -

t i v e t o CD -N F-5 0 an d H R -9 8 -PP c l ea r l y i l lu s t r at e t h a t

t h e s t e r ic h i n d ran ces a r e n o t t h e o n l y f ac t o r p l ay i n g an

i mp o r t an t r o l e o n w a t e r t r an s p o r t. O t h e r e f f ec t s s u ch

as mem b ran e -w a t e r ch em i ca l in t e r ac ti o n s , i .e . h y d ro -

p h i l i c i t y ( an d / o r t h e n u mb er o f p o re s i n t h e ac t i v e

l ay e r ) a r e mo s t i mp o r t an t an d can b e ev a l u a t ed b y

co n t ac t an g l e meas u rem en t s ( h y d rau l i c r e s is t an ce d u et o memb ran e t h i ck n es s a l s o i n t e rv en es an d i s n o t

acco u n t ed i n s u p e r f ic i a l mea s u reme n t s s u ch a s co n t ac t

an g l e s ) . CD -N F-5 0 h as an av e rag e p o re r ad i u s o f

4 . 2 , ~, an i n t e rmed i a t e v a l u e b e t w een t h o s e o f C A -

3 1 6 -5 0 an d CA -3 1 6 -6 8 memb ran es ( r e s p ec t i v e l y ,

b e t w een 4 . 4 an d 4 . 0 ,~ ) b u t i t i s mo re h y d ro p h i l i c

t h an t h e s e memb ran es , i . e . i t h a s a co n t ac t an g l e o f

1 27 ° , w e l l ab o v e t h o s e o f CA -3 1 6 mem b ran es (1 0 0 °

an d 1 0 4 ° f o r CA -3 1 6 -5 0 an d C A -3 1 6 -6 8 , r e s p ec -

t ive ly ) . Therefore , a l though wi th in termedia te s t e r i c

h i nd r a nc e s , C D - N F - 5 0 h a s s t r on g e r m e m b r a n e - w a t e r

ch em i ca l i n t e r ac ti o n s t h an CA -3 1 6 m emb ran es w h i ch

re s u l t s i n t h e h i g h memb ran e h y d rau l i c p e rmeab i l i t y

o f C D - N F - 5 0 m e m b r a n e o v e r t h e C A - 3 1 6 m e m b r a n e s

(2 .34 m agains t 1 .55 m and 0 .90 m, respec t ive ly fo r

C A - 3 1 6 - 5 0 a n d C A - 3 1 6 - 6 8 m e m b r a n e s ) . T h e s a m e

e f f ec t , b u t ev en mo re p ro n o u n ced , i s f o u n d w i t h H R-

9 8 - P P m e m b r a n e o v e r C A - 3 1 6 -8 6 m e m b r a n e . H R - 9 8 -

PP h as a s ma l l e r p o re r ad i u s b u t i t i s mu ch mo re

h y d ro p h i l i c an d 1 0 t imes m o re w a t e r p e rmea b l e t h an

CA -3 1 6 -8 6 (p o re r ad iu s o f 2 . 8 A , co n t ac t an g l e o f

1 46 ° an d h y d rau l i c p e rm eab i l i ty o f 1 .6 3 m fo r H R -9 8 -

PP agains t 3 .3 ,~ , 107 ° and 0 .16 m for C A-31 6-86) .

T h es e r e s u l t s co n t r ib u t e b o t h t o th e co m p reh en s i o n o f

t r an s p o rt p h e n o m e n a t h r o u g h N F / R O m e m b r a n e s a n d

t o mem b ran e s e l ec t io n fo r a g i v en ap p l i ca ti o n .

S i m i la r c o m p a r i s o n o f th e m e m b r a n e p e r f o r m a n c e

w i t h aq u eo u s s o l u t i o n s (o t h e r t h an p u re w a t e r a t

na tu ra l pH) and the resu l t s in Tab le 5 i s no t poss ib le .

A s d i s cu s s ed p r ev i o u sl y , i n mo s t c a s e s , mem b ran e an d

so lu te a re bo th ion i sab le subs tances and , therefo re , the

m e m b r a n e - s o l u t e - s o l v e n t c h e m i c a l i n te r a c ti o n s h a v e

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 10/14

17 6 M.Z Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180

14 0

1 2 0

C

100

i"-

o 8 0o

6 0

1 4 0 1 4 0

1 2 0

1 0 0

8 0

1 2 0

C A - 3 1 6 - 6 8

4 6 8 10 12

pH

1 0 0

8 0

C A - 3 1 6 - 8 6

6 0 _ 6 0 ~ . . . . . . .

2 4 6 8 10 12 2 2 4 6 8 10 12

pH pH

( a ) ( b ) ( c )

F i g . 4. T i t r a ti o n c u r v e s o f t h e t h r e e C A - 3 1 6 m e m b r a n e s : ( a ) C A - 3 1 6 - 5 0 , ( b ) C A - 3 1 6 - 6 8 , ( c ) C A - 3 1 6 - 8 6 ( c o n t a c t a n g l e s m e a s u r e d a t r o o m

t e m p e r a t u r e , a ft e r 5 m i n o f d r o p d e p o s i t io n , i m m e r s i o n t i m e = 2 4 - 4 8 h ) .

L i f s h i tz - V a n - d e r - W a a l s a n d a c i d - b a s e c o n t ri b u ti o n s.

T h u s , t o e s t i m a t e m e m b r a n e - s o l u t e i n t e r a c t i o n s t h e

c o n t a c t a n g l e s o b t a i n e d w i t h w a t e r a t o n l y o n e p H

v a l u e d o n o t s u f f i c e . T h ey d o n o t i n d i ca t e m em b r an e

ch a r g e s i g n a l b u t o n l y t h e r e l a t i v e s u r f ace ch a r g e

d en s i t y . T o ev a l u a t e m em b r an e ac i d i t y / b a s i c i t y o n e

h as t o h av e v a l u e s a t d i f f e r en t p H v a l u es e i t h e r w i t h

p u r e w a t e r o r, a s i n t h e p r e s en t w o r k , w i t h a s u r f ac t an t

so lu t ion .

4 .2 . I m m e r s i o n s ys t e m H : C C I 4 - m e m b r a n e -

s u r f a c t a n t s o l u t i o n

F i g s . 4 - 6 s h o w t h e r e s u l t s r e l a t i v e t o C C l 4 - m e m -

b r a n e - C 1 6 T A B s o l u t i o n a t d i f f e ren t p H v a l u es , i . e . th e

t it ra t io n c u r v e s o f C A - 3 1 6 , C D - N F - 5 0 a n d H R - 9 8 - P P

m e m b r a n e s , r e s p e c ti v e ly . T w o i m m e d i a t e c o n c l u s i o n s

c a n b e d r a w n .

F i r s t , t h e co n t ac t an g l e h y s t e r e s i s i s n o t m u chi n c r e a s e d w h e n p u r e w a t e r i s r e p l a c e d b y C 1 6 T A B

di lu te so lu t ions . The va lues o f ~r ,_ l t 95% /x /~ are 1 - 3 °

in the f i r s t case and 2 - 7 ° in the second .

S eco n d , a l l th e m em b r an es p r e s en t a v a r i a t io n o f t h e

co n t ac t an g l e w i t h t h e s o l u t i o n p H a s ex p ec t ed f r o m

t h e c h e m i c a l n a tu r e o f th e m e m b r a n e p o l y m e r s

i n v o l v ed .

F i g . 4 p r e s en t s t h e t i t ra t i o n cu r v es o f th e C A - 3 1 6

m e m b r a n e s , a s e ri e s o f w e a k l y a c i d ic m e m b r a n e s d u e

1 4 0

v

t~¢-

13

8

1 3 0

1 2 0

1 1 0

1 0 0

2 4 6 8 10 12

pH

F i g . 5 . T i t r a t i o n c u r v e o f C D - N F - 5 0 m e m b r a n e ( c o n t a c t a n g l e s

m e a s u r e d a t r o o m t e m p e r a t u r e , a f t e r 5 m i n o f d r o p d e p o s i t i o n ,

i m m e r s i o n t i m e = 2 4 - - 4 8 h ).

t o t h e - - O H g r o u p s o f c e l l u l o s e ace t a t e ( s ee S ec t i o n3 .1 ) . As i l lus t r a ted in th i s f igure , the th ree CA-316

m em b r an es p r e s en t s i m i l a r t i t r a t i o n cu r v es w i t h a

m i n i m u m a t p H 5 - 6 , t h e p H t h a t c o r r e s p o n d s t o t h e

i o n i sa t i o n o f 5 0 % o f th e - O H g r o u p s ( t he a c i d i ty

co n s t an t o f a w ea k ac i d s u ch a s an a l co h o l i s a r o u n d

1 0 - t O t O 1 0 - 1 2 , i .e . p K 1 / 2 i s 5 - 6 ) . T h e cu r v es i n F i g . 4

h av e t h e ex p ec t ed s h ap e o f t h e t h eo r e t i c a l t it r a t io n

cu r v e s h o w n i n F i g . 3 ( b ) f o r a c i d i c m em b r an es w i t h

d o u b l e l ay e r f o r m a t i o n . B es i d e s t h e s am e s h ap e ,

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 11/14

M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180 17 7

170

150

e.-

~ 1 3 0

i

1 1 0 . . . . J

2 4 6 8 10 12

pH

F i g . 6 . T it r a ti o n c u r v e o f H R - 9 8 - P P m e m b r a n e ( c o n t a c t a n g le s

m e a s u r e d a t r o o m t e m p e r a t u r e , a f t e r 5 m i n o f d r o p d e p o s i t i o n ,

i m m e r s i o n t i m e = 2 4 - - 4 8 h ) .

curves 4 (a) , 4 (b ) and 4 (c) d i sp lay s ign i f i can t d i f fer -

ences . The f i r s t p la teau i s iden t i ca l fo r the th ree

mem b ran es , 1 03 ° f o r CA -3 1 6 -5 0 an d 1 1 0 ° f o r CA -

3 1 6 -6 8 an d C A -3 1 6 -8 6 , b u t t h e mi n i ma l v a l u e o f t h e

con ta c t ang le increase s in the ser i es, be ing 80 ° 95 °

an d 1 05 ° f o r CA -3 1 6 -5 0 , C A -3 1 6 -6 8 an d CA -3 1 6 -8 6 ,

r e s p ec t iv e l y . Fu r t h e rm o re , t h e p H a t w h i ch t h e s eco n d

p l a t eau ( co m p l e t e d o u b l e l ay e r f o rma t i o n ) i s r each ed

al so increases , 7 .5 , 9 and 10 fo r CA-316 -50 , CA -316-

6 8 an d CA -3 1 6 -8 6 , r e s p ec t i v e l y . T h es e o b s e rv a t i o n s

i n d i ca t e th a t t h e m em b ran e s u r f ace ac i d i ty i n c r ea s e s i n

th i s ser i es , in ag reem ent w i th the resu l t s re l a t ive to the

me mb ran e -C C1 4 -w a t e r s y s t em. A t l o w p H v a l u es , t h e

-O H g ro u p s a r e ma i n l y n o t i o n i s ed , t h e r eb y t h e co n -

t ac t an g l e s a r e s i mi l a r f o r t h e t h r ee memb ran es . Fo r

p H v a l u es co r r e s p o n d i n g t o t h e i o n i s a ti o n o f t h e -O H

g ro u p s , i. e. f o r p H > 3 , t h e mem b ran e w i t h h i g h e r -O H

surface dens i ty (h igher ac id i ty ) p resen t s a h igher

n eg a t i v e ch a rg e , t h e r e fo re p r e s en t i n g h i g h e r C C 1 4

con tac t ang les .F i g . 5 p r e s en t s th e t i t r a ti o n cu rv e o f t h e CD -N F-5 0

m e m b r a n e , a n a m p h o t e r i c m e m b r a n e w i t h a p r e d o -

mi n an t l y ac i d i c b eh av i o u r d u e t o t h e ca rb o n y l an d

s u l p h u r g ro u p s o f T F Z ( s ee Sec t i o n 3 . 1 ) . T h e t i t ra t i o n

cu rv e o f t h i s memb ran e s h o w s a p l a t eau fo r p H

ran g i n g f ro m 3 t o 5 , th en an i n c r ea s e u p t o p H 9 a f t e r

w h i ch a s eco n d p l a t eau i s p ro b ab l y r each ed . T h i s

cu rv e ag ree s w i t h t h e t h eo re t i c a l cu rv e s h o w n i n

F i g . 3 ( c ) f o r a c i d -b as e memb ran e w i t h d o u b l e l ay e r

fo rma t i o n . Bo t h f ac t s , t h e ab s en ce o f t h e mi n i mu m

an d t h e h i g h s l o p e o f t h e cu rv e i n d i ca t e t h e s t r o n g

ac i d i c ch a rac t e r o f t h e memb ran e ( ca rb o n y l an d s u l -

p h u r g ro u p s ) r e s p o n s i b l e fo r t h e f a s t ch an g e f ro m a

n eu t r a l t o a h ig h l y n eg a t i v e mem b ran e ch a rg e (d o u b l el ay e r f o rma t i o n ) . T h e v a l u e o f pK x / 2 i s a ro u n d 5 -6

(ca rb o n y l an d s u l p h u r g ro u p s ) an d t h e max i mu m

negat ive charge i s a t t a ined a t pH above 9 . Actual ly ,

F i g . 5 ex t en d s t h e t en d en cy o b s e rv ed t h ro u g h CA -3 1 6

ser ies (Fig . 4 (a -c) ) , i .e . CD -NF -50 (carbo nyl and

su lphur g roups) has an ac id ic charac ter s t ronger than

t h a t o f CA -3 1 6 -8 6 memb ran e (h y d ro x y l g ro u p s ) .

F i g . 6 p r e s en t s t h e t i tr a t io n cu rv e o f th e H R-9 8 -P P

m e m b r a n e , a n a m p h o t e r i c m e m b r a n e w i t h a p r e d o -

mi n an t l y b a s i c b eh av i o u r f ro m t h e ami d e g ro u p s o f PA

(s ee Sec t i o n 3 . 1 ). T h e t i t ra t i o n cu rv e o f t h i s me mb ran e

s h o w s a s l i g h t d ec r ea s e o f t h e co n t ac t an g l e fo r p H

ran g i n g f ro m 5 . 6 to 9 an d t h en a s t eep d ec rea s e f ro m

pH 9 to 11 . Th i s curve agrees wi th the theore t i ca l

cu rv e fo r b a s ic m emb ran es s h o w n i n F i g . 3 ( a ) ( t h e

v a r i a t i o n o f t h e co n t ac t an g l e o ccu r s f o r p H v a l u es

above neu t ra l i ty ) . Th i s ind ica tes tha t , in fac t , the bas ic

ch a rac t e r o f t h e memb ran e s u r f ace f a r ex ceed s i t s

ac id ic charac ter , be ing the ion i sa t ion o f the ac id ic

g ro u p s o n l y s i g n i f ic an t f o r p H ab o v e 1 0 ( fo r co m p ar -

i son , carboxyl ic g roups are 100% ion i sed a t pH 11) .

Su mm ar i s in g , f r o m F i g s. 4 -6 , o n e o b t a in s t h e ac i d -

b as e b eh av i o u r o f t h e f i v e memb ran es :

• CA -3 1 6 mem b ran e s e ri e s p r e s en t an ac i d ic ch a r -

ac t e r ( f ro m t h e -O H g ro u p s o f c e l l u l o s e ) w i t h a

p K 1/2 ~ 5 -6 an d w i t h max i m u m n eg a t i v e ch a rg e a t

pH above 7 .5 , 9 and 10 fo r the anneal ing t em-

pera tu res o f 50 , 68 and 86°C , respect ive ly . Th i s

t rend represen t s the increase in the su r face con-

c e n t ra t io n o f - O H g r o u ps p r o m o t e d b y t h e a n n ea l -

ing t rea tment ;

• CD -N F-5 0 me mb ran e p r e s en t s an ac i d i c ch a rac t e r

( f ro m t h e ca rb o n y l an d s u l p h u r g ro u p s o f T FZ )

s t ro n g e r t h an t h e CA -3 1 6 m emb ran es : p K t / 2 " ~ 5 - 6a n d m a x i m u m n e g a ti v e c h a rg e a t p H > 9 ;

• H R -9 8 -PP me mb ran e h as a b a s ic ch a rac t e r ( f ro m

t h e ami d e g ro u p s o f PA ) p r e s en t in g n eu t r a l o r

w eak l y n eg a t i v e ch a rg e a t p H 9 .

T h es e d a t a i n d i ca t e t h a t , w h en p e rmea t i n g p u re

w a t e r ( i . e . a t p H 6 . 5 ) , H R-9 8 -PP memb ran e i s p o s i -

t i v e l y ch a rg ed w h i l e t h e o t h e r f o u r memb ran es a r e

n eg a t i v e l y ch a rg ed . Bas ed o n t h e mag n i t u d e o f t h e

co n t ac t an g l e v a lu es , a t p H 6 .5 t h e m em b ran e s u r f ace

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 12/14

17 8 M.J. Rosa, M.N. de Pinho/Journal o f Membrane Science 131 (1997) 167-180

ch a r g e d en s i t y f o l l o w s t h e s eq u en ce :

C A - 3 1 6 - 5 0 ( - ) < C A - 3 1 6 - 6 8 ( - )

< C A - 3 1 6 - 8 6 ( - ) < C D - N F - 5 0 ( - )

< H R - 9 8 - P P ( + )

T h es e r e s u l t s a r e i n ag r eem en t w i t h t h o s e r e l a t i v e t o

p u r e w a t e r a n d t h e y e x p l a i n t h e h i g h w a t e r p e r m e -

a b i li ti e s o f t he s t r o n g l y a ci d ic C D - N F - 5 0 m e m b r a n e

a n d t h e s t ro n g l y b a si c H R - 9 8 - P P m e m b r a n e o v e r th e

l e ss e n e r g e ti c C A - 3 1 6 m e m b r a n e s o f e q u i v a le n t p o r e

rad ius .

D u e t o t h e i r a c i d i c c h a r a c t e r , C D - N F - 5 0 a n d C A -

3 1 6 m em b r an es a r e ad eq u a t e t o p r o ces s a l k a l i n e

aq u eo u s s o l u t io n s o f an i o n ic s o l u t e s ( e .g . a l co h o l s ,

o r g an i c ac i d s ). T h e m em b r an e an d t h e so l u t e ( s ) w o u l d

b e b o t h h i g h l y n e g a t i v e l y c h a r g e d w h i c h m a x i m i s e s

m e m b r a n e - s o l u t e ( s ) r e p u l s i o n a n d i n c r e a s e s m e m -

b r an e p e r m eab i l i t y an d s o l u t e re j ec t i o n . F o r an a l o g o u s

r ea s o n s , H R - 9 8 - P P i s ad eq u a t e t o p r o ces s ac i d aq u -

eo u s s t r eam s w i t h ca t i o n i c s o l u t e s .

• i t i s s en s i t i v e t o m e m b r an e h y d r o p h i l i c i t y an d

m e m b r a n e a c i d it y / b as i c it y ;

• i t g i v e s t h e m em b r an e ti t ra t i o n cu r v es an d t h e

p K 1/ 2 v a l u e s f o r w e ak l y ac i d i c , p r ed o m i n an t l y

a c i d i c a n d p r e d o m i n a n t l y b a s i c m e m b r a n e s .F u r t h e r m o r e , t h e ex p e r i m en t a l d a t a s h o w t h e e f f ec t

o f t h e a n n e a li n g t r e a tm e n t o n C A - 3 1 6 m e m b r a n e

ac i d it y , w h i ch s u g g es t s an i n c r ea s e o f th e s u r f ace

d e n s it y o f - O H g r o u p s w i t h a n n e a l i n g t e m p e r a t u re .

T h e s e d a t a a l s o s h o w t h e i m p o r t a n c e o f t he c h e m i c a l

p r o p e r ti e s o f m e m b r a n e s u r f a c e on m e m b r a n e p e r m e -

ab i l i ty - i . e . m em b r an es w i t h eq u i v a l en t p o r e r ad ii b u t

m o r e h y d r o p h i l i c d o h a v e m u c h ( 2 - 1 0 t i m e s ) h i g h e r

h y d r au l i c p e r m eab i l i t i e s .

T h i s m e t h o d t h e r e f o r e r ep r e s en t s a co n t r i b u t i o n t o

t h e c h a r a c te r i s a ti o n o f m e m b r a n e s u r fa c e c h e m i s t r y

a n d i t s r e l a t i o n w i t h m e m b r a n e p e r m e a t i o n p e r f o r -

m a n c e .

6 . L i s t o f s y m b o l s

5 . C o n c l u s i o n s

A n e w m e t h o d f o r m e m b r a n e s u r f a c e c h a ra c t e r is a -

t i o n i s d ev e l o p ed b as ed o n t h e t w o - l i q u i d s i m m er s i o n

s y s t e m . T h e g e n e r a l s y s te m C C 1 4 - m e m b r a n e - a q u -

eo u s s o l u t i o n i s ad ap t ed t o g i v e m em b r an e r e l a t i v e

h y d r o p h i l i c i t y an d m em b r an e ac i d i t y / b a s i c i t y . I n t h e

f i r s t c a s e t h e i m m er s i o n s o l u t i o n i s p u r e w a t e r an d i n

t h e s eco n d ca s e i s an aq u eo u s s o l u t i o n o f a c a t i o n i c

s u r f ac t an t ( b e l o w i t s c r it i c a l m i ce l l e co n c en t r a t i o n ) a t

d i f f e r en t p H v a l u es .

T h e ex p e r i m en t a l r e s u l t s w i t h f i v e n an o f i l t r a t i o n

m e m b r a n e s o f d if f e re n t p o l y m e r s d e m o n s t r a te d t h at :

• t h e m e t h o d i s r ep r o d u c i b l e , p r e s en t i n g m a x i m a l

dev ia t ion va lues , an -1 t95%/x /~ , o f 7 ° ( co r r e-

s p o n d i n g t o 5 %) ;• i t i s e a s y t o p e r f o r m a n d a v o i d s d y n a m i c m e a s u r e -

m e n t s a s 5 m i n o f d r o p d ep o s i t i o n a r e s u f f i c ien t t o

en s u r e eq u i l i b r i u m ;

• m e a s u r e m e n t s c a n b e p e r f o r m e d w i t h m e m b r a n e s

i m m er s ed i n t h e i r n a t u r a l o p e r a t i n g en v i r o n m en t ,

e .g . water , so lu t ions o f ca t ion ic su r f ac tan ts , so lu -

t io n s o f o r g a n o c h l o r i n a te d c o m p o u n d s ;

• t h e m e t h o d i s n o t a f f ec t ed b y th e p r e s en c e o f p o r e s

i n t h e n an o f i l t r a t io n r an g e o f o p e r a t i o n ;

A d

C A

C 1 6 T A B

C M C

M F

n

N F

P A

P E S

pK1 / 2

P S

rmax

R O

T F Z

U F

m e m b r a n e s u r f a c e e n e r g y s p e n t o n

s o l u t e ad s o r p t i o n , m J / m 2

ce l l u l o s e ace t a t e

N - C e t y l - N , N , N - t r i m e t h y l - a m m o n i u m

b r o m i d e

c r i t i c a l m i ce l l e co n cen t r a t i o n

m i c r o f i l t r a t i o n

n u m b e r o f s a m p l e s

n an o f i l t r a t i o n

p o l y a m i d e

p o l y e t h e r s u l f o n e

p H a t w h i c h 5 0 % o f t h e p o l y m e r

g r o u p s a r e i o n i s ed

p o l y s u l f o n e

m a x i m a l m e m b r a n e p o r e r ad i us

r e v e r se o s m o s i s

poly(trans-2,5-dimethyl)piperazinthio-f u r a z a n a m i d e

u l t r af i l t r a t ion

6.1. Greek letters

A P

7 q

g r av i t a t i o n a l f o r ce ex e r t ed b y t h e C C I 4

d r o p l e t o n m e m b r a n e s u r fa c e , N / m 2

i n t e r r ac i a l t en s i o n b e t w een s u b s t an ces i

a n d j , m J / m 2

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 13/14

M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180 17 9

m e m b r a n e - C C 1 4 - s o l u t i o n c o n t a c t

ang le

6.2. Subscripts

m o in t e rf ace m em b r an e - o r g an ic

m w i n te r fa c e m e m b r a n e - w a t e r

o w in t e rf ace o r g an ic - wa te r

Acknowledgements

M aria Joao Ro sa wishes to thank J .N.I .C .T. (Por tu-

gal ) fo r f inancia l suppor t th rough a Ph .D. sch o larsh ip

(BD/1730/91-RM and BD/3788/94) , and I .C .E.M.S.

(Por tugal ) fo r f inancia l con tr ibu t ion . S pecia l thanks to

Dr . Shah (U nivers i ty o f Flor ida , Gainesv i l le , USA ) for

the p rec ious suggest ions o f work on con tac t ang les ,

Prof . B . Saramago and Prof . A. Fernandes ( IST,

L i sb o n ) f o r h av in g b o r r o wed th e wo r k s t a t io n f o r

co n tac t an g le m easu r em en t s , an d Sep a r em f o r h av in g

su p p l ied th e C D- NF- 5 0 m em b r an e .

References

[ 1 ] A . C . M . F r a n k e n , J . A . M . N o l t e n , D . B a r g e m a n a n d C . A .

S m o l d e r s , W e t t i n g c r i t e r ia f o r t h e a p p l i c a b i li t y o f m e m b r a n e

di s t i l l a t ion , J . Membrane Sc i . , 33 (1987) 315 .

[ 2] E . H o f f m a n n , D . M . P f e n n i n g , E . P h i l ip p s e n , P . S c h w a h n , M .

S i e b e r , R . W e h n a n d D . W o e r m a n n , E v a p o r a t i o n o f a l c o h o l

m i x t u r e s t h r o u g h h y d r o p h o b i c p o r o u s m e m b r a n e s , J . M e m -

brane Sc i . , 34 (1987) 199 .

[ 3] H . T a k e u c h i a n d M . N a k a n o , P r o g r e s s i v e w e t t i n g o f s u p p o r t e d

l i q u i d m e m b r a n e s b y a q u e o u s s o l u ti o n s , J . M e m b r a n e S c i . , 4 2

(1989) 183 .

[ 4 ] W . Z h a n g a n d B . H a l l s t r 6 m , M e m b r a n e c h a r a c t e r i z a t i o n

u s i n g t h e c o n t a c t a n g l e t e c h n i q u e . I . M e t h o d o l o g y o f t h e

cap ta t ive bubb le t echnique , D es a l ina t ion , 79 (1990) 1 .

[5 ] A . G . Fane , K . J . K im, C . J .D . Fe l l , A . B . Suki , Charac te r i za t ion

o f u l t r a f i l t r a t i o n m e m b r a n e s : F l u x a n d s u r f a c e p r o p e r t i e s ,

P a p e r p r e s e n t e d a t t h e W o r k s h o p o n C h a r a c t e r i z a t i o n o f

U l t r a f il t ra t i o n M e m b r a n e s , O r e n a s , S w e d e n , 1 9 87 .

[ 6] M . O l d a n i a n d G . S c h o c k , C h a r a c t e r i z a t i o n o f u lt r a -

f i lt r a t io n m e m b r a n e s b y i n f r a r e d s p e c t ro s c o p y , E S C A , a n d

c o n t a c t a n g l e m e a s u r e m e n t s , J . M e m b r a n e S c i . , 4 3 ( 1 9 8 9 )

243.

[ 7] W . C . H a m i l t o n , T e c h n i q u e f o r t h e c h a r a c t e r i z a t i o n o f

hydrophi l i c s o l id s ur f aces , J . Col lo id In te r f ace Sc i . , 40

(1972) 219 .

[8] D . J . D av id and A . Mis ra , Sur f ace energe t i cs charac te r i za t ion

a n d r e l a t i o n s h i p t o a d h e s i o n u s i n g a n o v e l c o n t a c t a n g l e

meas ur ing t echnique , J . Col lo id In te r f ace Sc i . , 108 (1985)

371.

[ 9] T . M a t s u n a g a a n d Y . I k a d a , D i s p e r s iv e c o m p o n e n t o f s u r f a c e

f r e e e n e r g y o f h y d r o p h i l i c p o l y m e r s , J . C o l l o i d I n t e r f a c e S c i .,84(1) (1981) 8.

[10] A . E Tous s a in t , P . Luner , The w et t ing proper t i es o f hydro-

p h o b i c a l l y m o d i f i e d c e l l u l o s e s u r fa c e s , i n: C e l l u l o s e a n d

W o o d : C h e m i s t r y a n d T e c h n o l o g y , C o n r a d S c h u e r c h ( E d . ) ,

J ohn Wi ley and Sons , U SA , 1989 , p . 1515 .

[11] Y . C . K o, B . D . Ratner and A . S . H of fma nn , Charac te r i za t ion

o f h y d r o p h i l i c - h y d r o p h o b i c p o l y m e r i c s u r f a c e s b y c o n t a c t

ang le m eas ure me nts , J . Col lo id In te r f ace Sc i ., 82(1) (1981 )

25 .

[12] V . G ekas , K . M. Per s s on , M. Wa hlgren and B . S iv ik , Con tac t

a n g l e s o f u l t r a fi l t r a ti o n m e m b r a n e s a n d t h e i r p o s s i b l e

c o r r e l a ti o n t o m e m b r a n e p e r f o r m a n c e , J . M e m b r a n e S c i . , 7 2

(1992) 293.

[13] J . T . E K e nren t j es , J . G . H arbre ch t , D . B r inkman , J . H . H ane-

m a a i j e r , M . A . C . S t u a r t a n d K . v a n ' t R i e t , H y d r o p h o b i c i t y

m e a s u r e m e n t s o f m i c r o f i l t r a t i o n a n d u l tr a f i l t ra t i o n

m e m b r a n e s , J. M e m b r a n e S c i . , 4 7 ( 1 9 8 9 ) 3 3 3.

[14] C . J . V an O s s , R . J . G oo d and M. K . Chaudhury , A dd i t ive and

n o n - a d d i t i v e s u r fa c e t e n s i o n c o m p o n e n t s a n d t h e i n t e r p re t a -

t ion of con tac t ang les , Langmu i r , 4 (1988) 884 .

[15] P . M. Cos tanzo , R . E G ies e , C . J . V an O s s , D etermina t ion o f the

a c i d - b a s e c h a r a c t e r is t i c s o f c l a y m i n e r a l s u r f a c e s b y c o n t a c t

a n g l e m e a s u r e m e n t s - I m p l i c a t i o n s f o r t h e a d s o r p t io n o f

o r g a n i c s o l u t e s fr o m a q u e o u s m e d i a , i n : A c i d - B a s e I n t e r a c -

t i o n s - r e l e v a n c e t o a d h e s i o n s c i e n c e a n d t e c h n o l o g y , K . L .

Mi t t a l and H . R . A nder s on , J r . (Eds . ) , V PS, U t r ech t , The

N ether l ands , 1991 , p . 135 .[ 16 ] F . M . F o w k e s , Q u a n t i t a ti v e c h a r a c t e r i z a ti o n o f t h e a c i d - b a s e

proper t i es o f s o lven t s , po lymers , and inorgan ic s ur f aces , in :

A c i d - B a s e I n t e r a c ti o n s - r e l e v a n c e to a d h e s i o n s c i e n c e a n d

technology , K . L . Mi t t a l and H . R . A nder s on , J r . (Eds . ) , V PS,

U t rech t , The N ether l ands , 1991 , p . 93 .

[17] D . Myer s , Sur f aces , I n te r f aces , and Col lo ids : P r inc ip le s and

A ppl ica t ions , V CH Publ i s her s , N ew Y ork , 1991 .

[18] G . M. Whi tes ides , H . A . B iebuyck , J . P . Fo lker s , K . L . P r ime,

A c i d - b a s e I n t e r a c t i o n s in W e t t i n g , in : A c i d - B a s e I n t e r a c t i o n s

- r e l e v a n c e t o a d h e s i o n s c i e n c e a n d t e c h n o l o g y , K .L . M i t ta l

and H . R . A nder s on , J r . (Eds . ) , V PS, U t r ech t , The N ether -

lands , 1991, p. 229.

[ 19 ] B . K u n s t a n d S . S o u ri r a ja n , A n a p p r o a c h t o t h e d e v e l o p m e n t

o f c e l l u l o s e a c e t a te u l t ra f i lt r a ti o n m e m b r a n e s , J . A p p l . P o l y m .

Sci . , 18 (1974) 3423.

[ 20 ] M . J . E R o s a , S e p a r ac a o S e l ec t i v a d e C o m p o s t o s O r g ~ i c o s d e

Cor ren tes A quos as por U l t r a f i l t r acao e N anof i l t r acao , Ph . D .

Thes i s , I ns t i tu to Super io r T6cnico , U niver s idade T6cnica de

L is boa , 1995 .

[ 21 ] M . J . R o s a a n d M . N . d e P i n h o , S e p a r a t i o n o f o r g a n i c s o l u t e s

b y m e m b r a n e p r e s s u r e - d r iv e n p r o c e s s e s , J . M e m b r a n e S c i . ,

89 (1994) 235 .

[22] C . A . Mi l l e r , P . N eogi , I n te r f ac ia l Phenomena: Equi l ib r ium

and D y nam ic Ef f ec t s , Ma rce l D ekker , N ew Y ork , 1985 .

8/2/2019 Membrane Surface Character is at Ion by Contact Angle

http://slidepdf.com/reader/full/membrane-surface-character-is-at-ion-by-contact-angle 14/14

18 0 M.J. Rosa, M.N. de Pinho/Journal of Membrane Science 131 (1997) 167-180

[23] B.R. Ray, J .R. A nde rson and J.J . Scholz , W ett ing of polym er

surfaces . I . Contact angles of l iquids on s tarch, amylose ,

amylopectin, cellulose and poly(v iny l alcohol), J. Phys.

Chem., 62 (1958) 1220.

[24] L.H. Lee, A dhesio n of high polymers. I I . Wettabi li ty of

Elastomers, J. Polym. Sci., Part A-2, 5(1967) 1103.[25] R.E. Kest ing, Syn thet ic Polym eric M em bran es - A Structural

Perspect ive , 2nd ed, John Wiley and Sons, New York, 1985.

[26] R.E. Kest ing, Cel lulose aceta te mixed es ters as polymers for

r e ve r s e o s m os i s m e m br a ne s , i n : C e l l u l o s e a nd W ood :

Chemis t ry and Technology, Conrad Schue rch (Ed. ) , John

Wi ley and Sons , USA, 1989, p . 1301.

[27] M.J . Rosa , M.N. De Pin ho, M.H. G odin ho and A.F. Mart ins ,

Optical polar iz ing s tudies of ce l lulose aceta te membranes

prepared b y phase- inve rs ion, Mol . C ryst. Liq. C ryst. , 258

(1995) 163.[28] D. Murphy and M.N. de Pinho, An ATR-FTIR s tudy of wa te r

in ce l lu lose ace ta te m emb ranes prepa red by phase inve r sion,

J . Mem bran e Sci ., 106 (1995) 245.