MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle...

166
MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE PERFUSION DURING SURGERY By Timothy H. Mak A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Physiology University of Toronto © Copyright by Timothy H. Mak (2013)

Transcript of MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle...

Page 1: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE PERFUSION DURING SURGERY

By

Timothy H. Mak

A thesis submitted in conformity with the requirements for the degree of Master of Science

Graduate Department of Physiology University of Toronto

© Copyright by Timothy H. Mak (2013)

Page 2: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   ii  

Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery

Timothy H Mak

Master of Science

Department of Physiology University of Toronto

2013

ABSTRACT

We assessed potential mechanisms that may jeopardize skeletal muscle perfusion

during surgery leading to adverse outcomes including muscle injury and flap hypoxia. In

craniotomy patients, we observed an increase in serum lactate and creatine kinase and urine

myoglobin; indicative of muscle damage. The early rise in lactate correlated with elevated

BMI, suggesting that obesity caused tissue compression and muscle ischemia. In our rodent

model, we investigated the effects of flap preparation and phenylephrine on muscle perfusion by

assessing microvascular blood flow and tissue PO2. Phenylephrine reduced muscle blood flow

by ~20%, yet increased PO2 by ~10% suggestive of decreased O2 metabolism. At baseline,

muscle flap blood flow was reduced by ~50% while PO2 was severely reduced ~80% (~5 torr)

suggesting that flap perfusion was attenuated and O2 metabolism was increased. Phenylephrine

infusion further reduced muscle flap perfusion. These data demonstrate multiple mechanisms

by which muscle perfusion is jeopardized during surgery.

Page 3: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   iii  

Acknowledgements

I would like to sincerely thank my supervisor Dr. Gregory Hare for his continued mentorship,

encouragement and guidance throughout my research experience which has provided me with

opportunities to learn in both the clinical and experimental realms. I would also like to thank my co-

supervisor and committee members from the Department of Physiology and Anesthesia: Dr. David

Mazer, Dr. Steffen Sebastian Bolz, and Dr. John Laffey for their mentorship, guidance, insight, and

support throughout our committee meetings. Additionally, I would like to thank our project

collaborators from the Department of Plastic Surgery: Dr. Melinda Musgrave, Dr. James Mahoney,

and Dr. Sami Alissa for their mentorship and support of this research project. I am also grateful for

the mentorship of Dr. Michael Cusimano, and Dr. Marco Garavaglia who trained me in the

neurosurgery operating room for data collection in our clinical research study. I am extremely

fortunate to have such excellent mentors and collaborators throughout my research program.

I would like to thank the members of my research team, Dr. Sami Alissa who performed the free

flap surgery in our experimental protocols, and Dr. Elaine Liu, and Dr. Albert Tsui who trained me

in the laboratory. I would also like to thank other members of the laboratory, Dr. Sanjay Yagnik,

Charmagne Crescini, Sharon Klimosco, and Namhee Kim for their friendly encouragement and

support throughout my research program.

I would like to thank the Department of Physiology at the University of Toronto and the

Cardiovascular Science Collaborative Program for my wonderful research program. I am thankful

for the funding of this research project from the Departments of Plastic Surgery and Anesthesia at

St. Michael’s Hospital. I am also thankful for the Dr. Alan W. Conn Graduate Award 2012,

Department of Anesthesia and the UHN Medical Staff Association Volunteer Educational Award

2012 which contributed to the funding of my research program.

Finally I am extremely grateful for my supportive family members and friends who have

supported me throughout my academic career.

Page 4: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   iv  

TABLE OF CONTENTS

Abstract ................................................................................................................................... ii Acknowledgements ................................................................................................................ iii Table of Contents ................................................................................................................... iv List of Figures ..........................................................................................................................x List of Tables ......................................................................................................................... xi List of Abbreviations ............................................................................................................ xii List of Contributors .............................................................................................................. xiii

Chapter 1. Overview and Hypothesis

1.0 Overview ............................................................................................................................1

1.1 Hypothesis ..........................................................................................................................4

Chapter 2. Introduction

2.0 Oxygen ...............................................................................................................................5

2.01 The Importance of Oxygen for Mammalian Survival ..................................................5

2.02 Oxygen Pressure Gradient from the Air to the Tissues ...............................................6 2.03 Oxygen Delivery and the Role of Hemoglobin ...........................................................9 2.1 Importance of Cardiovascular System in Regulating Tissue Oxygen Delivery ...............10

2.11 Cardiac Output is Regulated to Optimize Oxygen Delivery to Tissues ....................11 2.12 Importance of Maintaining Blood Pressure and Global Blood Flow ........................13

2.13 Regulation of Blood Flow by the Resistance Arteries ...............................................14

2.2 Methods for Measuring PO2 in Muscle ............................................................................15

2.21 Clark Electrode (Licox) .............................................................................................15 2.22 Electron Paramagnetic Resonance Oximetry .............................................................17

2.23 Oxyphors and O2 Dependent Phosphorescence Quenching ......................................18

2.3 Skeletal Muscle ..................................................................................................................19

2.31 Skeletal Muscle Structure and Function ....................................................................19 2.32 Vascular Organization of Skeletal Muscle Circulation .............................................20

2.33 Regulation of Skeletal Muscle Blood Flow ...............................................................21 2.34 Oxygen Pressures in Interstitial Skeletal Muscle Tissue ...........................................22 2.35 Energy Sources for Skeletal Muscle ..........................................................................23

Page 5: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   v  

2.4 Markers to Evaluate Health of Skeletal Muscle Clinically ................................................24

2.41 Clinical Importance of Serum Lactate .......................................................................25 2.42 Rhabdomyolysis and Muscle Damage .......................................................................26

2.43 High Body Mass Index as a Risk Factor for Muscle Ischemia ..................................27

2.5 Reconstructive Flap Surgery ..............................................................................................28

2.51 What is a Free Flap? ..................................................................................................28 2.52 Potential Causes of Free Flap Failure ........................................................................30 2.53 Rectus Abdominus Skeletal Muscle Flap ..................................................................31

2.6 Vasopressors ......................................................................................................................34

2.61 Phenylephrine, a Specific α1 Agonist ........................................................................34 2.62 α1 Agonist-Receptor Mediated Intrinsic Signaling Pathway ....................................35 2.63 Clinical Debate: Vasopressor Use during Reconstructive Surgery ...........................36 2.64 Clinical Studies ..........................................................................................................37 2.65 Animal Studies ...........................................................................................................40

2.7 The Effect of Temperature on Tissue Metabolism and Perfusion .....................................43

Chapter 3. Methods

3.0 Experimental Design ..........................................................................................................45

3.1 Clinical Study Methods......................................................................................................46

3.11 Study Design ..............................................................................................................46 3.12 Study Population ........................................................................................................46 3.13 Study Protocol ............................................................................................................46 3.14 Data Collection ..........................................................................................................46

3.15 Statistical Analysis .....................................................................................................47

3.2 Rat Experiment Methods ..................................................................................................47

3.21 Animals ......................................................................................................................47 3.22 Surgical Procedure .....................................................................................................48 3.23 Free Flap Reanastomosis Surgery ..............................................................................48 3.24 Arterial Blood Gas and Co-oximetry Analysis ..........................................................49 3.25 Ultrasound Doppler and Arterial Blood Flow ...........................................................49 3.26 Laser Doppler and Microvascular Blood Flow ..........................................................50 3.27 Microsensor G4 Oxyphor and Interstitial Muscle Tissue PO2

Measurements ............................................................................................................50 3.28 Calibration of the Effect of Temperature on the Oxygen Quenching Constant .....................................................................................................................51 3.29 Invivo Calibration of To .............................................................................................52

Page 6: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   vi  

3.3 Initial Developmental Protocol ..........................................................................................55

3.4 Experimental Protocols ......................................................................................................59

3.41 Protocol 1: Femoral vs Carotid Blood Flow Ultrasound Doppler Flowmetry ..................................................................................................................59

3.42 Protocol 2: Bilateral Rectus Abdominus Muscle Laser Doppler Microvascular Blood Flow (Developmental model) ................................................ 59 3.43 Protocol 3: Bilateral Rectus Abdominus Muscle G4 Oxyphor PO2 ..........................60

3.44 Protocol 4: Rectus Abdominus Muscle Flap vs Contralateral Control Laser Doppler Microvascular Blood Flow ..........................................................................60

3.45 Protocol 5: Rectus Abdominus Muscle Flap vs Contralateral Control G4 Oxyphor PO2 ..............................................................................................................61 3.46 Protocol 6 Rectus Abdominus Muscle and Flap Temperature Analysis ...................62 3.47 Summarized Experimental Timeline .........................................................................62

3.5 Statistical Analysis .............................................................................................................64

Chapter 4. Results

4.0 Clinical Study – Assessing Skeletal Muscle Perfusion during Craniotomy for

Resection of Brain Tumours ..............................................................................................65

4.01 Patient Blood Pressure and Body Temperature during Surgery .................................65 4.02 Elevated Serum Lactate during Surgery .....................................................................65 4.03 Elevated Creatine Kinase and Myoglobinuria in Some Patients ................................66 4.04 Hemoglobin Levels were Stable during OR and ICU ................................................66 4.05 Body Mass Index Correlated with the Early Rise in Serum Lactate ..........................66 4.06 Arterial Blood Gas and Cooximetry ...........................................................................66

4.1 Protocol 1: Assessing Femoral vs Carotid Blood Flow with Ultrasound Doppler Flowmetry ..........................................................................................................................73

4.11 The Effect of Phenylephrine on Mean Arterial Pressure ............................................73 4.12 The Effect of Phenylephrine on Heart Rate ................................................................73 4.13 The Effect of Phenylephrine on Carotid Blood Flow .................................................74 4.14 The Effect of Phenylephrine on Femoral Blood Flow ................................................74 4.15 Carotid Blood Flow versus Femoral Blood Flow .......................................................75 4.16 Stable Rectal Temperature throughout Experimentation ............................................75 4.17 Arterial Blood Gas and Cooximetry ...........................................................................75 4.18 Electrolyte and Metabolic Data ..................................................................................76 4.19 Protocol 1 Summary ...................................................................................................76

Page 7: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   vii  

4.2 Protocol 2: Assessing Bilateral Rectus Abdominus Muscle Laser Doppler

Microvascular Blood Flow (Initial Developmental Model) ..............................................78

4.21 The Effect of Phenylephrine on Mean Arterial Pressure ...........................................78 4.22 The Effect of Phenylephrine on Heart Rate ...............................................................78 4.23 The Effect of Phenylephrine on Bilateral Rectus Abdominus Microvascular Muscle Blood Flow ....................................................................................................79

4.24 Stable Rectal Temperature during the Experiment ....................................................80 4.25 Arterial Blood Gas and Cooximetry ..........................................................................80 4.26 Electrolyte and Metabolic Data .................................................................................80 4.27 Protocol 2 Summary ..................................................................................................80

4.3 Protocol 3: Bilateral Rectus Abdominus Muscle G4 Oxyphor PO2 ..................................83 4.31 The Effect of Phenylephrine on Mean Arterial Pressure ...........................................83 4.32 The Effect of Phenylephrine on Heart Rate ...............................................................83 4.33 The Effect of Phenylephrine on Phosphorescence Lifetime and

Muscle PO2 .......................................................................................................................................................................... 84 4.34 Rectal Temperature was Stable throughout the Experimentation ..............................85 4.35 Arterial Blood Gas and Cooximetry ..........................................................................85 4.36 Electrolyte and Metabolic Data .................................................................................85 4.37 Protocol 3 Summary ..................................................................................................85

4.4 Protocol 4: Rectus Abdominus Muscle Flap vs Contralateral Control Laser Doppler Microvascular Blood Flow ..................................................................................88

4.41 The Effect of Phenylephrine on Mean Arterial Pressure ...........................................88 4.42 The Effect of Phenylephrine on Heart Rate ...............................................................88 4.43 The Effects of Surgery and Phenylephrine on Microvascular Blood Flow in

Rectus Abdominus Muscle and Muscle Flap ............................................................89 4.44 Rectal Temperature was Stable throughout the Experimentation ..............................89 4.45 Arterial Blood Gas and Cooximetry ..........................................................................90 4.46 Electrolyte and Metabolic Data .................................................................................90 4.47 Protocol 4 Summary ..................................................................................................90

4.5 Protocol 5: Rectus Abdominus Muscle Flap vs Contralateral Control G4 Oxyphor PO2 .93

4.51 The Effect of Phenylephrine on Mean Arterial Pressure ...........................................93

4.52 The Effect of Phenylephrine on Heart Rate ...............................................................93 4.53 The Effects of Surgery and Phenylephrine on Phosphorescence Lifetime and Muscle and Flap PO2 .........................................................................................94 4.54 Rectal Temperature was Stable throughout the Experimentation ..............................95 4.55 Arterial Blood Gas and Cooximetry ..........................................................................95 4.56 Electrolyte and Metabolic Data .................................................................................95 4.57 Protocol 5 Summary ..................................................................................................95

Page 8: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   viii  

4.6 Protocol 6: Rectus Abdominus Muscle Flap and Contralateral Muscle Temperature ......98

4.61 Mean Arterial Pressure Response to Phenylephrine ..................................................98

4.62 Bilateral Muscle Temperature during Experimentation ............................................98 4.63 Muscle Control and Muscle Flap Temperature during Experimentation ..................98

Chapter 5. Discussion

5.0 The Significance of Hyperlactatemia during Craniotomy for Brain Tumour Resection ..........................................................................................................................101

5.01 Clinical Significance of Increased Serum Lactate ...................................................101 5.02 The Potential Source of Increased Serum Lactate ...................................................103

5.03 Body Mass Index as a Risk Factor for Increased Serum Lactate during Craniotomy ..............................................................................................................105 5.04 Mechanism 1: Muscle Compression leading to Muscle Ischemia and Rhabdomyolysis ................................................................................................105

5.1 Development of the Rat Model of Muscle Perfusion ......................................................108

5.11 Establishing the Dose of Phenylephrine for Increased Mean Arterial

Pressure ....................................................................................................................109 5.12 The Effects of Phenylephrine on Mean Arterial Pressure .......................................109 5.13 The Effects of Phenylephrine on Heart Rate ..........................................................110

5.2 The Effects of Phenylephrine on Muscle Perfusion and Metabolism ..............................111

5.21 Mechanism 2: The Effect of Phenylephrine on Muscle Perfusion ....................................... 111 5.22 The Effect of Phenylephrine (α1 agonist) on Muscle Metabolism ..........................114

5.3 The Effects of Surgery and Phenylephrine on Muscle Flap Perfusion ............................116

5.31 Mechanism 3: The Effect of Muscle Flap Preparation and Microvascular Surgery on Muscle Flap Perfusion .............................................................................................116

5.32 Muscle Flap Oxygen Metabolism after Flap Preparation ........................................117 5.33 The Effect of Phenylephrine on Muscle Flap Perfusion ..........................................119

5.4 The Potential Benefits and Harms of Phenylephrine use during Reconstructive Surgery ............................................................................................................................121

5.5 The Effect of Temperature on Muscle Perfusion .............................................................122

5.6 The Effect of Isoflurane on Muscle Perfusion .................................................................123

Page 9: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   ix  

5.7 Limitations of the Study...................................................................................................124

5.71 Clinical Study Limitations ........................................................................................124 5.72 Rat Study Limitations ...............................................................................................125

5.8 Future Directions .............................................................................................................126

5.81 Future Directions for the Clinical Study ...................................................................126 5.82 Future Directions for the Experimental Study ..........................................................127

Chapter 6. Summary

6.0 Summary ..........................................................................................................................130 6.1 Key Experimental Findings .............................................................................................132 6.11 Assessing Skeletal Muscle Perfusion and Health during Neurosurgery ....................132

6.12 The Effects of Phenylephrine use on Muscle and Muscle Flap Perfusion ................132

6.13 The Effects of Surgical Free Flap Preparation on Muscle Flap Perfusion during

Reconstructive Surgery ..............................................................................................132

6.14 The Effects of Temperature on Muscle and Muscle Flap Perfusion .........................132

Chapter 7. Conclusion

7.0 Conclusion ........................................................................................................................136 References ...........................................................................................................................138

Page 10: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   x  

List of Figures

Figure 1: The Oxygen Gradient from the Inspired Air to the Mitochondria ..................................8

Figure 2: The Vascular Organization of the Rectus Abdominus Muscle Flap .............................33

Figure 3: Stern Volmer Relationship and Calibration of Temperature Effect on Quenching Constant in G4 Microsensor Oxyphor ........................................................................53

Figure 4 Calibration of To in Euthanized Rats (n = 4) ..................................................................54

Figure 5 Measurement of Mean Arterial Blood Pressure after Two Different Infusion Protocols

of Phenylephrine .....................................................................................................................56

Figure 6 A Consistent Mean Arterial Pressure Response to Phenylephrine was observed in Four Different Experimental Protocols ......................................................................57

Figure 7 Heart Rate Response in Four Different Experimental Protocols ....................................58

Figure 8 Experimental Timeline of Phenylephrine Infusion Experiments ...................................63

Figure 9 Patient Blood Pressure and Temperature during Surgery ..............................................68

Figure 10 Elevated Serum Lactate and Creatine Kinase in Neurosurgical Patients .....................69

Figure 11 Average Serum Lactate, CK, and Hemoglobin during Surgery and in ICU ................70 Figure 12 Positive Correlation between Serum Lactate and Body Mass Index ............................71

Figure 13 The Effect of Phenylephrine on Carotid and Femoral Blood Flow ..............................77

Figure 14 The Effect of Phenylephrine on Bilateral Rectus Abdominus Muscle Blood Flow.....................................................................................................................................82

Figure 15 The Effect of Phenylephrine on Bilateral Rectus Abdominus Muscle Tissue PO2 .....................................................................................................................................87

Figure 16 The Effect of Phenylephrine on Muscle and Muscle Flap Microvascular Blood Flow.....................................................................................................................................92

Figure 17 The Effect of Phenylephrine on Muscle and Flap Tissue PO2 .....................................97

Figure 18 Assessing Temperature in Rectus Abdominus Muscle and Muscle Flaps ...................99

Figure 19 Muscle Compression during Surgery Leads to Muscle Ischemia Followed by Elevated Serum Lactate, CK, and Myoglobinuria ..................................................107

Page 11: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   xi  

Figure 20 The Effects of Phenylephrine on Rectus Abdominus Muscle Perfusion ......................................................................................................................................113

Figure 21 The Effects of Free Flap Surgery and Phenylephrine on Muscle Flap Perfusion ..............................................................................................................................120

Figure 22 Clinical Study Summary: Elevated Serum Lactate, CK and Myoglobinuria Characteristic of Muscle Ischemia Induced Muscle Damage Associated with Patient BMI ......133

Figure 23 Bilateral Rectus Abdominus Muscle Perfusion Model Summary ..............................134

Figure 24 Muscle Flap vs Contralateral Control Muscle Perfusion Model Summary ................135

List of Tables

Table 1 Patient Demographics, Characterization of Tumour Pathology and WHO Grade Relative to Lactate and Body Mass Index ................................................................72

Table 2 Arterial Blood Gas and Co-oximetry Data for Craniotomy Patients in the OR and ICU ...................................................................................................................................72

Table 3 Arterial Blood Gas and Cooximetry Data Analysis: pH, PCO2, PO2, Hb, SaO2 at Baseline and Post PE ......................................................................................................100

Table 4 Electrolytes and Metabolic Data Analysis: K+, Na+, Ca+2, Cl-, glucose, lactate, base, HCO3

- at Baseline and Post PE ...........................................................................................100

Page 12: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   xii  

List of Abbreviations ABG – Arterial Blood Gas ANOVA – Analysis of Variance ASA – American Society of Anesthesiologists score ATP – Adenosine Triphosphate BMI – Body Mass Index CaO2 - Arterial Oxygen content CPP – Cerebral Perfusion Pressure CK – Creatine Kinase CO – Cardiac Output COPD – Chronic Obstructive Pulmonary Disease CvO2 – Venous Oxygen content DIE - Deep Inferior Epigastric artery DO2 – Oxygen Delivery 2,3 DPG – 2,3 Bisphosphoglyceric acid EKG - Electrocardiography EPR – Electron Paramagnetic Resonance ETC – Electron Transport Chain GPCR – G protein coupled receptor Hb – Hemoglobin HR- Heart Rate ICP – Intracranial pressure ICU – Intensive care unit IP3 – Inositol trisphosphate IP3R – Inositol trisphosphate receptor Kq – Quenching Constant MAP – Mean Arterial Pressure MI – Myocardial Infarction MLCK – Myosin Light Chain Kinase MLCP –Myosin Light Chain Phosphatase NE – Norepinephrine OR - Operating room O2 - Oxygen PaCO2(PCO2) – Partial Pressure of Carbon Dioxide PaO2(PO2) - Partial Pressure of Oxygen Pcr – Phosphocreatine PE – Phenylephrine PIP2 – Phosphatidylinositol 4,5 – bisphosphate PLT – Phosphorescence Lifetime PU - Perfusion Units RBC – Red Blood Cell RM – Rhabdomyolysis SERCA – Sarco/endoplasmic reticulum Ca+2 ATPase SD - Standard Deviation SV – Stroke Volume SVR – Systemic Vascular Resistance TNF-1α- Tumour Necrosis Factor 1 alpha VO2 – Oxygen Consumption WHO – World Health Organization

Page 13: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

                   xiii  

List of Contributors

Dr. Gregory Hare (MD PhD) – Department of Physiology and Anesthesia; Primary supervisor of the research project; Committee member; Mentor

Dr. David Mazer (MD) – Department of Physiology and Anesthesia; Co-Supervisor of this research project; Committee member; Mentor

Dr. Steffen Sebastian Bolz (MD PhD) – Department of Physiology; Committee member; Mentor

Dr. John Laffey (MD) – Department of Physiology and Anesthesia; Committee member; Mentor

Dr. Melinda Musgrave (MD) – Department of Plastic Surgery; Collaborator; Mentor

Dr. James Mahoney (MD) – Department of Plastic Surgery; Collaborator; Mentor

Dr. Sami Alissa (MD) – Department of Plastic Surgery; Collaborator; Mentor; Plastic surgeon who performed all free flap surgery procedures in rat model

Dr. Marco Garavaglia (MD) – Department of Anesthesia; Mentor; trained me in collecting data in clinical study

Dr. Michael Cusimano (MD) –Department of Neurosurgery; Mentor; Performed craniotomy and brain tumour resection in patients

Dr. Albert Tsui (PhD) – Department of Anesthesia; Post Doctoral Research Associate who provided expertise in operating the PMOD oximeter and calibration of G4 Oxyphor microsensor probes in experiments that assessed quantitative PO2

Dr. Elaine Liu (MD) – Provided expertise in basic surgical procedures including tracheostomy and the cannulation of the artery and vein for blood pressure and drug infusion respectively

Dr. David Wilson (PhD) – Invented G4 oxyphor microsensor method of assessing quantitative PO2, helped with initial calibration of the oximeters

Page 14: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

1  

  

CHAPTER 1 OVERVIEW AND HYPOTHESIS 1.0 Overview

Conditions which lead to inadequate tissue perfusion are a major source of morbidity

in patients. Traditionally, medical research and practice has focused the impact of

inadequate perfusion (ischemia) of vital organs, including the brain (stroke) and heart

(myocardial infarction (MI)). Severe adverse clinical outcomes and patient mortality are

much higher if these ischemic events occur to patients undergoing surgery.1, 2 For example,

the mortality associated with perioperative stroke and MI exceed ~50%, suggesting that the

systemic conditions associated with surgery (inflammation, tissue hypoxia, anesthesia), may

contribute to worsened outcomes. 2-4 In my thesis, I have focused on assessing the impact of

surgery, and its associated conditions, on the adequacy of muscle perfusion during surgery.

Although perfusion of skeletal muscle may be considered of less vital importance than brain

or heart perfusion, nevertheless, inadequate muscle perfusion can also lead to adverse

clinical outcomes including: (1) muscle weakness and pain, (2) rhabdomyolysis during

prolonged neurosurgery, 5-13 and (3) muscle flap failure during reconstructive surgery.14-19

Accurate assessments of muscle perfusion (serum biomarkers, blood flow, and tissue PO2)

are important to evaluate the health of skeletal muscle during surgery.12 These studies

suggest that intraoperative muscle ischemia may lead to tissue hypoxia accompanied by the

presence of anaerobic muscle metabolism and elevated serum lactate. Prolonged

deprivation of adequate muscle perfusion can lead to subsequent muscle damage and

necrosis characterized by the release of muscle enzymes (CK) and myoglobin into the blood

stream. Early detection and identification of the cause and onset of inadequate muscle

perfusion is important in order to correct conditions that lead to inadequate systemic

Page 15: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

2  

  

perfusion. Evidence of inadequate muscle perfusion may also signify inadequate perfusion

of other organs including the intestine, liver and kidneys. Many factors can contribute to

compromised muscle perfusion during surgery and we review some possibilities in this

thesis: (1) muscle compression, (2) vasopressor use (phenylephrine (PE)), (3) free flap

surgery, and (4) temperature.

Muscle compression induced ischemia is a potential mechanism that can contribute

to positional rhadomyolysis observed in patients undergoing craniotomy. Rhabdomyolysis

is a serious condition in which the breakdown of muscle cells release cellular components

(creatine kinase and myoglobin), which can be toxic, resulting in organ dysfunction,

particularly the kidney5-7. Indeed, in our recently published study, we observed a novel

correlation between patient body mass index and an early increase in serum lactate in 18

neurosurgical patients undergoing brain tumour resection. This data supports the hypothesis

that heavy body mass caused muscle compression leading to inadequate muscle perfusion

and anaerobic lactate production. Some of these patients also exhibited an elevation in

serum creatine kinase and myoglobinuria suggestive of muscle breakdown. In our clinical

model, we further assessed the factors that may influence skeletal muscle perfusion during

craniotomy12.

The use of vasopressors to restore blood pressure is another mechanism that may

jeopardize muscle perfusion during surgery. For example, PE is an α1 adrenergic

vasoconstrictor which acts at the level of the resistance arteries. Vasopressors are commonly

utilized to treat intraoperative hypotension.20 The potential cost of this approach is

vasopressor induced ischemia due to constriction of the resistance arteries. Indeed, this topic

has initiated a recent clinical debate; the use of phenylephrine as a primary means of treating

intraoperative hypotension at the cost of limiting tissue perfusion during surgery has been

Page 16: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

3  

  

questioned. 21-25 Our data provides new evidence of altered muscle perfusion and

metabolism with infusion of phenylephrine, in a dose dependent manner.

In addition, clinical practice of plastic surgeons uniformly reject the use of

vasopressors to treat systemic hypotension due to the potential negative impact on flap

perfusion. 26, 27 This opinion is strongly enforced despite the publication of reviews of recent

clinical studies which suggest that there is no correlation between the use of vasopressors

and flap complications and failure. 22-25 While microsurgeons continue to warn against the

use of vasopressor during reconstructive surgery, few data actually link this treatment with

flap failure in clinical or experimental models. Thus, we pursued a translational

investigation of muscle free flap perfusion. In a rodent model we assessed rectus abdominus

skeletal muscle and free muscle flap perfusion and evaluated the impact of surgery, infusion

of phenylephrine (an α1 agonist), and temperature on tissue perfusion as assessed by

measuring microvascular blood flow and muscle tissue PO2. We observed evidence of

inadequate muscle perfusion in both our clinical and experimental models as will be further

elaborated within this thesis.

Page 17: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

4  

  

1.1 Hypothesis

GENERAL HYPOTHESIS: SKELETAL MUSCLE PERFUSION IS JEOPARDIZED DURING SURGERY Sub-hypotheses: to delineate factors that jeopardize skeletal muscle perfusion during surgery. i) Muscle compression leads to inadequate muscle perfusion and muscle ischemia during surgery.

This hypothesis was derived from the clinical observation that serum lactate increased

frequently in patients undergoing craniotomy for brain tumor resection. A prospective

observational study was designed to assess clinical factors that might lead to increased

serum lactate including, length of surgery, body mass index (BMI), administration of

mannitol.

ii) Phenylephrine, an α1 agonist will lead to severe resistance artery constriction and impair skeletal muscle perfusion.

This hypothesis was derived to assess the impact of phenylephrine administration on

skeletal muscle perfusion in an anesthetized rat model. It will provide important control data

with which to compare the ongoing results in skeletal muscle free flap perfusion.

iii) Surgical manipulation and skeletal muscle free flap preparation will impair muscle flap perfusion This hypothesis was established to determine the impact of skeletal muscle free flap

preparation and phenylephrine on microvascular blood flow and tissue PO2.

iv) Skeletal muscle perfusion will be influenced by temperature in our clinical and experimental models This hypothesis will address the observation that tissue metabolism and oxygen

consumption are influenced by temperature and may effect the muscle perfusion and PO2.

Page 18: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

5  

  

CHAPTER 2 INTRODUCTION

2.0 Oxygen

2.01 Importance of Oxygen for Mammalian Survival

Oxygen was first present in our environment as a function of the evolution of plant

photosynthesis which initiated over 500 million years ago. It was first characterized by

Schelle, Lavoisier and Priestley over 200 years ago. Priestley was the first to link the

production of oxygen by plants to mammalian survival.28, 29 We now understand that oxygen

is vital to the survival of mammalian organisms including humans, as it is necessary to

generate biological energy necessary for the cellular processes of life that are essential for

organ function and survival. Cellular energy in the form of adenosine triphosphate (ATP) is

required by cells to perform essential activities such as membrane transport, growth, cellular

repair, and maintenance processes as well as other facultative functions such as contraction

and motility.28, 30 In the presence of oxygen, aerobic metabolism involving glycolysis, krebs

cycle and the electron transport chain (ETC) occurs to yield a net production of 36 ATP per

glucose molecule, a highly efficient production of energy. Oxygen serves an important role

as the final electron acceptor of the ETC in the mitochondria of cells and is converted into

water to generate ATP via oxidative phosphorylation. However, in the absence of oxygen

during hypoxia, anaerobic metabolism takes place and a net yield of only 2 ATP is

generated per glucose molecule with lactate produced as a byproduct. Cells that are hypoxic

over prolonged periods of time will eventually become dysfunctional and die due to

inadequate ATP production. 30, 31 Adequate oxygen delivery is essential to preserving organ

function and compromised oxygen delivery may result in tissue hypoxia, inadequate ATP

generation, organ failure and death.28, 30, 31 Inadequate tissue oxygen delivery can occur in a

Page 19: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

6  

  

number of pathological conditions including environmental hypoxia (high altitude), organ

ischemia (stroke, MI), trauma, and surgery and acute blood loss-anemia. These conditions

are associated with mortality due to inadequate oxygen supply.2-4, 31-34 Elevated serum

lactate levels resulting from inadequate oxygen delivery are very late, but are a significant

indicator of inadequate tissue perfusion. 12, 35-41 In some cases, such as critically ill or trauma

patients, a prolonged increase in serum lactate is indicative of reduced patient survival.35, 36

The presence of increased lactate is a balance of increased production and or reduced

metabolism or consumption. Some tissues such as the brain may use lactate as a biological

fuel. 40, 42 Thus, understanding the clinical significance of a transient rise in serum lactate is

complex. This thesis will explore the phenomenon of a transient rise in lactate which has

been observed during neurosurgery. Central to this thesis, the deprivation of oxygen to

skeletal muscle tissue will result in muscle breakdown and necrosis characteristic of

rhabdomyolysis and muscle flap failure.7, 9, 12 This represents a focused look at the adequate

oxygen delivery to muscle, which may not be critical for organism survival, but may have

important implications for reducing patient morbidity and event free patient survival. It

contributes a piece of the puzzle in the overall picture of mammalian survival in which

oxygen is necessary for the production of cellular energy in the form of ATP to maintain

cellular function and organism survival.

2.02 Oxygen Pressure Gradient from the Air to the Tissues

The air in the atmosphere is composed of 21% oxygen, 78% nitrogen and smaller

portions of other gases such as carbon dioxide, argon and helium.43 At atmospheric pressure

(760mmHg), the partial pressure of oxygen is approximately 160 mmHg. As air enters the

lung and alveoli the partial pressure of oxygen is offset by the acquisition of dissolved water

Page 20: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

7  

  

and carbon dioxide. [PAO2 = FIO2 (PATM – PH2O)-PaCO2/RQ, where PAO2 is the partial

pressure of oxygen in the alveolus, FIO2 is the fraction of inspired oxygen, PATM is the

atmospheric pressure, PH2O is the partial pressure of water, PaCO2 is the partial pressure of

CO2 in artery, and RQ is the respiratory quotient] These gases reduce the partial pressure of

oxygen in the alveolus. An oxygen gradient cascade exists in which oxygen travels from a

high partial pressure in the alveolus (~100 mmHg) into the blood where the early conduit

arterial PO2 is near ~95-98 mmHg.43 Exchange of oxygen from the vasculature to the tissue

occurs at the level of the microcirculation comprised primarily of capillaries. Novel

quantitative methodology (phosphorescence quenching) has demonstrated that the gradient

of oxygen partial pressures decreases rapidly as oxygen moves away from the hemoglobin

in the red blood cell (RBC). 44-48 Studies in the mammalian brain indicate that oxygen

moves along its pressure gradient from the RBC (~ 60 mmHg) to the tissue (PO2 ~25-40

mmHg).28, 44, 46, 49, 50 Under physiological conditions, the cell membrane provides very low

resistance to oxygen which flows freely into the intracellular compartment (10-20 mmHg)

where it is utilized by the mitochondria (5-15 mmHg) as the final electron sink in the

process of ATP production via oxidative phosphorylation.28, 43, 47 Thus, oxygen follows a

concentration gradient from the air to the microvasculature and into the intracellular

compartment (Figure 1).

Page 21: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

8  

  

Figure 1 The Oxygen Gradient from the Inspired Air to the Mitochondria. Oxygen from the air (160mmHg) enters the lungs (alveoli) (100mmHg) and into the arterial blood (95-98mmHg) where it is transported to the tissues of the body by hemoglobin. At the microvasculature the PO2 ranges from 30-60 mmHg. Oxygen follows the gradient into the tissues (25-40mmHg), cells (10-20mmHg), and finally the mitochondria (5-15 mmHg), where it serves as the final electron acceptor in the electron transport chain and is converted to water in the process of ATP production

Page 22: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

9  

  

2.03 Oxygen Delivery and the Role of Hemoglobin

The majority of oxygen in the blood is carried by hemoglobin in a highly efficient

manner, as 99.8% of oxygen combines with hemogloblin of the RBCs and 0.2% of oxygen

is dissolved in the blood plasma. Hemoglobin consists of 4 globular proteins (2 α and 2 β

subunits) with 4 heme groups. The heme group is an iron porphyrin compound that is

essential for oxygen binding to the hemoglobin molecule, thus each hemoglobin molecule

can bind up to 4 oxygen molecules and blood oxygen capacity is directly proportional to Hb

level. Hemoglobin binds oxygen to become oxyhemoglobin in a cooperative manner in

which the binding of oxygen to one of the heme groups increases the affinity for subsequent

oxygen binding due to a conformational change in hemoglobin.51 This is indicated by the

sigmoid shape of the oxygen dissociation curve composed of the association and

dissociation segments. Several factors can influence the dissociation curve including pH,

2,3 bisphosphoglyceric acid (2,3 DPG), temperature, and PCO2. An increase in acidity

(decreased pH), 2,3 DPG, temperature, or PCO2 will result in a right shift on the oxygen

hemoglobin dissociation curve leading to lower affinity for oxygen. The release of O2 from

Hb is favored in situations when O2 is needed, such as in skeletal muscle during exercise.

Conversely, a decrease in acidity (increased pH), 2,3 DPG, temperature, or PCO2 will result

in a left shift on the oxygen hemoglobin dissociation curve leading to increased affinity for

oxygen, such as at the lungs. Each gram of hemoglobin can carry 1.39 ml of oxygen. 43, 51

Oxygen saturation is the ratio of the amount of oxygenated hemogloblin to the total

hemogloblin in 100 ml of blood and arterial blood and venous blood is 95-98% and 60-80%

saturated with oxygen respectively. At the lungs, the partial pressure of oxygen is high and

the affinity for oxygen is great and thus oxygen loading occurs and hemoglobin is 98%

Page 23: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

10  

  

saturated, however at the tissues the partial pressure of oxygen is low and oxygen

dissociation occurs and the hemoglobin saturation is 75%. Thus, on average, the tissues

extract and use 25% of the oxygen from hemoglobin during resting conditions. As the major

function of hemoglobin is the transport of oxygen from the lungs to the other tissues in the

body, it is clinically measured as an indicator of oxygen content [CaO2 = 1.39HbSO2+

0.003PO2] in patients during surgery. Oxygen content in the blood is a sum of the oxygen

content in the solution in addition to the oxygen carried by the hemoglobin and thus is a

determining factor of adequate oxygen delivery (DO2) [DO2 = CaO2 x CO].43, 51 This

formula emphasizes the importance of hemoglobin and cardiac output (Section 2.11) in

determining oxygen delivery/supply. The oxygen demand is the amount of oxygen required

to sustain the metabolic requirements of all body tissues. The total oxygen delivery must be

equal to the total oxygen demand for homeostasis to be maintained, failure for oxygen

delivery to meet oxygen demand can result in organ damage and failure.31, 34 O2

consumption (VO2) [VO2 = CO (CaO2-CvO2)]51 is the amount of oxygen actually used by

the tissues and is generally equal to the oxygen demand during normal conditions. In this

thesis, we will examine the effects of phenylephrine administration on skeletal muscle

oxygen consumption and metabolism, an estimate by changes in blood flow and tissue PO2.

2.1 Importance of the Cardiovascular System in Regulating Tissue Oxygen Delivery

The cardiovascular system, comprising of the heart and the vasculature is required

for the delivery of oxygen and vital nutrients as well as the removal of metabolic waste

products (carbon dioxide, serum lactate).52, 53 The heart functions to pump blood to the rest

of the organs and tissues in the body through the large conduit arteries such as the carotid

and femoral arteries. From there, hemoglobin enters the microcirculation comprising of the

Page 24: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

11  

  

smaller arterioles (resistance arteries), the capillaries, and the venules. The resistance

arteries are muscular vessels that control organ specific blood flow and oxygen delivery to

the tissues by the regulation of microvascular tone via vasoconstriction and vasodilation.

The capillaries are a network of vessels that are one cell thick and allow for the exchange of

nutrients and wastes between the tissues and the blood. Oxygen diffuses through the

capillaries into the tissues and to the mitochondria of the cells, while carbon dioxide diffuses

out of the tissues and into the blood. Finally, the venules and veins are the capacitance

vessels that store blood volume and carry the deoxygenated blood and metabolic wastes

back to the heart. At any point in the systemic or pulmonary circulation physiological

shunts exists by which arterial blood can travel directly from the conduit artery to the venule

thus bypassing the microvasculature. This leads to hypoxemia (low blood O2) in pulmonary

circulation and tissue hypoxia if it occurs in the systemic circulation. Key regulators of

tissue perfusion in the cardiovascular system include the cardiac output permitted by the

heart and the regulation of local organ blood flow at the level of the resistance arteries also

influenced by the autonomic nervous system. Thus, tissue perfusion is regulated at different

levels of the cardiovascular system. In understanding the regulation of adequacy of tissue

perfusion, clinicians often assume that adequacy of conduit artery PO2 (radial artery arterial

blood gas) correlates with specific tissue PO2.

2.11Cardiac Output is Regulated to Optimize Oxygen Delivery to Tissues

The cardiac output (CO) is the amount of blood that is pumped out by the heart per

minute and it is equivalent to the sum of all blood flow to the tissues in the body. The

average resting cardiac output in men is a function of body weight and is measured to be

near 70 ml/kg/min or about 5.0 L/min.54 As emphasized, a key regulator of tissue perfusion

Page 25: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

12  

  

is the cardiac output permitted at the level of the heart. CO is defined by the heart rate and

stroke volume [CO = HR x SV]. Heart rate can be increased by β1 adrenergic stimulation

which increases overall contractility. The β1 signaling pathway is complex and will not be

an emphasis of this thesis. Stroke volume can be increased by an increased preload (left

ventricular end diastolic volume), the degree of stretch on the ventricles prior to contracting,

and reduced by the afterload, the aortic pressure which hinders the ejection of blood from

the ventricles. When cardiac output is increased reflective of increased heart rate and/or

stroke volume, tissue oxygen delivery may also increase. For instance, CO can be greatly

increased at times of increased oxygen demand such as physical exercise. However, during

situations in which CO is decreased, such as β blockade and cardiac arrest, oxygen supply

can be severely impaired as demonstrated by studies in our laboratory. Ragoonanan et al

(2009) have studied the effects of β blocker metoprolol on cerebral tissue oxygen tension

after acute hemodilution in rats and reported reduced oxygen delivery to the brain.49

Additionally, Yu et al (2013) have examined microvascular brain perfusion in a pig cardiac

arrest model and observed a severe decline in brain tissue PO2 associated with ventricular

fibrillation.50 Traditional physiologists have emphasized that it is the tissues requirement

for oxygen that ultimately regulates cardiac output and specific tissue blood flow. 54, 55 This

end purpose of the cardiovascular system has led us to focus on measures of adequacy of

tissue perfusion (lactate and tissue PO2 in our models). Therefore, the oxygen supply

permitted at the level of the heart is an important determinant of oxygen delivery.

Page 26: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

13  

  

2.12 Importance of Maintaining Blood Pressure and Global Blood Flow

Blood pressure is the force that the blood exerts against the walls of blood vessels.

The pumping action of the heart generates blood pressure which generates blood flow.

Poiseuilles Law defines blood flow: F = π∆Pr4/8ηl , where ∆P is the pressure difference

between the ends of the vessel, r is the radius of the vessel, l is the length of the vessel, and

η is the viscosity of the blood. The mean arterial pressure (MAP) is the average pressure in

the arteries as is defined as the cardiac output multiplied by the systemic vascular resistance

[MAP = CO x SVR] and is the driving force of global blood flow. Increases in cardiac

output and/or systemic vascular resistance will lead to an increase in MAP. A pressure

gradient exist that drives blood flow from a high pressure at the aorta toward a lower

pressure within the arterioles and capillaries, with the lowest pressure at the vena cava. It is

generally assumed that increased perfusion pressure correlates to increased tissue perfusion.

However, if taken to the extreme example, severe constriction of resistance arteries will

increase MAP but eventually limit microvascular blood flow and tissue perfusion. Thus, it

has been argued that using vasopressors to increase MAP may actually impair perfusion in

some vascular beds. Clinicians use MAP as an indicator of adequate perfusion in the

operating room and use vasopressors to treat intraoperative hypotension by increasing MAP

with the goal of increasing perfusion. Thiele et al (2011) recently describe this approach as

a “tangible bias” which describes our tendency to favour treating a parameter that we can

see (MAP) without a full understanding on the impact of what we cannot see (tissue

perfusion).21 In other words, favoring less important but immediately measureable variables

such as mean arterial blood pressure (MAP) over more important but less measureable

tissue oxygen delivery (DO2) as indicators of adequate perfusion.21, 56 Nevertheless,

Page 27: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

14  

  

vasopressors are commonly used to raise MAP to maintain cerebral perfusion pressure

[CPP = MAP - ICP] which is vital to patient survival during surgery. Although treating

severe hypotension by increasing MAP is assumed to be reflective of improved tissue

perfusion, we will demonstrate that this is not always the case. Different organs receive

different amounts of blood flow depending on the metabolic needs of the specific organ.

For instance, carotid blood flow to the brain is greater than the femoral blood flow to the

femoral muscles at rest because the brain requires greater amounts of oxygen and has a

higher metabolism than resting skeletal muscle. Improved cerebral perfusion by increased

MAP may not be reflective of improved skeletal muscle perfusion. In this thesis, we will

examine whether or not an increase in MAP correlates to increased skeletal muscle

perfusion in a model of skeletal muscle and muscle flap perfusion.

2.13 Regulation of Blood Flow by the Resistance Arteries

Resistance arteries are 10um-100um thick consisting of endothelium and smooth

muscle. By virtue of possessing vascular smooth muscle, these small vessels actively

regulate organ specific blood flow and oxygen delivery to tissues. Both intrinsic and

extrinsic mechanisms determine the degree of smooth muscle activation and vascular tone

(vasoconstriction) in the resistance arteries and thus affect organ blood flow. The intrinsic

mechanisms include endothelial derived factors, and smooth muscle myogenic tone.

Extrinsic regulation includes innervation by a variety of autonomic nerves and locally

produced hormones, and tissue metabolites 57 (ie. sympathetic nerves (norepinephrine [NE])

and other circulating hormones (vasopressin)) that act outside of the blood vessel. Synthetic

pharmacological drugs that are not produced by the human body under normal physiological

conditions such as phenylephrine, an α1 agonist, are also clinically and physiologically

Page 28: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

15  

  

relevant in respect to vascular tone and the maintenance of perfusion. Therefore the

regulation of local organ blood flow occurs at the level of the resistance arteries dictated by

vasoconstricting and vasodilating stimuli occurring through intrinsic and extrinsic

mechanisms that regulate microvascular tone.

2.2 Methods for Measuring PO2 in Muscle 2.21 Clark Electrode (Licox) In the early 1950s, Leland Clark developed the Clark electrode which consumes

oxygen in a redox reaction to generate an electric signal indicative of oxygen

concentration.28, 58, 59 The Clark electrode consists of a platinum or gold cathode where

oxygen is reduced and a silver anode that reacts with KCl to generate electrons.58 The

electrons will flow from the anode to oxygen at the cathode. A Teflon membrane separates

the electrodes from the reaction chamber and is permeable only to oxygen. Oxygen will

diffuse through the Teflon membrane and become reduced at the cathode according to the

following reaction: (O2 + 4 electrons +2 H2O 4OH-)60 This reduction reaction allows

subsequent electrons to flow and generates an electrical signal that is proportional to oxygen

concentration. In summary, the Clark electrode measures current generated from the cathode

and electrode immersed in electrolyte solution interacting with oxygen, which is

proportional to the activity of oxygen.60 The Clark electrode is the basis of oxygen

measurements in arterial blood gases and has been applied to clinical medicine to measure

tissue PO2 directly.

LicoxTM is an example of a device that uses the principles of the Clark electrode to

assess oxygen levels in the clinic.58, 61, 62 This device can simultaneously measure tissue

oxygen and temperature and is commonly used to assess brain and other tissue PO2. It has

Page 29: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

16  

  

been used in patients with severe traumatic brain injury.61 The Licox probe consists of a

polarographic cathode and anode immersed in electrolyte solution that is separated from the

tissue by a polyethylene membrane. Current is measured by the Licox probe which is

linearly proportional to tissue PO2.58 In addition, temperature is measured by a

thermocouple within the probe. The Clark electrode (Licox) is used in some tertiary

neurotrauma centers to assess brain tissue oxygen levels.58 In assessing brain oxygen levels,

PO2 during normal conditions can range between 25-50mmHg (30mmHg ideal), however

during ischemia brain PO2 can range from 8-12 mmHg and brain PO2 levels less than 2

mmHg is associated with brain cell death. Although a low brain PO2 is associated with

worse outcomes including death, no study to date has demonstrated that therapies which

improve brain tissue PO2 can improve survival.

The use of Licox has also adapted to monitoring microsurgical flap PO2 in cases of

reconstructive surgery.60, 63 Kamolz et al (2002) have assessed 60 free tissue transfers over

a period of 3 years with the Licox Catheter PO2 microprobe and reported that it is an

accurate monitoring system for all types of flaps. Licox was able to detect circulatory

changes and flap failure with no false positives or negatives.63 During cases where a failed

arterial pedicle occurred, PO2 was observed to drop rapidly.63 Additionally, when venous

insufficiency occurred PO2 was observed to drop slowly.63 Furthermore PO2 with in all

failing flaps was observed to drop below 10 mmHg.63 Therefore Licox is a useful tool to

assess tissue PO2 in both the brain and muscle flaps in the clinical setting. Disadvantages of

using an electrode method for measuring tissue PO2 include that it is invasive, causes tissue

damage, is affected by local blood clots, only measures a small area of brain/muscle tissue

and can also suffer from motion artifacts.64 Recent review of the Licox probe revealed that

Page 30: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

17  

  

the probe has a tendency to under-read oxygen tension which is more pronounced at higher

temperature.58

2.22 Electron Paramagnetic Resonance Oximetry Electron Paramagnetic Resonance (EPR) oximetry is another technique to measure

highly sensitive and reliable oxygen concentration in tissues by applying magnetic field

gradients to isolate EPR signals from multiple invasive probes of an implantable

resonator.59, 64-66 Small crystalline oxygen sensing probe(s) such as lithium phthalocyanine

(LiPc) are implanted into the organ/tissue site of interest (ie. brain, heart, tumour, etc).64-66

The LiPc probes are inert and can be left within the tissue site over a period of months

without causing significant complications, however this method is not used clinically.66 An

external loop resonator is placed over the LiPc probes and EPR spectra are recorded with an

EPR spectrometer.65 Oxygen is paramagnetic and produces a line-width broadening

resulting from the spin spin interaction between oxygen and the LiPc probe.64, 66 The

recorded line widths of the EPR spectra are linearly correlated with the partial pressure of

oxygen.64, 65 Thus, EPR oximetry can provide a means of an accurate assessment of tissue

oxygen tension determined through changes in EPR spectral line width.66 The advantage of

EPR oximetry is that it is a non-invasive, repetitive, and highly accurate method to assess

tissue oxygenation.64-66 It has been applied to research in numerous of fields and has the

potential for clinical use in studying oxygen in the heart, brain, and tumours. A limitation of

EPR oximetry is that the signal intensity of EPR spectra decreases when PO2 increases or

when LiPc probe size is reduced.65 Another significant disadvantage of this method is that

EPR oximetry measures a mixture of tissue PO2 and capillary PO2, whereas other methods

such as G3/G4 phosphorescence quenching method measures tissue PO2 specifically.28, 47

Page 31: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

18  

  

2.23 Oxyphors and O2 dependent Phosphorescence Quenching

Intravascular and interstitial measurements of tissue PO2 can be measured using G2

and G4 Oxyphor and oxygen-dependent quenching of phosphorescence.28, 46-48 When the

phosphorescent probe is excited by pulse of light, it emits phosphorescence over a course of

tens-to-hundreds of microseconds. The lifetime (τ) of the phosphorescence decay is

inversely proportional to the partial pressure of oxygen (PO2) in the environment according

to the Stern-Volmer relationship. [1/ τ = 1/ τ0 + Kq[PO2]], where τ0 is the phosphorescence

lifetime when PO2 is 0, Kq is the quenching constant, and PO2 is the partial pressure of

oxygen.46, 50 In the presence of oxygen, the oxygen will quench the excited electron and

reduce the phosphorescence resulting in a low phosphorescence lifetime. Thus a low

phosphorescence lifetime is correlated to high PO2. Conversely, a high phosphorescence

lifetime is indicative of low tissue PO2. Oxygen measurements by phosphorescence are

independent of the local probe concentration, since the decay lifetime serves as the

measurement signal and not signal intensity. G4 Oxyphor can be used in direct tissue PO2

measurements as a part of an insertable microsensor in muscle and flap tissues. The signals

of the probes are calibrated under physiological pH and temperature and shown to provide

quantitative, selective and absolute measurements of PO2 in vivo. The G3/G4

phosphorescence quenching method is a reliable method to measure quantitative tissue PO2

as other methods of measuring tissue PO2 such as EPR oximetry measures a mixture of

tissue and capillary PO2.28, 47 Therefore, our experiments will utilize the G4 oxyphor method

to assess quantitative interstitial PO2 in skeletal muscle tissue.

Page 32: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

19  

  

2.3 Skeletal Muscle

2.31 Skeletal Muscle Structure and Function

Approximately 40% of human body mass is comprised of skeletal muscle which

primarily functions to contract and generate mechanical force which provides support to the

skeleton and also facilitates the movement of joints necessary for voluntary movement of

the body.67, 68 Skeletal muscle is a highly organized striated multinucleated tissue that can

be broken down into smaller levels of organization.67 The skeletal muscle is comprised of

muscle fascicles which consist of muscle fibers/cells that are composed of myofibrils

consisting of myosin thick and actin thin filaments.68 The arrangement of the actin and

myosin filaments gives the skeletal muscle its striated appearance and the sacromere is the

contractile unit of the skeletal muscle. Skeletal muscle contraction occurs in response to

stimulation by motor neurons at the neuromuscular junction via the release of the

neurotransmitter acetylcholine which binds to receptors on the muscle membrane and

increases sodium permeability stimulating muscle impulses that travel down the t-tubules

and leads to calcium release from the sarcoplasmic reticulum.69-71 The mechanisms

involved in muscle contraction are complex and is not a primary focus of this thesis and

involve the troponin-tropomyosin complex.68 In resting skeletal muscle, tropomyosin is

wrapped around the thin filaments and covers the active sites preventing the binding of

myosin to the active sites on actin.72 However, when calcium is released from the

sarcoplasmic reticulum and binds to troponin, a conformation change occurs in which

tropomyosin shifts exposing the active sites.67, 72 Myosin can in turn bind with actin forming

a crossbridge and pull the thin filaments towards the midline via the power stroke leading to

muscle contraction.72 ATP is required for muscle contraction to occur and facilitates the

Page 33: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

20  

  

release of the actin from myosin so the cycle can continue. In the event that ATP supply is

completely exhausted the actin will remain bound with myosin and the skeletal muscles will

remain stiff as observed in rigor mortis. Muscle relaxation occurs as acetylcholinesterase

decomposes acetylcholine and calcium is resequestered back into the sarcoplasmic

reticulum.67, 71 Thus skeletal muscle is a highly organized tissue that enables organ

movement. It has a high metabolic demand during activity and a reduced basal requirement

of O2 at rest.

2.32 Vascular Organization of Skeletal Muscle Circulation

Large conduit arteries carry bulk blood flow and oxygen to the skeletal muscle

tissues. A relevant example to this thesis is the superior and inferior epigastric arteries that

supply the rectus abdominus muscle tissue. We will also be examining blood flow in the

carotid artery and the femoral artery which supplies the brain and femoral muscle

respectively. These arteries branch off into smaller arterioles which regulate organ specific

blood flow and the microvasculature where oxygen delivery and exchange occurs. The

microvascular organization in the skeletal muscle is highly organized and the arterioles in

the skeletal muscle give rise to capillaries that run in parallel with the muscle fibers and

each muscle fiber is surrounded by approximately 3 – 4 capillaries. Different muscles have

different oxidative capacities which determine the degree of capillary to fiber ratio. Slow

twitch red muscle fibers are dense with capillaries and rich in mitochondria and myoglobin

and can carry more oxygen and sustain aerobic muscle metabolism and thus can contract for

long periods of time with small force.67, 68 In contrast, fast twitch white muscle fibers can

contract quickly and forcefully contributing to muscle strength however white muscle

primarily participates in anaerobic metabolism.67, 68 Thus, muscle fibers with higher

Page 34: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

21  

  

oxidative capacity have a higher capillary to fiber ratio and greater maximal flow capacity

compared to muscle fibers with low oxidative capacity but high anaerobic capacity. In

resting skeletal muscle, the requirement of oxygen is much less than when the muscle is

contracting and only approximately 25% of the capillaries in the skeletal muscle are

perfused. However, during muscle contraction and active hyperaemia, all the capillaries

surrounding the muscle fibers may be perfused as a result of capillary recruitment defined as

an increase in the number of flowing capillaries around each muscle fiber which is

necessary for optimal muscle perfusion. Therefore the organization of the arteries that

provide bulk flow and the microvasculature that surround the skeletal muscle fibers are

highly organized and necessary to provide skeletal muscle perfusion.

2.33 Regulation of Skeletal Muscle Blood Flow

During resting conditions, approximately 20% of the cardiac output is permitted to

the skeletal muscles in the body and skeletal muscle blood flow is approximately 3 ml/min

per 100g. The regulation of skeletal muscle blood flow is dictated by the balance between

vasoconstrictive and vasodilating stimuli at the level of the resistance arteries.73 Some

possible factors that can have a vasodilatory influence resulting in increased muscle blood

flow include: (1) increases in interstitial potassium (2) increased H+ production, and (3)

nitric oxide and prostaglandins.73 The mechanisms of action of these vasodilating substances

are complex and will not be a focus of this thesis. Of greater significance are the

mechanisms of increased vascular tone via vasoconstrictors which may reduce skeletal

muscle perfusion. Sympathetic adrenergic nerves innervate the skeletal muscle vasculature,

and the release of norepinephrine as a neurotransmitter will stimulate vasoconstriction at the

level of the α1 adrenergic receptors. The precise signalling pathway and mechanism of

Page 35: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

22  

  

action of the α1 agonist-receptor pathway is described in section 2.62. High levels of

circulating catecholamines (epinephrine and norepinephrine, both α1 agonists) can also

induce vasoconstriction in skeletal muscle vasculature which may lead to jeopardized

muscle perfusion.74 In fact, a focus of this research project will investigate the

vasoconstrictive effects of a common antihypertensive drug, phenylephrine, a specific α1

agonist, on skeletal muscle perfusion during surgery. During periods of impaired skeletal

muscle perfusion, skeletal muscle has been documented to tolerate ischemia for up to 3

hours.75, 76 Irreversible muscle damage resulting from muscle ischemia occurs after 4-6

hours.7 When the resting skeletal muscle is denervated, the blood flow to the skeletal muscle

can be expected to increase due to the resultant effect of reduced vascular tone. Thus,

sympathetic stimuli from the sympathetic nerves, cathecholamines, or pharmacologic agents

can all lead to vasoconstriction and dramatically reduce muscle blood flow. As a result of

decrease blood flow to the skeletal muscle, the muscle will increase oxygen extraction and

partake in anaerobic metabolism for ATP production when oxygen is exhausted. In the

event that muscle perfusion is not restored due to excessive administration of

vasoconstrictors, muscle necrosis may occur77.

2.34 Oxygen Pressures in Interstitial Skeletal Muscle Tissue

There have been many advances in technologies associated with the measurement of

interstitial oxygen measurements in tissues, particularly resting skeletal muscle tissue. The

creation of G3/G4 oxyphors and O2 dependent quenching of phosphorescent method

described in section 2.23 have enabled accurate and quantitative assessments of interstitial

skeletal muscle tissue PO2 superior to previous methods of measuring tissue oxygen.46 In

the past, Whalen et al used clark electrodes with small tips to record PO2 values in the cells

Page 36: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

23  

  

of guinea pig gracilus muscles with measured PO2 values of 0-5 torr.78 Although this was an

initial attempt to assess muscle tissue PO2, the effects of anesthesia on muscle PO2 was

underappreciated. Other studies have recorded skeletal muscle PO2 values of around 31.4

torr 79 (intravascularly), 19 torr80 (intravascularly), and 26.8 torr81 (interstitially).

Richardson et al used NMR method to measure oxygenated versus deoxygenated myoglobin

in muscle to estimate muscle PO2 and reported muscle PO2 value of 34 torr.82 It is unknown

if different regions of skeletal muscles on the body have differing interstitial PO2 values,

however the differences are expected to be very small. As newer technologies developed,

Wilson et al measured interstitial PO2 in awake and anesthetized rats and reported a muscle

PO2 of 46.2 torr in awake rats and a muscle PO2 of 36.9 torr in rats under isoflurane

anesthesia with G3 oxyphor.47, 48 Resting nonoperated rectus abdominus muscle interstitial

tissue PO2 data obtained in our experimental protocols measured PO2 values ranging from

around 30-40 torr using the microsensor G4 oxyphor phosphorescence quenching method.

Therefore advancements have been made to investigate quantitative levels of oxygen in

skeletal muscle tissue, and our data reports interstitial skeletal muscle PO2 values in the

range of 30-40 torr in rats under the effects of isoflurane. To our current knowledge, no one

has assessed interstitial muscle flap PO2 with the G4 oxyphor method. Our data suggests

that PO2 in muscle flaps is very low at around 5 torr. This reduction in flap PO2 may result

from surgical manipulation and preparation of the muscle free flap.

2.35 Energy Sources for Skeletal Muscle

Oxygen is necessary as the final electron acceptor in the electron transport chain for

the production of 36 ATP through aerobic respiration in skeletal muscle. In the absence of

oxygen, anaerobic metabolism takes place in which a net yield of 2 ATP and lactate is

Page 37: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

24  

  

produced. ATP is used as an energy source to supply skeletal muscle contraction.68 When

the energy sources become depleted, muscle cells must regenerate ATP from ADP.

Phosphocreatine (PCr) is another high energy molecule in the skeletal muscle that can act as

a reservoir for energy.68, 83, 84 In the event that ATP is sufficient, the muscle enzyme

creatine kinase (CK) can phosphorylate creatine and form phosphocreatine (PCr) that stores

excess energy in its phosphate bonds.83 When ATP supply is exhausted it becomes ADP,

and phosphocreatine can be used to replenish ATP supply by transferring its phosphate to

the ADP molecule to create ATP again.68, 84 Therefore phosphocreatine is used to restore

ATP levels in the skeletal muscle when the energy supply is low. Creatine kinase is an

important enzyme that facilitates this reversible reaction. The role of creatine kinase as a

clinical marker will be discussed in section 2.4.

2.4 Markers to Evaluate Health of Skeletal Muscle Clinically

Experimentally, skeletal muscle perfusion can be assessed by measuring

microvascular blood flow and interstitial PO2 in rats. However in the operating room,

certain markers can be used as indicators of inadequate muscle perfusion and assess muscle

health during surgery through simple arterial blood gas and urine sample analysis. Serum

lactate which is produced as a byproduct of anaerobic metabolism in the skeletal muscle is

an early indicator of inadequate skeletal muscle perfusion. The normal range of serum

lactate ranges between (0.3-1.3 mmol/L), and elevation of serum lactate beyond the normal

range of serum lactate are of concern.40 Creatine kinase is an enzyme that can also serve as

a marker of skeletal muscle damage when it is leaked into the blood stream in response to

muscle damage. Normal ranges of creatine kinase range between (45-260U/L), elevation of

CK beyond the normal range may be indicative of skeletal muscle damage and CK values

Page 38: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

25  

  

>5000U/L are correlated to acute renal failure in patients.6 Myoglobin is an oxygen carrier

in the skeletal muscle similar to hemoglobin in the blood, however it is also another toxic

component that is released into the blood stream when muscle cells lyse. Myoglobinuria

gives patient urine a reddish brown colour and can be toxic to the kidney leading to acute

renal failure.5, 10, 11, 85 Taken together, elevated levels of serum lactate, creatine kinase, and

positive myoglobinuria are suggestive of muscle damage. Our clinical study will investigate

these markers of muscle perfusion in a population of neurosurgical patients undergoing

brain tumour resection.

2.41 Clinical Importance of Serum Lactate

Increased blood lactate level has been correlated with a higher mortality rate and an

elevated risk of developing multiple organ failure in critically ill patients. 35, 36 Furthermore

a rapid clearance of lactate from the blood during the treatment for the critical illness is

correlated with greater survival and better outcome than patients who did not clear their

lactate load.39 Lactate level has also been examined as a predictor of outcome also in

surgical patients. In 2004, Meregalli et al,86 conducted a prospective study on 44 patients,

hemodynamically stable, undergoing non-cardiac surgery and admitted postoperatively to a

general ICU. In their results, the survivor’s blood lactate levels decreased significantly with

time (1.6±0.9 mmol/l vs 2.9±1.7 mmol/l, p=0.012), but levels remained stable in the

nonsurvivor group, supporting the hypothesis that lactate might be a reliable marker in

predicting poor outcome in the early phase after high risk surgery. All tissues can produce

lactate under anaerobic conditions, but only tissues with active glycolysis produce excess

lactate from glucose under normal conditions and release it into the bloodstream. At rest

lactate is produced from skeletal muscle (25%), skin (25%), brain (20%), red cell (20%),

Page 39: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

26  

  

and gut (10%). The liver is the primary site of lactate clearance (60%) and the kidneys

metabolize approximately 20 to 30% of daily lactate. The balance between release into the

bloodstream and hepatorenal uptake maintains plasma lactate at about 1 mmol/l. 41, 87, 88

Lactic acid accumulation can occur due to excessive tissue lactate production or

from reduced clearance in conditions of normal hepatic and renal function.89 A continuing

lactic acidosis means that there is continuing production of lactate that exceeds the liver and

kidney’s capacity to metabolize it. This may be due to very excessive production (eg

convulsions, ischemia) with a normal liver at one extreme, or at the other extreme due to

increased production in associated with greatly impaired hepatic capacity to metabolize it

(eg due to cirrhosis, sepsis, hypoperfusion due to hypovolemia or hypotension, hypothermia,

or some combinations of these factors). Historically it has been described that lactic acid

can be abnormaly high in presence of hypoxia reflecting inadequacy of oxygen to support

aerobic metabolism.90 The imbalance between oxygen demand and oxygen availability

results in tissue hypoxia, an impairment of mitochondrial oxidative capacity with

accumulation of pyruvate and the generation of lactate. This is one of the most common

cause of lactic acidosis. Other etiologies of hyperlactatemia are rare.37

2.42 Rhabdomyolysis and Muscle Damage

Rhabdomyolysis is a clinical syndrome resulting from severe skeletal muscle injury

(direct trauma, compression, ischemia, compartment syndrome) causing release of toxic

intracellular contents from myocytes into the circulatory system. 10, 11, 91 Clinically,

rhabdomyolysis is associated with significant elevation in serum CK and myoglobin.

Although traumatic muscle injury remains the most obvious cause of rhabdomyolysis, other

Page 40: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

27  

  

medical causes have been reported92 and these are estimated to be more common than

traumatic causes.91 In particular, prolonged operative times, surgical position and

immobility are main risk factor for developing perioperative muscle ischemia and

rhabdomyolysis. 5-7, 85, 93 A direct increase in local tissue/vascular pressure related to

positioning can cause muscle hypoxia/ischemia.92 The risk of rhabdomyolysis is particularly

high when other concurrent risk factors such as peripheral vascular disease, diabetes, high

body mass (body weight more then 30% above ideal body weight), extracellular dehydration

or hypoperfusion are present. 12, 94-96 Lagandré et al. concluded that surgery longer than 4

hours is associated with an increased risk of rhabdomyolysis.97 In a group of 30 patients

undergoing elective craniotomy, Poli et al. found an elevation in CK and the duration of the

surgery was the only factor clearly related to this elevation.7 In a recent review9, De

Tommasi and Cusimano underlined how rhabdomyolysis is highly under-recognized in

neurosurgery and that in their experience obese patients undergoing long neurosurgical

procedure should be closely monitored for CK level, myoglobinuria and acidosis. Our newly

published data (Garavaglia et al 2013) supports this observation as will be discussed in

future sections.12

2.43 High Body Mass Index as a Risk Factor for Muscle Ischemia

Ideal body weight is most commonly calculated from the body mass index (BMI)

and the Centers for Disease Control and Prevention defined overweight as a BMI of 25 to 30

kg/m2 and obesity as a BMI more than 30 kg/m2. Obesity has been linked to increased

morbidity and mortality in patients undergoing several types of surgical procedures. 98, 99

However the specific effect of increased body mass on patient outcome after neurosurgery

has not been well understood.100 The only data available from a literature review showed

Page 41: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

28  

  

that obesity increases the risk of infection after spine surgery.101-104 Further research is

necessary to understand the contribution of obesity or increased BMI to significant

perioperative complications and its effect on the outcomes of patients undergoing

craniotomy. A novel association between BMI and serum lactate rise will be described in

this thesis.

2.5 Reconstructive Flap Surgery

2.51 What is a Free Flap?

Coverage of anatomical tissue defects is an important and frequent job of the

reconstructive surgeon. Clinical scenarios where tissue is lost through a variety of

mechanisms including trauma and tissue resection for tumours (benign and malignant) is an

everyday occurrence in the clinical realm. As part of the reconstructive process, surgeons

must consider both the function and form of the loss in an attempt to provide a robust,

accurate, and durable reconstruction.

A flap is a general term used to describe a piece of living tissue that is transferred to

another site where a defect exists in order to provide coverage with the premise of like

replacement. The simplest of flaps involve leaving a large enough base of the flap attached

to provide a blood supply through a plexus of vessels; ensuring the tissue remains alive.

(Figure 2B) The limitations of these flaps are based on the size and geometry to provide

local coverage of defects. This concept is further developed with the term pedicled flap that,

by virtue of having a named and more mobile blood supply, can provide local as well as

regional coverage of defects. Again, the limitations of these types of flaps depends on the

size, reach of the named blood supply and the geometrical orientation of the tissue at the site

Page 42: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

29  

  

of inset to ensure adequate arterial inflow and venous outflow. Compromise of any of these

aspects may compromise flap survival.

For some defects, microvascular surgical techniques are widely used to harvest and

move vascularized tissue in clinical scenarios where patients have significantly large,

remote and functional tissue loss. Free tissue transfer or free flaps, can be composed of a

variety of living tissues (bone, muscle, bowel, subcutaneous tissue with skin) and are

harvested with a dedicated blood supply. This tissue flap is then transferred to a new site

where microsurgical techniques are used to re-anastamose the flap vasculature to a new

recipient donor vasculature.

Because of the method of harvest, free flaps are denervated tissue believed to have no

intrinsic sympathetic tone. It is postulated that at the time of harvest, these flaps may be

maximally vasodilated.105 Free flaps are also subject to a period of ischemia prior to re-

anastomosis and have compromised lymphatic drainage rendering them sensitive to fluid

shifts compared to healthy tissue 106. All of these properties point to the complexity of this

method of tissue reconstruction and implicate several different avenues for potential flap

success or failure.

As the art of microsurgery has been perfected over time, success of free flaps has

largely been attributed to the skills of the surgeon. However management of the patient

during these procedures including control of central hemodynamics, regional blood flow

(and ultimately flap blood flow) and volume status have been proposed to play key roles.107

Importantly, these procedures can be long in duration, involve patients with compromised

status, involve a variety of anatomical areas and may see more than one clinician involved

in the intraoperative and post operative care. Important factors like intraoperative

hypotension, management of blood loss with fluid resuscitation and use of vasoactive agents

Page 43: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

30  

  

have all been proposed as potential factors influencing microsurgical mileau and potentially

the flap. Compromise in vascular status of the flap by any means may result in flap necrosis

or complete flap loss.

2.52 Potential Causes of Free Flap Failure

Flap losses are usually seen within the first three postoperative days.60 Several

factors can contribute to flap failure during reconstructive surgery and certain patients with

comorbidities may be prone to flap complications. For instance, patients with diabetes or

hypercholestemolemia have a higher risk of microvascular disease and atherosclerosis

which may affect flap outcome during surgery. Microvascular disease can affect healing

and neovascularation of the flap. Another factor that may be associated with flap

complications is obesity, which is generally associated with greater amounts of adipose

tissue which complicates dissection of the vascular pedicle and anastomosis. The skills of

the surgeon is an important factor which can determine the outcome of the flap

characterized by the quality of anastomosis and length of ischemia time as an inadequate

anastomosis may result in free flap failure.

Vascular thrombosis has an occurrence rate of around 8-14% and is the most

common cause of free flap complications and failure, particularly venous thrombosis.19, 60,

108, 109 In a rectrospective study that involved 1000 flaps, Pohlenz et al (2012) noted that

venous thrombosis and hematoma were the most common causes of free flap failure.19

Kruse et al (2011) also attributed most of the flap failure cases to venous thrombosis in a

study with 81 radial forearm flaps.108 Selber et al (2012) performed a study with 4956 flaps

and also concluded that thrombotic events are a major risk factor for flap failure.109 Herold

et al (2011) have reported that increased platelets and leukocytes were associated with flap

Page 44: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

31  

  

complications characteristic of clotting and infection.110 Laboratory parameters of

thrombosis and bleeding (activated protein C, fibrinogen, factor VIIIC, von willebrand

factor, and VWF antigen) were elevated in patients with complications in free flap surgery

and thus can serve as a clinical indicator to predict flap outcome.14 Pattani et al (2010)

performed a literature review and identified intraoperative factors that are associated with

free flap failure. Excessive intraoperative fluid administration of >7L, significant medical

comorbidity, nitrate use, bronchodilator treatment, irradiated recipient site, prolonged

operative time > 10 hours, and involvement of greater than one microvascular surgeon was

associated with increased incidence of free flap failure.15 They state that no clinical

evidence exists to support the role of hypotension, vasopressors, colloids, and anticoagulant,

and nitrous gas in flap failure. Suprisingly, old age, smoking, diabetes, and obesity did not

appear to correlate with flap complication and failure in their study. In summary, many

factors can lead to flap failure, and vascular thrombosis is the most common. To ensure

quality of free flaps in our experiments, we administered heparin saline to the flap to prevent

thrombosis and checked for blood flow clinically with microscope and experimentally with

laser doppler flowmetry.

2.53 Rectus Abdominus Skeletal Muscle Flap

The bilateral rectus abdominus muscles provide abdominal flexion and support the

intra-abdominal contents and is commonly used as a muscle flap for breast reconstruction

surgery. The rectus abdominus muscle flap is innervated by the intercostals nerves and is

supplied by the superior epigastric artery and deep inferior epigastric artery branching from

the external iliac arteries.111 (Figure 2A, 2B) In the creation of a muscle free flap, a midline

incision is performed and the superior epigastric artery is ligated. The external iliac artery

Page 45: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

32  

  

proximal to the deep inferior epigastric artery is then transected and reanastomosed and

blood flow is checked clinically with a microscope. (Figure 2B)

Zhang et al (1993) have studied the rectus abdominus muscle flap model in sprague

dawley rats extensively and consider the rectus abdominus muscle model to be the first true

myocutaneous model in the rat.111 Their goal was to design a rectus abdominus muscle flap

and rectus abdominus myocutaneous flap model in the rat for future biological,

pharmacologic and biochemical studies. The anatomy of the rectus abdominus muscle in

rats was studied and reported to be the very similar to humans with a consistent double

blood supply and multiple musculocutaneous perforators.111 In fact, the superior and

inferior epigastric vessels that supply the rectus abdominus muscles make an ideal flow

through system. In experiments in which rectus abdominus muscle flaps were transplanted

to the groin, they noted that the muscle flap survival rate over a period of 5 days was

100%.111 Finally, the tissue mass of the rectus abdominus muscle averages around 3 grams

which is enough for experimental tissue assays to assess ischemia. Based on these

experimental findings in this developmental model we decided to use the rectus abdominus

muscle as our skeletal muscle of interest in studying the effects of vasopressors on skeletal

muscle perfusion.

Page 46: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

33  

  

Image adapted from Microsurgeon.org (Dr. Rudolf F. Buntic, MD)

Figure 2. The Vascular Organization of the Rectus Abdominus Muscle Flap (A) The Deep Inferior Epigastric Artery and the Femoral Artery proximal to the External Iliac Artery (B) Rectus Abdominus Muscle Flap.

Page 47: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

34  

  

2.6 Vasopressors 2.61 Phenylephrine, a Specific α1 Agonist

Since 1949, Phenylephrine, a common vasopressor has been used in medical practice

as an antihypotensive treatment. Phenylephrine is a highly specific αl agonist that will

trigger the α1 receptor mediated cascade ultimately leading to vasoconstriction, increased

systemic vascular resistance and increased mean arterial pressure (MAP).21, 56, 112 Clinicians

generally use MAP as an indicator of adequate cerebral perfusion (CPP = MAP - ICP) and

perfusion to other peripheral organs in the operating room. Thiele et al (2011) have

emphasized that an increase in MAP does not necessary equal to an increase in organ

perfusion and that it is tissue oxygen delivery that is reflective of organ specific perfusion.21,

112 Therefore in our experiments we will be assessing MAP, microvascular blood flow, and

quantitative tissue PO2 reflective of oxygen delivery to evaluate the effects of phenylephrine

on skeletal muscle perfusion. As recently reviewed, the potential cost of this treatment is a

decrease in oxygen perfusion to peripheral tissues (muscle, gut, and kidney) despite the

effective treatment of an intermediate outcome (MAP).21 The explanation for this vascular

response to phenylephrine may be explained by differences in α1 receptor density in

different vascular beds. For example, in the brain there are fewer α1 receptors, relative to

other tissues such as skeletal muscle.21, 113 This means that stimulation by α1 agonist will

severely vasoconstrict skeletal muscle vasculature and have a lesser effect on the cerebral

vessels. Indeed, Duebener et al (2004) have demonstrated that PE redirects blood flow from

the bowel and skeletal muscle to the brain and the liver in pigs.114 Our lab has also

previously shown that PE infusion leads to increased cerebral blood flow and tissue PO2 in

rats. 115 The current goal of this research project is to evaluate the effects of PE on skeletal

Page 48: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

35  

  

muscle perfusion in rats, which has demonstrated impaired skeletal muscle perfusion.

Therefore phenylephrine infusion may lead to an increase in MAP predominantly due to

peripheral muscle vasoconstriction and increase cerebral blood flow and tissue PO2 due to

the relative lack of α1 receptors in cerebral vasculature.115

2.62 α1 Agonist-Receptor Mediated Intrinsic Signaling Pathway

Adrenergic agonist-receptor interactions play an important role in the regulation of

vascular tone and perfusion. The α1 adrenergic receptor is a G protein coupled receptor

(GPCR) that is highly expressed in the microvasculature of skeletal muscle tissues. 21, 116-119

Upon binding of α1 agonist such as phenylephrine the receptor will become activated

coupling to G protein (GqII).116, 117 Phospholipase C will cleave Phosphatidylinositol 4,5

bisphosphate (PIP2) into Inositol (1,4,5) triphosphate (IP3) and diacylglycerol (DAG).118

IP3 will travel throughout the cytoplasm until it binds with IP3R on the sacroplasmic

reticulum of the smooth muscle cell to induce Ca+2 release into the cytoplasm.118, 119

Calcium can also be resequestered back into the sarcoplasmic reticulum via the

sarco/endoplasmic reticulum Ca+2 ATPase (SERCA). Extracellular Ca+2 also play a

significant role as the sarcoplasmic reticulum of the smooth muscle cells are less developed.

The intracellular calcium will interact with smooth muscle calmodulin which in turn

activates the myosin light chain kinase (MLCK).116, 117 MLCK phosphorylates myosin light

chain resulting in smooth muscle contraction and vasoconstriction.120 β2 Adrenergic

signaling can antagonize α1 adrenergic signaling through the adenyl cyclase- cAMP-Protein

Kinase A pathway which in turns activates myosin light chain phosphatase (MLCP) leading

to the dephosphorylation of the MLC20-P into MLC20 and thus results in vasodilation. In

the absence of α1 agonists adequate muscle perfusion is expected assuming normal

Page 49: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

36  

  

physiological conditions since there is no α1 induced vasoconstriction of the muscle

resistance arteries. However, once phenylephrine is administered, there may be impaired

blood flow and perfusion due to vasoconstriction of the resistance arteries. In fact, perfusion

may be severely impaired if the muscle tissue was denervated and reanastomosed as

performed during free tissue transfer surgery with muscle flaps. This thesis will examine

the effects of PE on surgically operated skeletal muscle and muscle flaps.

2.63 Clinical Debate: Vasopressor Use during Reconstructive Surgery

Skeletal muscle perfusion may be at risk during reconstructive surgery as muscle

flap complications such as necrosis and flap failure may occur. Phenylephrine is an α1

agonist that has been used during general surgery to increase mean arterial pressure in

hypotensive patients for the last 60 years. The use of vasopressors during reconstructive

surgery to treat hypotension has been recently debated. Although recent retrospective and

prospective clinical studies 22-25 have found no correlation between the use of vasopressors

and flap complication and flap failure during reconstructive surgery, microsurgeons strongly

warn against the use of vasopressors as peripheral vasoconstriction at the level of the

resistance arteries can impair muscle flap perfusion and lead to vasospasm, thrombosis and

flap failure. Animal studies yield controversial results as one study suggests that

phenylephrine may have no effect on flap perfusion,121 while other studies suggest that

phenylephrine may be detrimental. 26, 27 The role of intraoperative and postoperative use of

vasoactive agents in free flap surgery is still controversial and a source of heated debate in

microsurgical circles. Concerns about administration of vasoactive agents during

microsurgery are related to the effects the drugs have on systemic vascular resistance and

blood flow. It has been proposed that drugs which decrease vascular resistance may have

Page 50: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

37  

  

more of an effect in normal tissue (adjacent to the flap) than in the flap itself and as such

may result in a “steal effect” in the flap reducing arterial flow into the flap.122 This is

because the tissue and blood supply at recipient site is still responsive to the properties of

the drug because of an intact sympathetic tone. Alternatively, drugs which increase vascular

resistance may cause vascular spasm at the anastamotic site decreasing blood flow for the

same reasons. 123, 124

2.64 Clinical Studies

Clinical studies looking at the role of vasoactive agents is controversial. Monroe et

al.25 (2010) used a case series with chart review of free tissue transfers to document the

frequency of vasoactive agent use in free tissue transfer surgery and compare the incidence

of flap complications and flap survival in patients who did or did not receive intraoperative

vasoactive agents. In this retrospective study, the patients undergoing free flap surgery were

predominantly male (68%) had an average age of 62 years and were having a flap done for

head and neck cancer with the most common flap used being a radial forearm flap. Of the

241 flaps, data was available for 169 (70%). Overall flap survival was reported to be

96.5%. Overall flap complication rate was reported to be 29%. A total of 139 patients

(83%) received a vasoactive agent intraoperatively. The most common used agent was

phenylephrine (33%). In this group there were 4 flap failures (2.9%) and 40 (29%)

complications. In the 30 patients who did not receive intraoperative vasoactive agents, there

were 2 (6.7%) flap failures and 9 (30%) complications. For all the 6 failures, pedicle

problems (arterial or venous) were the underlying pathology.

In reviewing the data, there was a significant age difference between the vasoactive

agent group and the nonvasoactive agent group, but the American Society of

Page 51: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

38  

  

Anesthesiologist scores (ASA) were similar indicating similar surgical risks and

comordibities. There is no comment or data on the timing of drug administration, dose or

clinical indications for use. The authors do comment that the timing of vasoactive agent use

was likely temporally far removed from actual microsurgical anastamosis and would have

had little contribution to flap pedicle vasospasm.

Interestingly, in the vasoactive agent group, there was a significant difference in the

dose of phenylephrine between failed and successful flaps with the failed flaps receiving

almost 4 times the amount of the drug. The authors attribute this to one patient who had a

continual infusion throughout the case and subsequently had a flap failure. This points out

two critical aspects which could not be addressed in this retrospective trial: timing of

administration of vasoactive agent during flap harvest or microsurgery and duration of

exposure/dose of phenylephrine received. These factors may be as critical as the drug itself.

Finally there are no comments as to the etiology of the flap type that failed. The

composition and inherent blood supply of the flaps that failed may again point to the

differences these drugs can have depending on the vascular environment. Thirty-eight

percent of the flaps used were radial forearm flaps which are known to be quite robust. In

fact there has been a study that shows that systemic phenylephrine has no vasoconstrictive

effect on radial arteries harvested for coronary bypass surgery 125, rather the increase in

MAP secondary to phenylephrine administration improved blood flow through the artery.

Perhaps a similar phenomenon occurs in radial forearm flaps.

Monroe et al (2011) also conducted a prospective observational study with 169

consecutive patients undergoing head and neck reconstructive surgery that addressed the

timing of administration of vasopressors. Their conclusions confirm the results of the

previous retrospective study where there was no correlation between vasopressor use and

Page 52: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

39  

  

flap failure or complications.24, 25 The proportion of patients experiencing early flap failure

was 4.4% (4/90) in the intraoperative vasopressor group versus 2.5% (2/79) in the

nonvasopressor group.24

Chen et al. (2010) also performed a retrospective study reviewing 187 consecutive

patients undergoing 258 free flaps for breast reconstruction.22 A total of 102 patients (140

flaps) received intraoperative ephedrine or phenylephrine. They found no differences in

rates of reoperation, complete flap loss, partial flap loss, or fat necrosis. Further, there were

no associations between dosage, timing and complications related to vasoactive agent use.

Despite this, this group of authors did not recommend the routine use of vasoactive agents

for microsurgery, but did endorse careful communication within the operating room

environment in situations where vasoactive agents are necessary.

Finally, Harris et al (2012) also retrospectively reviewed a similar population.23 In

their study of 485 patients, there were 496 free tissue transfers for head and neck

reconstruction with a total major complication rate of 5.2%. This included 11 (2.2%)

complete failures. This did not include a partial failure rate of 1.4% or a take back rate of

1.6 %. Of the 485 patients in the study, 320 (66%) received intraoperative vasoactive agents

with over 97% receiving phenylephrine. Like Monroe et al., they found no relationship

between administration of phenylephrine and flap failure. The most common free flap in this

series was also a radial forearm flap. They found 8 flap failures in the vasoactive agent

group and 3 failures in the nonvasoactive agent group. They did look at timing of drug

administration and found no significant relationship between the time of administration and

adverse flap outcome. Dose of phenylephrine given also did not correlate with flap failure.

They did however exclude patients who received multiple doses of vasoactive agents in this

analysis.

Page 53: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

40  

  

Despite the retrospective clinical data, which would suggest that drugs like

phenylephrine do not statistically affect free flap failure, few microsurgeons endorse the use

of vasoactive agents during free flap surgery.

2.65 Animal Studies

The effect of vasopressors on free flap perfusion has been studied in animal models,

however, like the clinical studies the results are controversial. These animal studies focused

on the relationship between systemic or locally administered vasoactive agents, MAP and

flap perfusion. Corderio et al. (1997) used a musculocutaneous porcine flap model that

allowed simultaneous monitoring of systemic as well as flap hemodynamic parameters.26

They used a vertically raised rectus abdominus muscle flap to look at the relationship

between systemic and flap effects of 3 common vasoactive drugs. They used a flow probe

around the artery to measure blood flow into the flap and cannulated the pulmonary artery

and aorta to measure cardiac output and aortic root pressures. The model was then used to

measure the effects of varying doses of dopamine (D1, β1 and α1 agonist; dosage

dependant), dobutamine (β1, β2 agonist; preferentially β1) and phenylephrine (α1 agonist)

on systemic and flap measures of blood flow. They found cardiac output was increased with

low and high dose dopamine and dobutamine but decreased with increasing doses of

phenylephrine. Flap flow increased only with dobutamine, remained unchanged with

dopamine and decreased with high dose phenylephrine. Relative to cardiac output both

dopamine and dobutamine also decreased flap flow. They concluded that phenylephrine

clearly affects flap flow adversely and should be avoided while dopamine and dobutamine

should be used with caution. They proposed that despite the flap being denervated, intrinsic

factors that regulated vascular tone could still be in play. They proposed it was this delicate

Page 54: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

41  

  

balance of intrinsic and extrinsic factors that ultimately determined the actual blood flow

and perfusion of the flap.

This paper was the first to use a large animal model to measure both systemic and

flap hemodynamic parameters. Criticism of the Cordeiro paper focused on the flap design

as it probably best mimicked a pedicled flap since the superior epigastric artery was left

intact. In this group’s defense they do not call it a free flap, but state that by removing the

adventitia of the vessels, they created a denervation model which mimics the situation in

free flap surgery when the pedicle is cut prior to transport to the recipient bed. A second

criticism is that the doses of phenylephrine used in the study were supratherapeutic with

respect to clinical correlation.23

Banic et al. (1999) was interested in the role of sodium nitroprusside (SNP; an

arterial vasodilator) and phenylephrine on blood flow in a free musculotaneous flap.121

Using a porcine model, latissimus dorsi flaps were raised and used to cover a lower

extremity defect using microsurgical anastamosis of the flap. This represents a true free flap

model. Total blood flow in the flap was measured after re-anatamosis using ultrasound

flowmetry and microcirculatory blood flow was measured using laser doppler flowmetry.

Systemic administration of SNP resulted in a 30% decrease in MAP without changing

cardiac output. Total flow in the flap decreased by 40% with microsurgical flow decreasing

by 23% in the skin and 30% in the muscle. SNP infused directly into the flap via a feeding

artery resulted in an increase in total flap flow by 20%. Systemic administration of

phenylephrine caused a 30% increase in MAP, without any changes in heart rate, cardiac

output or flap blood flow. Local administration of phenylephrine via a feeding artery

directly into the flap caused a decrease in total flap flow by 30% without any effect on skin

or muscle blood flow. The authors concluded that systemic phenylephrine in a dose which

Page 55: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

42  

  

increased systemic vascular resistance, had no adverse effects on blood flow in the flap

while SNP, in a dose which resulted in decreased vascular resistance and arterial pressure,

caused a severe reduction in free flap blood flow. Banic et al. concluded that changes in

total blood flow and vascular resistance in the flap by SNP suggested that there was a

pharmacologically reversible vascular tone in the flap vessels despite total sympathectomy.

The nature of this tone (reperfusion injury, circulating catecholamines or other vasoactive

substance) was unknown. Failure of phenylephrine to provide vasoconstriction of the flap

was attributed to its pure α1 agonist properties and its effect on predominantly larger

arterioles (100 um). They concluded that phenylephrine may be safe to use in microsurgery,

but cautioned that their results applied only to phenylephrine and not broadly to other

vasoconstrictors. As well they cautioned that all experiments were done in a setting of

normovolemia and situations of hypovolemia may have different results.

In an attempt to try to reconcile these differences, Massey and Gupta (2007) also

used a porcine vertical rectus flap model to measure pedicle artery blood flow and

microvascular perfusion during systemically administered intravenous phenylephrine or

epinephrine in a dose dependant fashion.27 They found that phenylephrine consistently

decreased pedicle artery blood flow and microvascular perfusion of the flap while

epinephrine increased both flows. The increases seen in cardiac output with administration

of epinephrine also correlated well with increased pedicle blood flow and microvascular

perfusion. They concluded that epinephrine may be the preferential agent for treating

intraoperative hypotension during flap surgery.

The premise that vasoactive drugs have little effect on flap perfusion comes from the

concept that the entire body has flow that is dependent on systemic perfusion pressure. If

you improve systemic perfusion pressure then by extension this would improve flap

Page 56: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

43  

  

perfusion. The opposite school of thought is that vasoactive agents like phenylephrine cause

vasoconstriction of the isolated flap pedicle artery and microvasculature due to the isolation

of the detached microcirculation from peripheral support. While Banic et al. and Massey

and Gupta’s work seem to support the first premise, Codeiro et al.’s work would support the

latter. From these three studies, the role of phenylephrine in flap surgery was still not clear.

2.7 The Effect of Temperature on Tissue Metabolism and Perfusion

Temperature is a factor that can affect skeletal muscle perfusion during surgery.

Hyperthermia is generally associated with peripheral vasodilation in attempt to promote heat

loss. In fact, clinicians will place patients who have undergone free muscle flap transfer in

warm rooms after surgery to promote vasodilation for the benefit of flap perfusion.126 In

contrast, hypothermia, although effective at preserving organs, extremities, and free flaps by

reducing metabolic rate, can be detrimental to skeletal muscle and flap tissue in the intact

living body. Cooling is associated with peripheral vasoconstriction, increased vascular tone,

increased blood viscosity and platelet aggregation which can all contribute to jeopardized

muscle and muscle flap perfusion during surgery. 127-131 Hussl et al (1986) examined the

effect of temperature on blood flow and metabolism in neurovascular island skin flaps and

demonstrated that the blood flow and metabolism declined with decreasing temperature.130

After cooling the flap from 35oC to 20oC, the blood flow was 65% of the baseline while the

oxygen consumption was only 25% of baseline . Blood flow was observed to cease when

cooled to 14oC, which the authors attributed to increased blood viscosity. Faber et al (1988)

observed an additional increase in constriction of the large arterioles in rat cremaster skeletal

muscle when the temperature was cooled from 34oC to 26oC in a norepinephrine bath.128

Kinnunen et al (2002) have demonstrated that hypothermia significantly decreases blood

Page 57: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

44  

  

flow and postocclusive reactive hyperaemia in the rat epigastric pedicled groin flap which

may increase the risk of ischemic flap complications unless rewarming is performed.127

Binzoni et al (2012) have continuously monitored blood flow on small muscle masses at

different temperatures with laser doppler flowmetry.132 They warmed human skeletal

muscle from 15oC – 40oC with a water bath and found that increased temperature resulted in

increased blood flow speed. Conversely, decreasing muscle temperature would result in

reduced muscle blood flow to the skeletal muscle. Therefore increasing temperature will

lead to increased vasodilation and increased blood flow, whereas cooling will result in

peripheral vasoconstriction and decreased blood flow and metabolism in the skeletal muscle

and muscle flaps. Temperature has been used as an assessment of flap perfusion during

surgery, however Kaufman et al (1987) have suggested that it is an unreliable indicator.133

Similarly, a pink healthy looking flap may not be reflective of an accurate perfusion status

of the flap. Examining indicators of flap perfusion by assessing quantitative muscle tissue

PO2 measurements will be more reliable than temperature and the colour of the flap. It is

generally recommended that warming blankets should be used to maintain patient body

temperature preoperatively, intraoperatively, and postoperatively for two days to prevent

cooling during surgery. In our rat experiments, we have used a heating pad and heating

lamps in an attempt to keep the animal warm.

Page 58: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

45  

  

CHAPTER 3 METHODS

3.0 Experimental Design:

This thesis is comprised of both clinical and experimental animal studies in an attempt to

provide a translational approach to understanding mechanisms which impair muscle

perfusion during surgery.

Part 1 Clinical Human Study (A) A prospective clinical study was designed to investigate the potential causes of increased

serum lactate characteristic of inadequate perfusion in patients during neurosurgery.

This prospective clinical study involved perioperative arterial blood gas and urine

sample analysis and postoperative data collection in the intensive care unit. The study

was undertaken to determine the significance of the frequently observed increase in

serum lactate which occurred in patients undergoing craniotomy for brain tumour

resection. The initial hypothesis, that serum lactate was dependent on length of surgery

was revised with the early observation that the early rise in serum lactate has been

correlated to the patient body mass index (BMI) suggesting that patient mass induced

muscle compression during surgery may be responsible for impaired skeletal muscle

perfusion. Evidence of associated muscle break down may be verified by muscle

damage markers (creatine kinase, and myoglobinuria).

Part 2 Experimental Rat Study

(B) An experimental rat model was developed to evaluate skeletal muscle and muscle flap

perfusion during free tissue transfer surgery and the effects of vasopressor mediated

vasoconstriction (phenylephrine) on flap perfusion. These experiments were performed

in a number of progressive protocols in which a number of parameters were assessed in

Page 59: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

46  

  

response to a stepwise increase in phenylephrine infusion. Important outcomes included;

femoral vs. carotid artery blood flow; microvascular blood flow and tissue PO2 in

skeletal muscle and muscle free flaps.

3.1 Clinical Study Methods: 3.11 Study Design

Institutional research ethics board (REB) approval was obtained for a single centre

observational study to assess ASA 1-4 adult patients scheduled for brain tumour resection

craniotomy.

3.12 Study Population

The study population includes 18 of 20 patients that were consented in this pilot study. 3.13 Study Protocol:

Inclusion criteria for the study included men and women with an ASA physical

status 1-4 and age greater than 18, undergoing prolonged surgery for complex brain tumour

resection with an estimated surgical time ≥ 5 hrs.

Exclusion criteria included: the presence of clinical co-morbidities that might cause

an increased level of lactate (sepsis, shock, renal or hepatic dysfunction, infusion of

catecholamine, antiretroviral drugs, limb or mesenteric ischemia, severe COPD, severe

anemia), history of myopathy or muscular dystrophy, presence of acquired causes of

methemoglobinemia and a preoperative hemogloblin less than 100g/L

3.14 Data Collection:

Pre-operatively patient gender, age, past medical history (hypertension, asthma,

COPD, diabetes, peripheral vascular disease, myopathy, renal or hepatic disease),

medications and BMI were recorded. During the surgery, no changes to standard care were

Page 60: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

47  

  

made. Intraoperative mean arterial blood pressure (MAP), body temperature, blood loss,

intravenous fluid intake, urine output, and vasopressor use were recorded. Anesthesia was

standardized with the use of desflurane and remifentanil infusion and performed by a single

anesthesiologist (Dr. Marco Garavaglia). All patients received 0.9% NaCl intravenously.

Blood samples were obtained for lactate, arterial blood gases, hemoglobin concentration,

creatine kinase (CK) and urine myoglobin collected at baseline, and at 3- 4 hour intervals

during the surgery and until 48h postoperatively. ABGs and serum lactate was assessed

every 3 hours during surgery, while CK and myoglobin was assessed every 4 hours during

surgery from baseline. Patient positioning, operative time, tumour type, and world health

organization tumour grade were recorded.

3.15 Statistical Analysis

Data (mean +/- SD) were assessed by one way repeated measures ANOVA and

linear regression. A p value <0.05 was taken to be significant.

3.2 Rat Experimental Methods 3.21 Animals

All animal procedures were approved by the Animal Care Committee at St.

Michael’s Hospital Li Ka Shing Knowledge Institute (Toronto, Ontario, Canada) and

followed the standards of the Canadian Council on Animal Care. Male sprague dawley rats

(500g) were ordered from Charles River Laboratories (Montreal, Quebec, Canada) and

housed under standard conditions with food and water.

Page 61: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

48  

  

3.22 Surgical Procedure

All rats were anesthetized with isoflurane (5.0%, Abbott Laboratories, St. Laurent,

Quebec, Canada) in 50% oxygen for 10 minutes before tracheostomy was performed and the

rat was attached to a ventilator (Kent Scientific). Isoflurane was reduced to 2.0% after

completion of tracheostomy and the rat was ventilated to achieve normcapnia and normoxia.

The tail artery was cannulated to measure mean arterial pressure through a pressure

transducer (Memscap SP884) connected to Power Labs (Power Lab 16/30; AD Instruments,

Colorado Springs, CO, USA) and to assess arterial blood gases and hemoglobin

concentration through cooximetry (Radiometer ALB500 and OSM3; London Scientific,

London, Ontario, Canada) before and after the experiment. Similarly, the rat tail vein was

cannulated for intravenous drug infusion (phenylephrine). Four EKG electrodes were

subcutaneously inserted into the limbs of the rat to record heart rate. Rectal temperature was

recorded by rectal temperature probe (Physitemp) and an associated heating pad kept the

animal warm. Heating lamps were also used when necessary to maintain the temperature of

the rat around 36-37oC. The physiological data was recorded continuously during

experimentation and acquired digitally from Powerlabs.

3.23 Free Flap Reanastomosis Surgery

A midline incision was made between the bilateral rectus abdominus muscles of the

rat after elevation of the skin and subcutaneous tissue. Another incision was made just

lateral to the lateral wall of the left rectus sheath then the muscle origin was cut and the deep

superior epigastric vessel was ligated. The muscle insertion was then partially cut and small

fascia was left to hold the muscle in place. The abdominal viscera were reflected away from

the common iliac artery and the external iliac artery with the deep inferior epigastric artery

Page 62: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

49  

  

(DIE) were identified under a microscope. A double arterial clamp was applied to the

external iliac artery proximal to the DIE artery origin then transection of the vessel between

the clamp arms was performed followed by re-anastomosis using 9/0 nylon. The ischemia

time was recorded [average ischemia time was 27.7 ± 6.1 minutes (n = 11).] and the flow

was checked clinically by the microscope after completion of the anastomosis.

3.24 Arterial Blood Gas and Co-Oximetry Analysis

Arterial blood gas and co-oximetry were collected in sterile syringes and assessed

before the 10 minute baseline phase of the experiment immediately after successful

completion of the flap reanastomosis surgery and at the end of the experimentation after the

30 minute recovery phase before euthanizing the animal. Variables such as pH, PaCO2,

PaO2, blood oxygen content, and hemoglobin concentration (Hb) were assessed.

3.25 Ultrasound Doppler and Arterial Blood Flow

Transonic ultrasound doppler flowmetry was used to assess arterial blood flow

velocity (ml/min) in the carotid and femoral arteries in the rat. Transonic probes (Transonic

Systems Inc) were clipped around the isolated conduit arteries and blood velocity was

assessed. A piezoelectric crystal located on the wall of the probes transmitted ultrasound

towards the flowing blood along the carotid/femoral artery. Some of the sound was

reflected by moving red blood cells within the blood resulting in a doppler shifted

ultrasound frequency that travelled back to the crystal. The reflected waves had a lower

frequency because the red blood cells are moving away from the transmitter crystal

characteristic of the doppler effect. The blood flow velocity was determined by the

difference in frequency between the transmitted and reflected sound wave. The diameter of

the vessel clipped by the probe allowed for the assessment of volume (ml). Blood flow is

Page 63: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

50  

  

proportional to blood cell velocity (ml/min) when the diameter is constant. Ultrasound

doppler was used in our carotid vs femoral blood flow protocol (Protoco1 1) to assess

conduit artery blood flow.

3.26 Laser Doppler and Microvascular Blood Flow

Laser doppler was used to assess microvascular blood flow determined by red blood

cell velocity in a noninvasive manner. The fiberoptic cable laser doppler flow probe was

carefully positioned over the muscle tissue of interest and held in place with a probe holder.

The laser doppler emits a monochromatic light that enters the muscle and flap tissue. Some

of this emitted light was absorbed and some was reflected. The reflected light was gathered

by the fiberoptic cables to photodetectors and frequency changes in light caused by the

movement of red blood cells were detected. Light being reflected by static structures

retained the same initial frequency, however light reflected by moving red blood cells have a

doppler shifted frequency. This frequency shift was proportional to the velocity of moving

red blood cells. Thus, flow velocity was a measured averaged value of the doppler shift of

light striking many moving blood cells at various angles of incidence over a volume of 1

mm3. This laser doppler output signal represents the flux of red blood cells and is expressed

in perfusion units (PU), which is linearly correlated to microvascular blood flow. Laser

doppler flowmetry was used to assess microvascular blood flow in bilateral rectus

abdominus muscle protocol (Protocol 2) and muscle flap vs contralateral muscle control

protocol (Protocol 4).

3.27 Microsensor G4 Oxyphor and Interstitial PO2 Measurements

Interstitial measurements of muscle tissue PO2 were performed using G4 Oxyphor

and oxygen-dependent quenching of phosphorescence. When the phosphorescent probe

Page 64: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

51  

  

was excited by pulse of light [λ = 635 um], it emitted phosphorescence [λmaxima = 813um]

over a course of tens-to-hundreds of microseconds. The lifetime (τ) of the phosphorescence

decay is inversely proportional to the partial pressure of oxygen (PO2) in the environment

according to the Stern-Volmer relationship. [1/ τ = 1/ τ0 + Kq[PO2]], where τ0 is the

phosphorescence lifetime (PLT) when PO2 is 0, Kq is the quenching constant, and PO2 is

the partial pressure of oxygen. (Figure 3A) PLT was measured to calculate interstitial tissue

PO2 with the Stern-Volmer equation. In this oxygen dependent quenching of

phosphorescence method, a high PLT corresponds to low muscle/flap tissue PO2, whereas a

low PLT corresponds to high muscle/flap tissue PO2. G4 oxyphor was used in direct tissue

PO2 measurements as a part of an insertable microsensor in muscle and flap tissues. The

signals of the probes have been calibrated under physiological pH and temperature and

shown to provide quantitative, selective and absolute measurements of PO2 in vivo. This

novel methodology was used in the bilateral rectus abdominus muscle tissue PO2 (Protocol

3) and muscle flap vs contralateral muscle control PO2 protocols (Protocol 5).

3.28 Calibration of the Effect of Temperature on the Oxygen Quenching Constant

The oxygen quenching constant is dependent on the temperature, and thus it was

necessary to calibrate the Kq value in respect of the recorded muscle and flap temperature.

The oxygen quenching constant (Kq) and the temperature is linearly correlated by the

equation: Kq = 6.25 (Temperature) + 28.75. At 37oC, the Kq is reported to be 260mmHgg-

1s-1 by Wilson and colleagues. However, our muscle experiments recorded cooler

temperatures in the skeletal muscle (33oC) and muscle flaps (30oC). The Kq for the

respective temperatures were calculated from the linear relationship (Figure 3B). At 33oC,

Page 65: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

52  

  

the Kq is 235 mmHg g-1 s-1 and at 30oC the Kq is 216 mmHg g-1 s-1. These Kq values were

used to calculate the tissue PO2 with the Stern Volmer relationship. (Figure 3A)   3.29 Invivo Calibration of T0

T0 is the phosphorescence lifetime recorded when there is no oxygen present. To

determine the T0 value which is used as part of the stern volmer equation to calculate tissue

PO2, we recorded the muscle tissue phosphorescence lifetimes in dead rats after

experimentation (n=4). The averaged T0 value was around 48 usec. We therefore used this

value for T0 in the calculation of experimental PO2 values with the Stern-Volmer

relationship. (Figure 4 A,B)

 

 

 

     

Page 66: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

53  

  

  A   THE STERN VOLMER EQUATION  

1/τ = 1/τ0 + Kq [PO2]  

                     B 

Temperature (oC)

20 22 24 26 28 30 32 34 36 38 40

K q (m

mHg‐1 s‐1)

100

120

140

160

180

200

220

240

260

280

300Kq = 6.25 (Temperature) + 28.75

At 37 degrees Kq = 260 At 33 degrees Kq = 235At 30 degrees Kq = 216

  Figure 3: Stern Volmer Relationship and Calibration of Temperature Effect on

Quenching Constant in G4 Microsensor Oxyphor (A) The Stern-Volmer Relationship Equation for calculating tissue PO2, where τ is the measured phosphorescence lifetime, τ0 is the phosphorescence lifetime in the absence of oxygen (PO2~zero), Kq is the quenching constant, and PO2 is the partial pressure of oxygen. (B) Calibration for the effect of temperature on the quenching constant (Kq) in G4 microsensor oxyphor. Using this in vitro calibration curve, a specific Kq value is chosen based on the tissue temperature during each experiment to correct for any temperature dependent effect on the relationship between tissue PO2 and G4 oxyphor phosphorescence lifetime.

Page 67: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

54  

  

Time (minutes)

0 20 40 60 80

Phosph

orescence Lifetime (usec)

44

46

48

50

Experiment 1Experiment 2Experiment 3Experiment 4

Time (minutes)

0 20 40 60 80 Pho

spho

rescen

ce Life

time (usec)

25

30

35

40

45

50n = 4

Maximum Phosphorescence Lifetime = 47. 60

A

B

 Figure 4: Calibration of To in Euthanized Rats (n = 4). (A) Individual measurements of phosphorescence lifetime in acutely euthanized rats under anesthesia in vivo when PO2 is expected to be zero (τ0) (n = 4). (B) The mean value for τ0 in vivo is near 48. A value of 48 µseconds was used for τ0 in all experiments.

Page 68: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

55  

  

3.3 Initial Developmental Protocol

In the initial development of the experimental model (Protocol 2 only), three

different doses of phenylephrine were utilized [PE4 = 10ug/kg/min, PE5 = 20 ug/kg/min,

PE6 = 30 ug/kg/min] (Figure 5A). In a refined experimental model, two additional lower

doses were included to determine the threshold for blood pressure response in the rat model

and the highest doses were reduced [PE1 = 1.5 ug/kg/min, PE2 = 3.0ug/kg/min, PE3 =

6.0ug/kg/min, PE4 = 12.0ug/kg/min, PE5 = 18.0 ug/kg/min] (Figure 5B). This dose range

approximates clinically relevant concentration of phenylephrine and allows for the

reproduction of increased blood pressure in a dose dependent manner. In both cases,

phenylephrine caused a dose dependent increase in blood pressure (one way repeated

measures ANOVA, p < 0.001, * post hoc Tukeys test corrected p value p < 0.05) All

experimental protocols except for the developmental model (Protocol 2) follow the 5 dose

scheme of PE infusion (PE1-PE5). The initial developmental model showed that the

bilateral rectus abdominus muscles respond in a similar manner to PE validating it’s use for

a muscle flap vs contralateral muscle control model in subsequent protocols. In our

developed protocols, a consistent elevation in MAP (Figure 6) and a relatively stable heart

rate response to PE infusion (Figure 7) were observed throughout the experiments. This

validates the consistency of the finalized experimental model.

 

Page 69: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

56  

  

Baseline PE4 PE5 PE6 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**PE4: 10ug/kg/min

PE5: 20ug/kg/minPE6: 30ug/kg/min

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**PE1: 1.5ug/kg/min

PE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5 18.0ug/kg/min

A B

*

 Figure 5: Measurement of Mean Arterial Blood Pressure after Two Different Infusion Protocols of Phenylephrine. (A) In the initial development of the experimental model, three different doses of Phenylephrine were utilized. (B) In a refined experimental model, two additional lower doses were included to determine the threshold for blood pressure response. This dose range approximates clinically relevant concentration of phenylephrine in that it causes a dose dependent increase in mean arterial pressure (MAP). In both cases, higher levels of phenylephrine infusion (10 to 30 µg/kg/min) were required to increased MAP in a reproducable manner. (1 way repeated measures ANOVA, p < 0.001; * corrected p < 0.05 post hoc Tukeys test).

Page 70: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

57  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

* *PE1: 1.5ug/kg/minPE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5 18.0ug/kg/min

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

* *

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**

BA

C D

  Figure 6: A Consistent Mean Arterial Blood Pressure Response to Phenylephrine was Observed in Four Experimental Different Protocols: (A) Carotid vs Femoral blood flow protocol (n = 7), (B) Flap vs Muscle Laser Doppler Protocol (n =6), (C) Bilateral muscle PO2 protocol (n = 6), and (D) Flap vs Muscle PO2 protocol (n = 9). These data demonstrate that the phenylephrine infusion protocol caused a consistent elevation in blood pressure in response to the dose of phenylephrine administered. In all cases the MAP returned towards baseline 30 minutes after discontinuing the PE infusion. (ANOVA p<0.001 for all) [ANOVA = 1 way repeated measures analysis of variance, and *: p adjusted p <0.05, post hoc Tukey test,]

Page 71: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

58  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Hea

rt R

ate

(bpm

)

0

100

200

300

400

*

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Hea

rt R

ate

(bpm

)

0

100

200

300

400

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Hea

rt R

ate

(bpm

)

0

100

200

300

400

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Hea

rt R

ate

(bpm

)

0

100

200

300

400

A B

C D

  Figure 7: Heart Rate Response to Phenylephrine in Four Different Experimental Protocols: (A) Carotid vs femoral blood flow protocol (n = 7), (B) Flap vs muscle laser doppler protocol (n = 6), (C) Bilateral muscle PO2 protocol ( n = 6), and (D) Flap vs muscle PO2 protocol (n = 8). Heart rate was generally stable throughout the experimental protocols. There was a slight increase in heart rate at the highest dosage of PE during drug infusion at PE5 observed in the femoral and carotid protocol (ANOVA, p<0.001). [A: ANOVA = 1 way repeated measures analysis of variance, and *: adjusted p <0.05, post hoc Tukey test]

Page 72: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

59  

  

3.4 Experimental Protocols 3.41 Protocol 1: Femoral vs Carotid Blood Flow Ultrasound Doppler Flowmetry

Sprague Dawley rats (600-700g, n=7, Charles River) were used in this protocol and

followed the initial surgical procedure described in section 3.22. The femoral and carotid

arteries were then isolated and exposed in the rat. Transonic ultrasound flowmetry recorded

the flow in the femoral and carotid artery through transonic flowprobes (Transonic Systems

Inc (0.7PSB298) and (1PAB3696) respectively, NY, USA) after surgical isolation of the

respective vessels. (3.25) Phenylephrine (PE) (10mg/ml) [SANDOZ] was diluted to 50ug/ml

and infused by a Harvard Apparatus PhD2000 infusion/withdrawal pump. A stable baseline

was recorded for 10 minutes before continuous PE infusion began at increasing doses in 5

minute intervals: PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0 ug/kg/min, PE4 =

12.0 ug/kg/min, PE5 = 18.0 ug/kg/min. A recovery period of 30 minutes was allowed

before the final blood gas and euthanasia of the animal by T61 heart injection under

isoflurane anesthesia.

3.42 Protocol 2: Bilateral Rectus Abdominus Muscle Laser Doppler Microvascular Blood Flow (Initial Developmental Model)

Sprague Dawley rats (500-600g, n=10, Charles River) were used in this protocol and

followed the initial surgical procedures described in section 3.22. The skin covering the

bilateral rectus abdominus muscles was surgically removed to expose the bilateral rectus

abdominus muscles. Two Oxyflo laser doppler probes (SNPR90269, Oxford Optronix Ltd,

Oxford, UK) were positioned over each of the two bilateral rectus abdominus muscles to

record microvascular blood flow characterized by red blood cell velocity. Phenylephrine

(PE) (10mg/ml) [SANDOZ] was diluted to 50ug/ml and was intravenously infused into the

Page 73: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

60  

  

rat by a Harvard Apparatus PhD2000 infusion/withdrawal pump. A stable baseline was

recorded for 10 minutes before continuous PE infusion began at an infusion rate of 0.10,

0.20, and 0.30 ml/min at 10 minute intervals: PE1 = 10ug/kg/min, PE2 = 20 ug/kg/min, PE3

= 30 ug/kg/min. A recovery period of 30 minutes was recorded before a final blood gas

was sampled and the animal was euthanized by the injection of T61 into the heart under

isoflurane anesthesia.

3.43 Protocol 3: Bilateral Rectus Abdominus Muscle G4 Oxyphor PO2

Sprague Dawley rats (600-700g, n=6, Charles River) were used in this protocol and

followed the initial surgical procedure described in 3.22. The skin and subcutaneous tissue

overlaying the rectus abdominus muscles were surgically removed to expose the bilateral

muscles. In quantitative oxygen assessment experiments, PMOD1000 microsensor oximeter

probes were inserted into the bilateral rectus abdominus muscle. The PMOD1000 G4

oximeter recorded quantitative oxygen levels within the muscle tissues throughout

experimentation (section 3.27). Phenylephrine (PE) (10mg/ml) [SANDOZ] was diluted to

50ug/ml and infused by a Harvard Apparatus PhD2000 infusion/withdrawal pump. A stable

baseline was recorded for 10 minutes before continuous PE infusion at the following doses

at 5 minute intervals: PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0ug/kg/min, PE4

= 12.0ug/kg/min, PE5 = 18.0ug/kg/min. A recovery period of 30 minutes was allowed

before the final blood gas and euthanasia of the animal by T61 heart injection under

isoflurane anesthesia.

3.44 Protocol 4: Rectus Abdominus Muscle Flap vs Contralateral Control Laser Doppler Microvascular Blood Flow

Sprague Dawley rats (800-900g, n=6, Charles River) were used in this protocol and

followed the initial surgical procedure described in section 3.22. Free flap surgery was

Page 74: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

61  

  

performed by a plastic surgeon (Dr. Sami Alissa) described in detail in section 3.23. Laser

doppler flowmetry (section 3.26) was used to record microvascular blood flow in the flap

and the contralateral muscle. Phenylephrine (PE) (10mg/ml) [SANDOZ] was diluted to

50ug/ml and infused by a Harvard Apparatus PhD2000 infusion/withdrawal pump. A stable

baseline was recorded for 10 minutes before continuous PE infusion at the following doses

at 5 minute intervals: PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0ug/kg/min, PE4

= 12.0ug/kg/min, PE5 = 18.0ug/kg/min. A recovery period of 30 minutes was allowed

before the final blood gas and euthanasia of the animal by T61 heart injection under

isoflurane anesthesia.

3.45 Protocol 5: Rectus Abdominus Muscle Flap vs Contralateral Control G4 Oxyphor PO2

Sprague Dawley rats (800-900g, n=9, Charles River) were used in this protocol and

followed the initial surgical procedure described in section 3.22. Free flap surgery was

performed by a plastic surgeon (Dr. Sami Alissa) described in detail in section 3.23. In

quantitative oxygen assessment experiments, PMOD1000 probes were inserted into rectus

abdominus muscle and muscle flap. The PMOD1000 oximeter recorded quantitative oxygen

levels within the muscle and flap tissue throughout experimentation (section 3.27).

Phenylephrine (PE) (10mg/ml) [SANDOZ] was diluted to 50ug/ml and infused by a

Harvard Apparatus PhD2000 infusion/withdrawal pump. A stable baseline was recorded for

10 minutes before continuous PE infusion at the following doses at 5 minute intervals: PE1

= 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.00ug/kg/min, PE4 = 12.0ug/kg/min, PE5 =

18.0ug/kg/min. A recovery period of 30 minutes was allowed before the final blood gas

and euthanasia of the animal by T61 heart injection under isoflurane anesthesia.

Page 75: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

62  

  

3.46 Protocol 6: Rectus Abdominus Muscle and Flap Temperature Analysis

Sprague Dawley rats (700-800g, Charles River) were used in this protocol and

followed the initial surgical procedure described in section 3.22. The skin and subcutaneous

tissues overlaying the rectus abdominus muscles was removed to expose the bilateral

muscles. In the bilateral muscle temperature experiments (n = 6), two temperature probes

were inserted into the left and right rectus abdominus muscles to assess bilateral muscle

temperature. In the muscle versus muscle flap temperature experiments (n = 5), one

temperature probe was inserted into the muscle flap, and the other temperature probe was

inserted into the contralateral muscle to record muscle and flap temperature from the start of

baseline till the end of the experiment. Rectal temperature was recorded via rectal

temperature probe (Physitemp). After successful completion of the free flap reanastomsis

surgery described in section 3.23, an arterial blood gas was taken and assessed (Radiometer

ALB500 and OSM3; London Scientific, London, Ontario, Canada). A stable baseline of 10

minutes was recorded (MAP and Temperature only), followed by the drug infusion phase in

which phenylephrine was continuously infused at increasing elevated doses in 5 minute

intervals (PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0ug/kg/min, PE4 =

12.0ug/kg/min, PE5 = 18.0ug/kg/min.) for 25 minutes followed by a 30 minute recovery

period. At the end of the recovery period a final arterial blood gas was assessed and the rat

was euthanized with T61 injection into the heart under isoflurane anesthesia.

3.47 Summarized Experimental Timeline

All protocols followed the same identical timeline and drug infusion protocols with

the exception of the initial developmental model (Protocol 2). After surgery was performed

(1-2 hours), and arterial blood gas was taken before the start of the baseline. Physiological

Page 76: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

63  

  

data including heart rate, mean arterial pressure, rectal temperature, and muscle blood flow

and PO2 were recorded continuously throughout the experiment which includes the start of

the 10 minute baseline, Phenylephrine infusion at 5 increasing doses at 5 minute intervals

(PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0ug/kg/min, PE4 = 12.0ug/kg/min, PE5

= 18.0ug/kg/min.), and the 30 minute recovery phase. An arterial blood gas was assessed at

the end of the experiment and muscle and flap tissue samples were collected for future

analysis of HIF-1a with western blot. (Figure 8)

Figure 8 Experimental Timeline of Phenylephrine Infusion Experiments. After surgery was performed (1-2 hours), and arterial blood gas was taken before the start of the baseline. Physiological data including heart rate, mean arterial pressure, rectal temperature, and muscle blood flow and PO2 were recorded continuously throughout the experiment which includes the start of the 10 minute baseline, phenylephrine infusion at 5 increasing doses at 5 minute intervals, and the 30 minute recovery phase. An arterial blood gas was assessed at the end of the experiment and muscle and flap tissue samples were collected.

Page 77: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

64  

  

3.5 Statistical Analysis

Sample size calculations are performed for each experimental protocol assuming a

power of 0.8 and an α of 0.05. Data was analyzed using Sigma Plot version 11.0 (Systat

Software Inc, San Jose, CA, USA). Baseline and post PE values in blood gas and

electrolyte tables were assessed by the T test. All physiological data were assessed to be

normally distributed utilizing tests of homogeneity of variance as assessed by Shapiro-Wilk

and Levene tests. Physiological data (mean arterial pressure, heart rate, and rectal

temperature) were assessed parametrically with one way repeated measures analysis of

variance (ANOVA). Bilateral blood flow and temperature data were assessed

parametrically by a two way repeated measures ANOVA performed to assess treatment,

group, and interaction effects. Tukey tests were used to compare the means when an

adequate F ratio was achieved. All data are presented as mean ± SD and significance was

assigned at p<0.05. P values are reported for ANOVA with post hoc values presented as

adjusted p values.

Page 78: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

65  

  

CHAPTER 4 RESULTS

4.0 Clinical Study: Assessing Skeletal Muscle Perfusion during Craniotomy for Resection of Brain Tumours 4.01 Patient Blood Pressure and Body Temperature during Surgery.

Eighteen consecutive patients were consented for surgery (age range 19-74 years

old, and BMI range 18.5-34.4 kg/m2). The average duration of surgery was 8.45 ± 2.84

hours. Craniotomy for brain tumor resection was performed on all patients (n = 18) without

intraoperative complication. Average patient systolic and diastolic blood pressure was

stable throughout the operation, systolic and diastolic pressure was maintained around

120 mmHg and 70 mmHg, respectively throughout the surgical procedure (Figure 9A).

Average patient body temperature ranged from 35 – 36 degrees and gradually increased

overtime (Figure 9B). Arterial blood pressure was relatively stable over time while

temperature increased with time (P<0.001). Blood gas and co-oximetry data are presented in

Table 2 (mean ± SD). Estimated blood loss was 610 ± 504 ml and total urine output was

2590 ± 705 ml intraoperatively. None of the patients demonstrated intraoperative

hypotension.

4.02 Elevated Serum Lactate during Surgery

Serum lactate was observed to increase in all eighteen patients. (Figure 10A) Serum

lactate increased within the first 3 hours of the start of the surgery (2.21 ± 1.22 mmol/L),

and peaked near 9 hours into the surgery (3.73±1.60 mmol/L) (for both, p<0.05 relative to

baseline lactate (1.01±0.47mmol/L)) (Figure 11A). The elevated serum lactate declined after

the surgery while the patients were in the intensive care unit.

Page 79: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

66  

  

4.03 Elevated Creatine Kinase and Myoglobinuria in Some Patients

Creatine kinase was also elevated in some patients following the early rise in serum

lactate. There was an increase in CK by 12 hours with a mean value of 739±1251 U/L

(Figure 11B, p = 0.009). In eight patients, the CK values rose to greater than 1000U/L and

six patients had myoglobinuria. (Figure 10B, * = myoglobinuria positive).

4.04 Hemoglobin Levels were Stable during OR and ICU

Hemoglobin levels were stable above 100g/L within the first 30 hours, during the surgery

and in the ICU. After 30 hours, hemoglobin was observed to decline to around 84g/L.

(Figure 11C)

4.05 Body Mass Index Correlated with the Early Rise in Serum Lactate

The patients had an average BMI of 26.5 ± 3.75 (Table 1). The initial increase in

lactate (Δ Lactate3hr) correlated with BMI (p=0.010, r=0.587 r2= 0.334) but not with other

parameters including PaCO2, hemoglobin and length of surgery (Figure 12). Assessment of

peak change in lactate did not correlate with any parameter (Figure 12). No relationships

were observed between increased lactate and tumor type or grade (Table 1). In addition,

urine output corresponded to mannitol dose (p <0.05), but no correlation was found between

Δ Lactate3hr and mannitol administered at the standard dose of 0.5 mg/kg.

4.06 Arterial Blood Gas and Cooximetry

ABG and cooximetry data is presented in Table 2. The pH, PaCO2, PaO2, HCO3-,

base excess, and hemogloblin were within normal limits during the surgery in the OR and in

the ICU. The pH decreased significantly at ICU admission (p<0.001, one way ANOVA)

relative to baseline. PaCO2 decreased significantly at OR 3hours (p=0.001, one way

ANOVA) and OR 6 hours (p = 0.010, one way ANOVA) relative to baseline. PaO2

Page 80: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

67  

  

significantly decreased at OR 3hours (p = 0.027, one way ANOVA), ICU admission, ICU 8

hours, ICU 16 hours and ICU 24 hours (p<0.001 for all, one way ANOVA) relative to

baseline. Bicarbonate decreased significantly at OR 3hours, OR 6 hours, ICU admission

(p<0.001, for all, one way ANOVA) and ICU 8hrs (p = 0.018, one way ANOVA) relative to

baseline. Base excess decreased significantly at OR 3hours and OR 6 hours (p<0.001, for

both, one way ANOVA) and at ICU admission and ICU 8 hours (p = 0.002, for both, one

way ANOVA) relative to baseline. Hemoglobin declined significantly at ICU 8 hours (p =

0.006, one way ANOVA) and ICU 16 hours and ICU 24 hours (p<0.001, for both, one way

ANOVA) relative to baseline.

 

Page 81: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

68  

  

0 1 2 3 4 5 6 7 8 9 10

Bloo

d Pressure (m

mHg)

0

20

40

60

80

100

120

140

160

Systolic Blood Pressure Diastolic Blood Pressure

Time (Hours)

0 1 2 3 4 5 6 7 8 9 10

Tempe

rature (oC)

26

28

30

32

34

36

38

40

* * * *

A

B

 Figure 9: Patient Blood Pressure and Temperature during surgery. (A) Average systolic and diastolic blood pressures in patients undergoing craniotomy for brain tumor. No significant drop in blood pressure was observed (n = 18). (B) Average pharyngeal temperature in patients during neurosurgery. There was a slight increase in temperature, relative to baseline, after 6 hours of surgery (one way repeated measures ANOVA, *: P<0.05 (n = 18).

Page 82: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

69  

  

Time (Hours)0 10 20 30 40 50 60 70

Creatine

 Kinase (U/L)

0

2000

4000

6000

8000

10000

**

** *

*

***

*

***

0 10 20 30 40 50 60 70

Serum Lactate (m

mol/L)

0

1

2

3

4

5

6

7

8Patient 1Patient 2Patient 3Patient 4Patient 5Patient 6Patient 7Patient 8Patient 9Patient 10Patient 11Patient 12Patient 13Patient 14Patient 15Patient 16Patient 17Patient 18

A

B

 Figure 10: Elevated Serum Lactate and Creatine Kinase in Neurosurgical Patients. (A) Increased serum lactate in patients undergoing craniotomy for brain tumour resection (n = 18). An early increase in lactate occurred in all patients (3 hrs) with variability to the peak value near 9 hours. (B) Elevated serum creatine kinase occurred later than lactate and increases in patients with a higher lactate response (n=6). In some patients with a high CK, myoglobinuria was detected (*= myoglobinuria positive)

Page 83: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

70  

  

0 10 20 30 40

Serum Lactate (m

mol/L)

0

1

2

3

4

5

6

0 10 20 30 40

Creatine

 Kinase (U/L)

0

2000

4000

6000

8000

10000

Time (Hours)0 10 20 30 40

Hem

oglobin (g/L)

0

50

100

150

200

*

**

*A

B

C

 Figure 11. Average Serum Lactate, CK, and Hemoglobin during Surgery and in ICU. Average values for serum lactate (A), creatine kinase (B), and hemogloblin (C) in patients undergoing craniotomy for brain tumour resection (n = 18) (*: P<0.05 vs. baseline; ANOVA).

Page 84: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

71  

  

Body Mass Index (BMI)15 20 25 30 35 40

ΔLac

tate

3hr (

mm

ol/L

)

0

1

2

3

4

5

6

Body Mass Index (BMI)15 20 25 30 35 40

Δ La

ctat

e Pea

k (m

mol

/L)

012345678

Length of Surgery (Hours)0 2 4 6 8 10 12 14 16 18 20

ΔLa

ctat

e Peak

(mm

ol/L

)

012345678

ΔHemogloblin3hr (g/L)

-60 -50 -40 -30 -20 -10 0 10 20

Δ Lac

tate

3hr (

mm

ol/L

)

0

1

2

3

4

5

6ΔPCO23hr (mmHg)

-20 -15 -10 -5 0 5 10 15

ΔLa

ctat

e 3h

r (m

mol

/L)

0

1

2

3

4

5

6

ΔCK 4hr (U/L)

-20 0 20 40 60 80 100

ΔLac

tate

Peak

(mm

ol/L

)

0

1

2

3

4

5

6

N = 18R = 0.587Rsqr = 0.344P = 0.010

N = 18R = 0.283Rsqr = 0.080P = 0.256

N = 18R = 0.118Rsqr = 0.0139P = 0.641

N = 18R = 0.0499Rsqr = 0.00249P = 0.844

N = 18R = 0.137Rsqr = 0.0187P = 0.588

N = 18R = 0.278Rsqr = 0.0775P = 0.263

A B

C D

E F

 Figure 12: Positive Correlation between Serum Lactate and Body Mass Index (A) Positive correlation between body mass index (BMI) and change in lactate was observed after 3 hours (∆Lactate3hr) (P=0.010). (B to F) No correlation between BMI and peak lactate (∆LactatePeak) or between ∆Lactate3hr and change in arterial carbon dioxide (∆pCO2), length of surgery and ∆LactatePeak , ∆Hemoglobin3hr and ∆CK4hr were observed.

Page 85: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

72  

  

Table 1: Demographic data, characterization of tumour pathology and World Health Organization (WHO) grade relative to lactate and body mass index (BMI)

Table 2: Arterial Blood Gas and Co-oximetry data for craniotomy patients in the operating room (OR) and intensive care unit (ICU). * = statistical significance (p<0.05, one way ANOVA)  

Time  pH  PaCO2  PaO2  HCO3‐ 

Base Excess 

Hemoglobin (Hb), g/L 

Baseline  7.39 ± 0.03  39.6 ± 4.5  271.2 ± 86.0  24.4 ± 1.7  ‐1.1 ± 1.5  125 ± 18 OR, 3 hr  7.39 ± 0.03  34.5 ± 4.1* 217.8 ± 64.1* 21.2 ± 1.8*  ‐3.7 ± 1.7*  117 ± 13 

OR, 6 hr  7.37 ± 0.04  33.6 ± 2.5* 233.1 ± 40.9  20.2 ± 1.9*  ‐5.0 ± 2.3*  115 ± 28 ICU,  Adm.  7.31 ± 0.05*  40.0 ± 5.8  190.1 ± 42.0* 20.5 ± 2.3*  ‐6.1 ± 2.4*  116 ± 15 ICU, 8hr  7.36 ± 0.04  37.8 ± 5.3  130.0 ± 39.5* 22.3 ± 2.0*  ‐3.6 ± 2.0*  104 ± 13* ICU, 16hr  7.38 ± 0.02  39.0 ± 4.7  106.4 ± 27.5* 24.1 ± 2.0  ‐1.7 ± 1.6  96 ± 9* ICU, 24hr  7.41 ± 0.03  36.2 ± 1.8  88.6 ± 5.0*  24.2 ± 1.3  ‐1.5 ± 1.6  84 ± 17* 

Page 86: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

73  

  

Animal Study 4.1 Protocol 1: Assessing Femoral vs Carotid Blood Flow with Ultrasound Doppler Flowmetry 4.11 The Effect of Phenylephrine on Mean Arterial Pressure

Mean arterial pressure (MAP) [n = 7 rats] was recorded at an average baseline value

of 84 ± 7 mmHg and increased with continuous phenylephrine infusion (PE1 =

1.5ug/kg/min, PE2 = 3.0 ug/kg/min, and PE3 = 6.0 ug/kg/min, PE4 = 12.0 ug/kg/min, and

PE5 = 18.0ug/kg/min) at 5 minute intervals. Averaged MAP was 85 ± 8 mmHg after initial

infusion of phenylephrine at PE1 (1.5ug/kg/min). Continued infusion of drug at PE2

(3.0ug/kg/min) resulted in an averaged MAP of 87 ± 8 mmHg. The first two lower doses of

PE did not alter MAP. At the higher doses of PE3 (6.0ug/kg/min), PE4 (12.0ug/kg/min), and

PE5 (18.0ug/kg/min), MAP increased to 101± 8 mmHg, 141 ± 17mmHg, and 152 ± 20

mmHg, respectively. Following a 30 minute recovery period, MAP declined to 100 ± 14

mmHg, but remained above initial baseline value. The rise in MAP was statistically

significant at PE4 and PE5 (both, p<0.001, one way repeated measures ANOVA, Tukey

test). Therefore, the infusion of phenylephrine increased MAP in a dose dependent manner.

(Figure 13A)

4.12 The Effect of Phenylephrine on Heart Rate

Heart rate (HR) [n = 7 rats] was recorded to be at an average baseline value of

293±23 bpm and remained relatively stable throughout most of the treatment with

phenylephrine. Upon continuous infusion of phenylephrine at PE1 (1.5 ug/kg/min), PE2

(3.0 ug/kg/min), and PE3 (6.0 ug/kg/min), and PE4 (12.0 ug/kg/min) for 5 minute intervals,

averaged heart rate was 295 ± 18 bpm, 295 ± 16 bpm, 291 ± 14 bpm, 304 ± 19 bpm

Page 87: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

74  

  

respectively. At PE5 (18.0ug/kg/min), heart rate was observed to increase slightly (335 ± 27

bpm) [p<0.001, one way repeated measures ANOVA, Tukey test]. Following a 30 minute

recovery period, averaged heart rate was 309 ± 8 bpm. Therefore heart rate was relatively

stable throughout the experimentation, but increased at PE 5 in this protocol only. (Figure

7A)

4.13 The Effect of Phenylephrine on Carotid Blood Flow

Carotid blood flow [n = 7 rats] was measured using ultrasound doppler flowmetry

and was 7.41 ± 3.96 ml/min at baseline. Upon phenylephrine infusion (PE1 = 1.5ug/kg/min,

PE2 = 3.0 ug/kg/min, PE3 = 6.0ug/kg/min, PE4 = 12.0ug/kg/min, and PE5 = 18.0

ug/kg/min), averaged carotid blood flow was recorded to be 8.26 ± 3.95 ml/min, 8.51 ± 3.88

ml/min, 8.04 ± 3.84 ml/min, 8.07 ± 2.96 ml/min, and 8.97 ± 3.3 ml/min respectively.

Following a 30 minute recovery period, averaged carotid blood flow was 7.84 ± 4.14

ml/min. The carotid blood flow at PE 5 (8.97 ± 3.3 ml/min) was not statistically different

from baseline (7.41 ± 3.96 ml/min) (p<0.344, one way repeated measures ANOVA, Tukeys

test) (Figure 13C). Therefore, phenylephrine had no significant effect on carotid blood

flow.

4.14 The Effect of Phenylephrine on Femoral Blood Flow

Femoral artery blood flow [n = 7 rats] was measured using ultrasound doppler

flowmetry and the observed baseline value was 1.65 ± 0.77 ml/min. Upon infusion of

phenylephrine (PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0ug/kg/min, PE4 =

12.0ug/kg/min, and PE5 = 18.0 ug/kg/min), averaged femoral blood flow was recorded to be

1.69 ± 0.86 ml/min, 1.76 ± 0.89 ml/min, 1.88 ± 0.87 ml/min, 2.69 ± 1.32 ml/min, and 2.98 ±

1.46 ml/min respectively. An increase in femoral blood flow was statistically significant at

Page 88: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

75  

  

PE4 and PE5. (p<0.001, one way repeated measures ANOVA, Tukey test) At recovery

phase, femoral blood flow was 2.05 ± 1.09 ml/min. Therefore, phenylephrine infusion

increased femoral blood flow at the highest dose (PE5) by approximately 1.8 times. (Figure

13D)

4.15 Carotid Blood Flow versus Femoral Blood Flow

At baseline, the carotid blood flow was 7.41 ± 3.96 ml/min whereas the femoral

blood flow was 1.65 ± 0.77 ml/min. There was a clear difference between the magnitude of

the carotid and femoral blood flow.

4.16 Stable Rectal Temperature throughout Experimentation

Rectal temperature [n = 7 rats] was observed to be stable throughout experimentation

ranging from 36.2 – 36.7oC. The averaged baseline temperature was 36.3 ± 0.9oC. Upon

phenylephrine infusion (PE1 = 1.5ug/kg/min, PE2 = 3.0ug/kg/min, PE3 = 6.0ug/kg/min,

PE4 = 12.0ug/kg/min, and PE5 = 18.0 ug/kg/min) at 5 minute intervals, the temperature was

36.6 ± 0.8oC, 36.6 ± 0.8oC, 36.5 ± 0.6oC, 36.8 ± 0.6oC, and 36.6 ± 0.7oC respectively.

Following a 30 minute recovery phase, the temperature was 36.7 ± 0.7oC. There was no

statistical difference observed and temperature was stable throughout at relatively

normothermic temperatures. (Figure 13B)

4.17 Arterial Blood Gas and Cooximetry

The ABG and cooximetry analysis at baseline and post PE at the end of the

experiment is presented in Table 3 under the carotid vs femoral blood flow protocol. The

pH, PCO2, PO2, hemoglobin, and SaO2 were assessed to be within normal ranges at the start

and end of the experimentation. No significant changes were observed.

Page 89: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

76  

  

4.18 Electrolyte and Metabolic Data

The electrolyte and metabolic data analysis at baseline and post PE at the end of the

experiment is presented in Table 4 under the carotid vs femoral blood flow protocol. The

K+, Na+, Ca+2, Cl-, glucose, lactate, base, and HCO3- were assessed to be within normal

ranges at the start and end of the experimentation. No significant changes were observed.

4.19 Protocol 1 Summary

Mean arterial pressure increased with PE infusion in a dose dependent manner

(p < 0.001, one way repeated measures ANOVA). Rectal temperature was stable

throughout the experiment (p = 0.190, one way repeated measures ANOVA). There was no

significant change in carotid blood flow (p = 0.344, one way repeated measures ANOVA)

and femoral blood flow was statistically significantly increased at PE 4 and PE5 (p <0.001,

one way repeated measures ANOVA).

Page 90: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

77  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Rec

tal T

empe

ratu

re (o

C)

0

10

20

30

40

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**PE1: 1.5ug/kg/min

PE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5 18.0ug/kg/min

A B

C D

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Car

otid

Blo

od F

low

(ml/m

in)

0

2

4

6

8

10

12

14

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Fem

oral

Blo

od F

low

(ml/m

in)

0

1

2

3

4

5

**

 

Figure 13: The Effect of Phenylephrine on Carotid and Femoral Blood Flow ( n = 7). (A) Mean arterial pressure increased with PE infusion in a dose dependent manner (ANOVA, p < 0.001). (B) Rectal temperature was stable throughout the experiment (ANOVA, p = 0.190). (C) There was no significant change in carotid blood flow. (ANOVA, p = 0.344) (D) Femoral blood flow was statistically significant at PE 4 and PE5. (ANOVA, p <0.001) [ANOVA = one way repeated measures analysis of variance *: adjusted p <0.05, post hoc Tukey test,]

Page 91: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

78  

  

4.2 Protocol 2: Assessing Bilateral Rectus Abdominus Muscle Laser Doppler Microvascular Blood Flow (Initial Developmental Model) 4.21 The Effect of Phenylephrine on Mean Arterial Pressure

Mean arterial pressure (MAP) [n = 10 rats] was recorded to be at an average baseline

value of 73 ± 11 mmHg and increased with continuous phenylephrine infusion (PE4 =

10ug/kg/min, PE5 = 20 ug/kg/min, and PE6 = 30 ug/kg/min) at 10 minute intervals.

Averaged MAP elevated to 94 ± 20 mmHg at the first dose of 10 ug/kg/min phenylephrine

infusion (PE3). At PE4 (20 ug/kg/min) the averaged MAP rose to 125 ± 23mmHg and was

statistically significant compared to baseline (p<0.001, one way repeated measures

ANOVA, Tukey test). At the highest dose PE6 (30 ug/kg/min) MAP was statistically

significant and peaked at 140 ± 25 mmHg (p<0.001, one way repeated measures ANOVA,

Tukey test). Following a 30 minute recovery period, the MAP decreased down to 99 ± 24

mmHg, but was still statistically significant and above the baseline value (p = 0.013, one

way repeated measures ANOVA, Tukey Test). Therefore continuous infusion of

phenylephrine significantly elevated MAP in a dose dependent manner. (Figure 14A)

4.22 The Effect of Phenylephrine on Heart Rate

Heart rate (HR) [n = 10 rats] was recorded to be at an average baseline value of 277

± 37 bpm and remained relatively stable throughout the treatment with phenylephrine.

Upon continuous infusion of phenylephrine at PE4 (10ug/kg/min), PE5 (20ug/kg/min), and

PE6 (30ug/kg/min) for 10 minute intervals, averaged heart rate was 268 ± 40 bpm, 272 ± 38

bpm, 274 ± 46 bpm respectively. Following a 30 minute recovery period, averaged heart

rate was 275 ± 46 bpm. Therefore heart rate was relatively stable throughout the

experimentation and there is not a statistically significant difference.

Page 92: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

79  

  

4.23 The Effect of Phenylephrine on Bilateral Rectus Abdominus Microvascular Muscle Blood Flow

Bilateral microvascular muscle blood flow response to phenylephrine infusion was

measured by laser doppler flowmetry. (Figure 14C,D) In the left rectus abdominus muscle,

an averaged baseline value of 1391.75 ± 989.384 perfusion units [PU] was recorded. After a

10 minute infusion of phenylephrine at PE3 (10ug/kg/min) the microvascular blood flow

was 1262.71 ± 950.77 PU. Subsequent phenylephrine infusions at PE5 [20ug/kg/min] and

PE6 [30ug/kg/min] further reduced microvascular blood flow to 892.56 ± 396.79 PU and

893.78 ± 528.08 PU respectively. Following a 30 minute recovery period, averaged

microvascular blood flow remained significantly reduced at 898.62 ± 444.47 PU. Analyzing

the data by normalizing the microvascular blood flow data revealed a statistically significant

decline in microvascular blood flow at PE5 (0.77 ± 0.25), PE6 (0.75 ± 0.25), and recovery

phase (0.76+/-0.26) compared with baseline (1.00 ± 0.00).

In the right rectus abdominus muscle, an averaged baseline value of 1050.55 ±

814.69 PU was recorded. The average microvascular blood flow in response to infusion of

phenylephrine: PE4, PE5, and PE6 was 1063.84 ± 834.26 PU, 899.62 ± 903.36 PU, and

782.18 ± 529.07 PU respectively. Following a 30 minute recovery period, average

microvascular blood flow was 806.39 ± 996.26 PU. Analyzing the data by normalizing the

microvascular blood flow data in the right rectus abdominus muscle also revealed a decline

at PE5 (0.84±0.24), PE6 (0.82±0.33), and Recovery (0.72±0.32). There was no difference in

the muscle blood flow response between the right and left side of the muscle. (p = 0.495

(absolute data), p = 0.560 (normalized data); two way repeated measures ANOVA) There

was no interaction effect. There was a significant grouped treatment effect at PE5, PE6, and

recovery phase in both the absolute and normalized data. (p =0.002 (absolute), p <0.001

Page 93: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

80  

  

(normalized), two way repeated measures ANOVA) Therefore PE infusion at elevating high

doses significantly reduced microvascular blood flow in the bilateral rectus abdominus

muscles in a dose dependent manner.

4.24 Stable Rectal Temperate during the Experiment

The rectal temperature was stable throughout the experimentation ranging 32.5-

33oC. Throughout the protocol (Baseline, PE4, PE5, PE6, Recovery), the average rectal

temperatures measured were 33.0 ± 2.0oC, 33.0 ± 1.9oC, 32.7 ± 1.9oC, 32.5 ± 1.9oC, and

32.5 ± 2.1oC respectively. Although the temperature was hypothermic, it was relatively

stable throughout the experimentation. (Figure 14B)

4.25 Arterial Blood Gas and Cooximetry

The ABG and cooximetry analysis at baseline and post PE at the end of the

experiment is presented in Table 3 under the bilateral muscle blood flow protocol. No

significant changes in pH, PCO2, PO2, hemoglobin, and SaO2 were observed.

4.26 Electrolyte and Metabolic Data

The electrolyte and metabolic data analysis at baseline and post PE at the end of the

experiment is presented in Table 4 under the bilateral muscle blood flow protocol. No

significant changes in K+, Na+, Ca+2, Cl-, glucose, lactate, base, and HCO3- were observed.

4.26 Protocol 2 Summary

Mean arterial pressure increased with PE infusion in a dose dependent manner

(p<0.001, one way repeated measures ANOVA, Tukeys test). Rectal temperature decreased

slightly by the later stages of the experiment (p = 0.001, one way repeated measures

ANOVA, Tukeys test). Absolute muscle blood flow decreased in a dosage dependent

manner with increased PE infusion and did not recover upon discontinuation of PE infusion

Page 94: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

81  

  

(p =0.002, two way repeated measures ANOVA). There was no difference between the left

and right muscle (p = 0.628, two way repeated measures ANOVA). No interaction existed

between the treatment and muscle side (p = 0.495, two way repeated measures ANOVA).

Normalized rectus abdominus muscle blood flow also decreased in a dosage dependent

manner (p<0.001, two way repeated measures ANOVA). There was no difference between

the left and right side of the muscle (p = 0.560, two way repeated measures ANOVA). No

interaction exists between the treatment and muscle side (p = 0.636, two way repeated

measures ANOVA).

Page 95: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

82  

  

Baseline PE4 PE5 PE6 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**

Baseline PE4 PE5 PE6 Recovery

Rec

tal T

empe

ratu

re (o

C)

0

10

20

30

40PE4: 10ug/kg/minPE5: 20ug/kg/minPE6: 30ug/kg/min

Baseline PE4 PE5 PE6 Recovery

Nor

mal

ized

Rec

tus

Abd

omin

us

Mus

cle

Blo

od F

low

0.0

0.5

1.0

1.5

2.0

Left Rectus Abdominus MuscleRight Rectus Abdominus Muscle

A B

C D

Baseline PE4 PE5 PE6 Recovery

Mus

cle

Blo

od F

low

(BPU

)

0

500

1000

1500

2000

2500

3000

Left Rectus Abdominus MuscleRight Rectus Abdominus Muscle

**

** * *

*

 Figure 14: The Effects of Phenylephrine on Bilateral Rectus Abdominus Muscle Blood Flow (n = 10). (A) Mean arterial pressure increased with PE infusion in a dose dependent manner (ANOVA, p<0.001). (B) Rectal temperature decreased slightly by the later stages of the experiment (ANOVA, p = 0.001). (C) Absolute muscle blood flow decreased in a dose dependent manner with increased PE infusion and did not recover upon discontinuation of PE infusion (ANOVA, p =0.002). There was no difference between the left and right muscle (ANOVA, p = 0.628). No interaction existed between the treatment and muscle side (ANOVA, p = 0.495). (D) Normalized rectus abdominus muscle blood flow also decreased in a dosage dependent manner (ANOVA, p<0.001). There was no difference between the left and right side of the muscle (ANOVA, p = 0.560). No interaction exists between the treatment and muscle side (ANOVA, p = 0.636). [A,B,: ANOVA = 1 way repeated measures analysis of variance, C, D: ANOVA = 2 way repeated measures analysis of variance, *: adjusted p <0.05 post hoc Tukey test,]

Page 96: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

83  

  

4.3 Protocol 3: Bilateral Rectus Abdominus Muscle G4 Oxyphor PO2 4.31 The Effect of Phenylephrine on Mean Arterial Pressure

The baseline value of the averaged MAP was 89 ± 15 mmHg and a gradual increase

in MAP [n = 6 rats] was observed with increasing phenylephrine infusion (PE1 = 1.5

ug/kg/min, PE2 = 3.0ug/kg/min, PE3 = 6.0ug/kg/min, PE4 = 12.0ug/kg/min, and PE5 = 18.0

ug/kg/min) at 5 minute intervals. At the low doses, PE1 and PE2, MAP was unchanged at

89 ± 13 mmHg, and 91 ± 12mmHg respectively. A slight rise in MAP was observed at PE3

where MAP increased to 99 ± 10 mmHg. Furthermore, the elevation of MAP was

statistically significant at the high doses of phenylephrine, PE4 and PE5, in which MAP rose

to 124 ± 21 mmHg, and peaked at 137 ± 26 mmHg respectively. (p<0.001, one way

repeated measures ANOVA, Tukey test) Following a 30 minute recovery period, the

averaged MAP decreased back down to 105 ± 16 mmHg, but remained above baseline

value. A clear increasing trend in MAP was evident with the infusion of phenylephrine.

(Figure 15A)

4.32 The Effect of Phenylephrine on Heart Rate

Heart rate (HR) [n = 6 rats] was recorded to be at an average baseline value of 305 ±

38 bpm and remained stable throughout the treatment with phenylephrine. Upon continuous

infusion of phenylephrine at PE1 (1.5 ug/kg/min), PE2 (3.0 ug/kg/min), PE3 (6.0

ug/kg/min), PE4 (12.0 ug/kg/min), and PE5 (18.0ug/kg/min) for 5 minute intervals,

averaged heart rate was 310 ± 42 bpm, 314 ± 45 bpm, 312 ± 49 bpm, 303 ± 36 bpm, and

304 ± 29 bpm respectively. Following a 30 minute recovery period, averaged heart rate was

311 ± 33 bpm. There was not a statistically significant difference (P=0.614, one way

Page 97: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

84  

  

repeated measures ANOVA) detected and the heart rate was relatively stable throughout the

experimentation. (Figure 7C)

4.33 The Effect of Phenylephrine on Phosphorescence Lifetime and Muscle PO2

The phosphorescence lifetime (n = 6 rats) was recorded with the PMOD device to

calculate the tissue PO2 levels based on oxygen dependent phosphorescence quenching and

a general decline in phosphorescence lifetime was observed with increasing infusion of

phenylephrine corresponding to an increase in muscle tissue PO2. On the left side of the

muscle, baseline lifetime of phosphorescence was 35.2 ± 4.3 usecs, which decreased at the

highest dose of phenylephrine (PE5) to the lifetime of 32.5 ± 3.0 usecs. As the

phosphorescence lifetime is inversely proportional to the partial pressure of oxygen, left

muscle PO2 increased from a baseline value of 33.8 ± 16.7 torr to a peak value of 43.1 ±

11.4 torr at PE5. Similarly on the right side of the muscle, the baseline phosphorescence

lifetime of 36.1 ± 2.8 usecs decreased to 32.4 ± 1.5 usecs at the highest dose of

phenylephrine (PE5) and corresponded to an increase in muscle baseline PO2 from 29.9 ±

8.9 torr to a peak value of 42.9 ± 5.8 torr. There was no statistical difference observed

between the left and the right sides of the bilateral rectus abdominus muscles (p = 0.630,

two way repeated measures ANOVA), and no statistical interaction effect between the drug

treatment (PE1 – PE5) and muscle side (left or right). There was a statistically significant

treatment effect at PE4, PE5, and during recovery phase on PLT and muscle PO2. (p<0.001

for all, two way repeated measures ANOVA, Tukey test) Therefore phenylephrine infusion

resulted in an increase in muscle tissue PO2 characterized by the decrease in

phosphorescence lifetime observed on both the left and right sides of the muscle. (Figure 15

C,D)

Page 98: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

85  

  

4.34 Rectal Temperature was Stable throughout the Experimentation

Rectal temperature (n = 6 rats) was stable throughout the experimentation ranging from

36.1 to 36.3 oC. The average baseline temperature was 36.3 ± 0.6oC. Upon continuous

phenylephrine infusion (PE1, PE2, PE3, PE4, and PE5) the recorded temperatures were 36.3

± 0.6oC, 36.2 ± 0.7oC, 36.2 ± 0.7oC, 36.2 ± 0.7oC, and 36.2 ± 0.7oC respectively. During the

recovery phase the average temperature was 36.2 ± 0.7oC. There was not a statistically

significant difference (p = 0.164, one way repeated measures ANOVA) and rectal

temperature was stable throughout the experimentation. (Figure 15B)

4.35 Arterial Blood Gas and Cooximetry

The ABG and cooximetry analysis at baseline and post PE at the end of the

experiment is presented in Table 3 under the bilateral muscle PO2 protocol. There was a

significant decrease in pH and PO2 (T test, p = 0.006 and p = 0.032 respectively). No

significant change in PCO2, hemoglobin, and SaO2 were observed.

4.36 Electrolyte and Metabolic Data

The electrolyte and metabolic data analysis at baseline and post PE at the end of the

experiment is presented in Table 4 under the bilateral muscle PO2 protocol. There was a

significant increase in Na+ (T test, p =0.011) and Cl- (T test, p = 0.048) and a significant

decrease in glucose (T test, p = 0.002). No significant change in K+, Ca+2, lactate, base, and

HCO3- were observed.

4.37 Protocol 3 Summary

MAP increased with PE infusion in a dose dependent manner (p <0.001, one way

repeated measures ANOVA, Tukey test). Rectal temperature was stable throughout the

experimentation (p = 0.164, one way repeated measures ANOVA). Phosphorescence

Page 99: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

86  

  

lifetime declined and muscle PO2 increased with continued infusion of phenylephrine

(p<0.001for both, two way repeated measures ANOVA) There was no significant difference

between the phosphorescence lifetime or muscle PO2 recorded from the left and right

muscle (p = 0.703 (PLT), p = 0.630 (muscle PO2), two way repeated measures ANOVA).

No interaction effect existed between the treatment and the muscle side (p = 0.446 (PLT), p

= 0.400 (muscle PO2), two way repeated measures ANOVA).

Page 100: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

87  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

**

A B

C DBaseline PE1 PE2 PE3 PE4 PE5 Recovery

Rec

tal T

empe

ratu

re (o

C)

0

10

20

30

40PE1: 1.5ug/kg/minPE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12 ug/kg/minPE5: 18 ug/kg/min

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Phos

phor

esce

nce

Life

time

(use

c)

0

10

20

30

40

50

Phosphorescence Lifetime (Left)Phosphorescence Lifetime (Right)

* * *

Baseline PE1 PE2 PE3 PE4 PE5Recovery

Mus

cle

PO2

(torr

)

0

20

40

60Left Muscle PO2Right Muscle PO2

**

*

 Figure 15: The Effect of Phenylephrine on Bilateral Rectus Abdominus Muscle Tissue PO2. (n = 6)  (A) Mean arterial pressure increased with PE infusion in a dose dependent manner (ANOVA, p <0.001) (B) Rectal temperature was stable throughout the experimentation. (ANOVA, P = 0.164) (C) Phosphorescence lifetime declined with continued infusion of phenylephrine (ANOVA, p<0.001) There was no difference between the phosphorescence lifetime recorded from the left and right muscle. (ANOVA, p = 0.703). No interaction effect existed between the treatment and the muscle side. (ANOVA, p = 0.446). (D) Muscle tissue PO2 increased with continuous phenylephrine infusion (ANOVA, p <0.001). There was no difference between the muscle PO2 in left and right side. (ANOVA, p = 0.630). No interaction effect existed between the treatment and the muscle side (ANOVA, p = 0.400). [A,B,: ANOVA = one way repeated measures analysis of variance, C, D: ANOVA = two way repeated measures analysis of variance, * post hoc Tukey Test, adjusted p <0.05]

Page 101: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

88  

  

4.4 Protocol 4: Rectus Abdominus Muscle Flap vs Contralateral Control Laser Doppler Microvascular Blood Flow 4.41 The Effect of Phenylephrine on Mean Arterial Pressure

Mean arterial pressure [n = 6 rats] was recorded at an average baseline value of 86

±14 mmHg and increased with continuous phenylephrine infusion (PE1 = 1.5ug/kg/min,

PE2 = 3.0 ug/kg/min, and PE3 = 6.0 ug/kg/min, PE4 = 12.0 ug/kg/min, and PE5 =

18.0ug/kg/min) at 5 minute intervals. Averaged MAP was 85 ± 14 mmHg after initial

infusion of phenylephrine at 1.5ug/kg/min. Continued infusion of drug at PE2

(3.0ug/kg/min) resulted in an averaged MAP of 86 ± 15 mmHg. The two low doses of PE

did not alter MAP. At the high doses of PE3 (6.0ug/kg/min), PE4 (12.0ug/kg/min), and PE5

(18.0ug/kg/min), MAP increased to 94 ± 19 mmHg, 122 ± 26 mmHg, and 128 ± 27 mmHg

respectively. Following a 30 minute recovery period, MAP declined to 92 ± 21 mmHg, but

remained above initial baseline value. The rise in MAP was statistically significant at PE4

and PE5 (p<0.001, one way repeated measures ANOVA, Tukey test). Therefore, the

infusion of phenylephrine increased MAP in a dose dependent manner. (Figure 16A)

4.42 The Effect of Phenylephrine on Heart Rate

Heart rate (HR) [n = 6 rats] was recorded to be at an average baseline value of 271±

37 bpm and remained stable throughout the treatment with phenylephrine. Upon continuous

infusion of phenylephrine at PE1 (1.5 ug/kg/min), PE2 (3.0 ug/kg/min), and PE3 (6.0

ug/kg/min), PE4 (12.0 ug/kg/min), PE5 (18.0ug/kg/min) for 5 minute intervals, averaged

heart rate was 272 ± 33 bpm, 273 ± 31 bpm, 272 ± 29 bpm, 272 ± 24 bpm, and 280 ± 27

bpm respectively. Following a 30 minute recovery period, averaged heart rate was 281 ±

19 bpm. There was not a statistically significant difference (P=0.616, one way repeated

Page 102: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

89  

  

measures ANOVA) detected and the heart rate was relatively stable throughout the

experimentation. (Figure 7B)

4.43 The Effects of Surgery and Phenylephrine on Microvascular Blow Flow in Rectus Abdominus Muscle and Muscle Flap

Microvascular blood flow was assessed in the rectus abdominus muscle flap and the

contralateral nonoperated muscle control. (n = 6 rats) At baseline muscle blood flow (989.58

± 313.86 PU) was much greater than muscle flap blood flow (479.31 ± 126.90 PU), flap

blood flow is approximately 50% of muscle control blood flow. The magnitude of muscle

blood flow and flap blood flow was statistically different throughout the experiment

(p<0.050, two way repeated measures ANOVA). Furthermore phenylephrine infusion

resulted in a decline in microvascular blood flow in both the muscle and the flap tissue.

Muscle blood flow declined to 669.06 ± 192.05 PU at the highest dose of drug infusion at

PE5, whereas muscle flap blood flow declined to 381.79 ± 60.28 PU at PE5 and further

declined during the recovery period to 328.00 ± 73.53 PU. Both the muscle blood flow and

flap blood flow was reduced with increasing phenylephrine infusion in a dose dependent

manner. Analyzing the data through data normalization verifies a 30% reduction in blood

flow in the muscle and a 16% reduction in muscle flap blood at the highest infusion of

phenylephrine. There was a grouped treatment effect on reduced microvascular blood flow

observed at PE4, PE5, and recovery phase that was statistically significant. (p<0.05, two

way repeated measures ANOVA, Tukey test) (Figure 16 C,D)

4.44 Rectal Temperature was Stable throughout the Experimentation

Rectal temperature (n = 6 rats) was stable throughout the experimentation ranging

from 34.7 to 35.0 oC. The average baseline temperature was 35.0 ± 2.8oC. Upon

continuous phenylephrine infusion (PE1, PE2, PE3, PE4, and PE5) the recorded

Page 103: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

90  

  

temperatures were 34.9 ± 2.8 oC, 34.8 ± 2.8oC, 34.7 ± 2.7oC, 34.7 ± 2.6oC, and 34.8 ± 2.7oC

respectively. During the recovery phase the average temperature was 35.0 ± 2.9oC. There

was not a statistically significant difference (p = 0.666, one way repeated measures

ANOVA) and rectal temperature was stable throughout the experimentation. (Figure 16B)

4.45 Arterial Blood Gas and Cooximetry

The ABG and cooximetry analysis at baseline and post PE at the end of the

experiment is presented in Table 3 under the muscle vs flap blood flow protocol. No

significant changes in pH, PCO2, PO2, hemoglobin, and SaO2 were observed.

4.46 Electrolyte and Metabolic Data

The electrolyte and metabolic data analysis at baseline and post PE at the end of the

experiment is presented in Table 4 under the muscle vs flap blood flow protocol. No

significant change in K+, Na+, Ca+2, glucose, lactate, base, and HCO3- were observed. There

was a significant increase in Cl- (T test, p = 0.014).

4.47 Protocol 4 Summary

Mean arterial pressure increased with PE infusion in a dose dependent manner (p =

<0.001, one way repeated measures ANOVA). Rectal temperature was stable throughout

the experimentation. (p = 0.666, one way repeated measures ANOVA). Muscle flap blood

flow was 50% of the muscle control blood flow during the baseline period and phenyephrine

infusion reduced both muscle and flap blood flow in a dose dependent manner (treatment

p<0.001, muscle type p = 0.009, and interaction effect p = 0.137, two way repeated

measures ANOVA). Normalized muscle and free muscle flap blood flow was reduced by

approximately 30% and 16% respectively from baseline after infusion of phenylephrine and

Page 104: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

91  

  

during the recovery phase (treatment p<0.001, muscle type p = 0.990, interaction effect p =

0.224, two way repeated measures ANOVA).

Page 105: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

92  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Blo

od F

low

(BPU

)

0

200

400

600

800

1000

1200

1400

1600

Muscle Blood FlowFlap Blood Flow

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

* *

* *

PE1: 1.5ug/kg/minPE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5: 18.0ug/kg/min

A B

C DBaseline PE1 PE2 PE3 PE4 PE5 Recovery

Rec

tal T

empe

ratu

re (o

C)

0

10

20

30

40

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Nor

mal

ized

Blo

od F

low

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4Normalized Muscle Blood FlowNormalized Flap Blood Flow

***

*

Figure 16: The Effect of Phenylephrine on Muscle and Flap Microvascular Blood Flow (n = 6). (A) Mean arterial pressure increased with PE infusion in a dose dependent manner (ANOVA, p = <0.001). (B) Rectal temperature was stable throughout the experimentation. [ANOVA, p = 0.666]. (C) Muscle flap blood flow was 50% of muscle control blood flow during the baseline period and phenyephrine infusion reduced both muscle and flap blood flow in a dose dependent manner. (ANOVA, treatment p<0.001, muscle type p = 0.009, and interaction effect p = 0.137). (D) Normalized muscle and free muscle flap blood flow was reduced by approximately 30% and 16% respectively from baseline after infusion of phenylephrine and during the recovery phase. (ANOVA, treatment p<0.001, muscle type p = 0.990, interaction effect p = 0.224). [A,B,: ANOVA = 1 way repeated measures analysis of variance, C, D: ANOVA = 2 way repeated measures analysis of variance, *: adjusted p <0.05post hoc Tukey test]

Page 106: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

93  

  

4.5 Protocol 5: Rectus Abdominus Muscle Flap vs Contralateral Control G4 Oxyphor PO2 4.51 The Effect of Phenylephrine on Mean Arterial Pressure

Mean arterial pressure (MAP) [n = 9 rats] was recorded at an average baseline value

of 83 ± 15 mmHg and increased with continuous phenylephrine infusion (PE1 =

1.5ug/kg/min, PE2 = 3.0 ug/kg/min, and PE3 = 6.0 ug/kg/min, PE4 = 12.0 ug/kg/min, and

PE5 = 18.0ug/kg/min) at 5 minute intervals. Averaged MAP was 80 ± 16 mmHg after

initial infusion of phenylephrine at 1.5ug/kg/min. Continued infusion of drug at PE2

(3.0ug/kg/min) resulted in an averaged MAP of 79 ± 17 mmHg. At the high doses of PE3

(6.0ug/kg/min), PE4 (12.0ug/kg/min), and PE5 (18.0ug/kg/min), MAP increased to 83 ± 17

mmHg, 111 ± 19mmHg, and 124 ± 20 mmHg respectively. Following a 30 minute recovery

period, MAP declined to 86 ± 17 mmHg, but remained above initial baseline value. The rise

in MAP was statistically significant at PE4 and PE5 (both, p<0.001, one way repeated

measures ANOVA, Tukey test). Therefore, the infusion of phenylephrine increased MAP in

a dose dependent manner. (Figure 17A)

4.52 The Effect of Phenylephrine on Heart Rate

Heart rate (HR) [n = 8 rats] was recorded to be at an average baseline value of 281 ±

43 bpm and remained relatively stable throughout most of the treatment with phenylephrine.

Upon continuous infusion of phenylephrine at PE1 (1.5 ug/kg/min), PE2 (3.0 ug/kg/min),

PE3 (6.0 ug/kg/min), PE4 (12.0 ug/kg/min), and PE5 (18.0ug/kg/min) for 5 minute

intervals, averaged heart rate was 278 ± 46 bpm, 276 ± 45 bpm, 274 ± 44 bpm, 278 ± 41

bpm, and 295 ± 36 bpm respectively. Following a 30 minute recovery period, averaged

Page 107: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

94  

  

heart rate was 278 ± 36 bpm. There was no statistically significant change in heart rate.

Therefore heart rate was relatively stable throughout the experimentation. (Figure 7D)

4.53 The Effects of Surgery and Phenylephrine on Phosphorescence Lifetime and Muscle and Flap PO2

Phosphorescence lifetime [n = 9 rats] was measured in the muscle control tissue and

muscle flap tissue to calculate tissue PO2 via the O2 dependent quenching of

phosphorescence method. Phosphorescence lifetime within the muscle control tissue was

relatively stable throughout the experimentation ranging from 36.2 – 37.5 usecs. There was

no difference observed within the phosphorescence lifetime detected within the control

muscle tissue. Similarly, phosphorescence lifetime detected within the muscle flap was

stable throughout the experimentation, however the phosphorescence lifetime was much

greater compared to control muscle ranging from 45.7-45.8 usecs. The phosphorescence

lifetime recorded was inversely proportional to the tissue PO2 values that were calculated.

There was a large difference between the muscle control PO2 and the flap PO2, as the

nonoperated muscle had greater PO2 values compared to the flap that had microvascular

surgery and reanastomosis. Muscle tissue PO2 [n = 9 rats] in the control muscle started at a

baseline value of 26.1 ± 10.1 torr and remained relatively stable throughout the

experimentation. Similarly, the flap tissue PO2 also remained relatively stable throughout

the experimentation starting with a baseline value of 4.53 ± 2.66 torr. Clearly,

phenylephrine infusion did not augment the flap PO2, as the flap PO2 remained low

throughout the experiment. Therefore, the nonoperated control muscle had greater muscle

PO2 compared to the flap tissue, and phenylephrine did not improve flap perfusion. (Figure

17 C,D)

Page 108: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

95  

  

4.54 Rectal Temperature was Stable throughout the Experimentation

Rectal temperature (n = 9 rats) was stable throughout the experimentation. The

average baseline temperature was 34.4 ± 1.8oC. Upon continuous phenylephrine infusion

(PE1, PE2, PE3, PE4, and PE5) the recorded temperatures were 34.3 ± 1.9 oC, 34.3 ± 2.0oC,

34.2 ± 2.0oC, 34.1 ± 2.1oC, and 34.0 ± 2.1oC respectively. During the recovery phase the

average temperature was 33.9 ± 2.2oC. Therefore, the rectal temperature was relatively

stable throughout the experimentation. (Figure 17B)

4.55 Arterial Blood Gas and Cooximetry

The ABG and cooximetry data at baseline and post PE at the end of the experiment

is presented in Table 3 under the muscle vs flap PO2 protocol. No significant change in

PCO2, PO2, hemoglobin, and SaO2 were observed. There was a significant decrease in pH

(T test, p = 0.002).

4.56 Electrolyte and Metabolic Data

The electrolyte and metabolic data analysis at baseline and post PE at the end of the

experiment is presented in Table 4 under the muscle vs flap PO2 protocol. No significant

changes in Na+, Ca+2, glucose, and lactate were observed. There was a significant increase

in K+ (T test, p = 0.002) and Cl- (T test, p = 0.001). A significant decrease in base (T test, p

= 0.018) and HCO3- (T test, p = 0.003) was also observed.

4.57 Protocol 5 Summary

Mean arterial pressure increased with PE infusion in a dose dependent manner (p =

<0.001, one way repeated measures ANOVA). Rectal temperature was stable during the

experiment. Phosphorescence lifetime in the muscle and the flap was stable throughout

experimentation. There was a higher phosphorescence lifetime recorded in the flap tissue

Page 109: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

96  

  

compared with the muscle tissue. There is a significant difference between the muscle and

flap phosphorescence lifetime (p<0.001, two way repeated measures ANOVA), but no

treatment effect (p=0.075, two way repeated measures ANOVA), and no interaction effect

(p = 0.194, two way repeated measures ANOVA). Muscle and flap tissue PO2 was inversely

proportional to phosphorescence lifetime. A significant difference between the muscle and

flap PO2 was evident (p <0.001, two way repeated measures ANOVA), muscle PO2 was

greater than flap PO2 throughout the experiment. There was no treatment effect as the

muscle and flap PO2 were both stable (p =0.057, two way repeated measures ANOVA) and

no interaction effect existed (p = 0.123, two way repeated measures ANOVA).  

Page 110: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

97  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Rec

tal T

empe

ratu

re (o

C)

0

10

20

30

40

**

PE1: 1.5ug/kg/minPE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5:18.0ug/kg/min

n = 9

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Phos

phor

esce

nce

Life

time

(use

c)

0

10

20

30

40

50

60

Muscle Phosphorescence LifetimeFlap Phosphorescence Lifetime

A B

C D

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mus

cle

PO2

(torr

)

0

10

20

30

40

50Muscle PO2 Flap PO2

Figure 17: The Effect of Phenylephrine on Muscle and Flap Tissue PO2. (n = 9)  (A) Mean arterial pressure increased with PE infusion in a dose dependent manner (ANOVA, p = <0.001). (B) Rectal temperature was stable during the experiment. (C) Phosphorescence lifetime in the muscle and the flap was stable throughout experimentation. There was a higher phosphorescence lifetime recorded in the flap tissue compared with the muscle tissue. There is a significant difference between the muscle and flap phosphorescence lifetime (ANOVA, p<0.001), but no treatment effect (ANOVA, p=0.075), and no interaction effect (ANOVA, p = 0.194). (D) Muscle and Flap Tissue PO2 was inversely proportional to phosphorescence lifetime. A significant difference between the muscle and flap PO2 was evident (ANOVA, p <0.001), muscle PO2 was greater than flap PO2 throughout the experiment. There was no treatment effect as the muscle and flap PO2 were both stable (ANOVA, p =0.057) and no interaction effect existed (ANOVA, p = 0.123). [A,B,: ANOVA = 1 way repeated measures analysis of variance, C, D: ANOVA = 2 way repeated measures analysis of variance, *: adjusted p <0.05 post hoc Tukey test,] 

Page 111: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

98  

  

4.6 Protocol 6: Rectus Abdominus Muscle Flap and Contralateral Muscle Temperature   4.61 Mean Arterial Pressure Response to Phenylephrine MAP responded in a similar manner to PE as previously described in other protocols. 4.62 Bilateral Muscle Temperature during Experimentation

The temperature of the bilateral rectus abdominus muscles were recorded with

temperature probes which revealed that the temperature of the left muscle at baseline was

(32.9±1.5oC) and the right muscle temperature at baseline was (32.8±0.8oC). Both left and

right muscle temperatures were relatively similar around 33oC and the temperature was

lower than the measured rectal temperature (36.3±0.6oC). Temperature was stable

throughout the experimentation (p=0.177, one way repeated measures ANOVA) (Figure

18A).

4.63 Muscle Control and Muscle Flap Temperature during Experimentation The temperature of the muscle flap and contralateral muscle control was measured with

temperature probes and revealed similar temperatures between the muscle flap and the

muscle control. The flap temperature (30.2±1.0oC) and the muscle control temperature

(31.2±1.8oC) at baseline were very similar. There was a one degree difference between the

muscle and flap temperature. Both the muscle and flap temperature was stable throughout

the experimentation. (p=0.113, one way repeated measures ANOVA) Rectal temperature

(35.4±1.2oC) was also recorded and was stable throughout the experimentation. (p = 0.532,

one way repeated measures ANOVA) Temperature was stable throughout the experiments

and was unlikely to have a large effect on the results (Figure 18B).

Page 112: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

99  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Tem

pera

ture

(oC

)

26

28

30

32

34

36

38

40

42

Left Muscle TemperatureRight Muscle TemperatureRectal Temperature

*PE1: 1.5 ug/kg/minPE2: 3.0 ug/kg/minPE3: 6.0 ug/kg/minPE4: 12.0 ug/kg/minPE5:18.0 ug/kg/min

A

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Tem

pera

ture

(oC

)

26

28

30

32

34

36

38

40

42

Muscle Temperature Flap TemperatureRectal Temperature

*

*

*

B

Figure 18 Assessing Temperature in Rectus Abdominus Muscle and Muscle Flaps. (A) Bilateral Muscle temperature protocol. (n= 6) The left muscle at baseline was (32.9±1.5oC) and the right muscle temperature at baseline was (32.8±0.8oC). Both left and right muscle temperatures were relatively similar around 33oC and the temperature was lower than the measured baseline rectal temperature (36.3±0.6oC). Temperature was stable throughout the experimentation (ANOVA, p=0.177) (B) Contralateral muscle and muscle flap temperature protocol (n = 5). The flap temperature (30.2±1.0oC) and the muscle control temperature (31.2±1.8oC) at baseline were very similar. There was a one degree difference between the muscle and flap temperature. Both the muscle and flap temperature was stable throughout the experimentation. (ANOVA, p=0.113) Rectal temperature (35.4±1.2oC) was also recorded and was stable throughout the experimentation. (ANOVA, p = 0.532) [ANOVA = one way repeated measures ANOVA]

Page 113: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

100  

  

Table 3: Arterial Blood Gas and Cooximetry Data Analysis: pH, partial pressure of carbon dioxide (PCO2), partial pressure of oxygen (PO2), hemoglobin (Hb), and oxygen saturation (SaO2) were assessed at baseline and post PE (at the end of the experiment) in each protocol. * = statistically significant relative to baseline (p<0.05, T test).

Table 4: Electrolytes and Metabolic Data Analysis: K+, Na+, Cl-, Glucose, Lactate, Base, Bicarbonate (HCO3

-) were assessed at Baseline and Post PE (at the end of the experiment) in each protocol. * = statistically significant relative to baseline (p <0.05, T test)

Page 114: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

101  

  

CHAPTER 5 DISCUSSION

A variety of factors may contribute to inadequate skeletal muscle perfusion during

surgery. These factors may eventually lead to muscle breakdown, rhabdomyolysis and free

muscle flap failure. We examined four specific factors that may contribute to impaired

muscle perfusion in this thesis: (1) muscle compression, (2) phenylephrine use, (3) free flap

surgery, and (4) temperature. Skeletal muscle health was evaluated in patients undergoing

craniotomy by measuring serum lactate, creatine kinase and myogloblin levels. In addition,

rodent models of rectus abdominus muscle and muscle flap perfusion were also established

to examine the effects of vasopressor use and muscle flap preparation on muscle perfusion

during surgery. In animal models, we utilized measurements of microvascular blood flow,

and quantitative tissue PO2 to assess muscle perfusion. Both our clinical and experimental

studies reveal different mechanisms that may jeopardize skeletal muscle perfusion during

surgery.

5.0 The Significance of Hyperlactatemia during Craniotomy for Brain Tumour Resection

5.01 Clinical Significance of Increased Serum Lactate

Hyperlactatemia has been reported in patients during neurosurgery cases for brain

tumour resection, however the clinical significance of the increased lactate has not been

established. Serum lactate is an end product of anaerobic glycolysis and is a clinical marker

for inadequate tissue perfusion during surgery. Our data revealed that lactate increased

within the first three hours of surgery (2.21 ± 1.22 mmol/L), and peaked near 9 hours into

the surgery (3.73±1.60 mmol/L). (p<0.05 relative to baseline (1.01±0.47mmol/L)). An

increased serum lactate can be representative of increased production or reduced metabolism

of lactate. The early increase in lactate correlated with BMI causing us to focus on one of

Page 115: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

102  

  

two possible explanations: 1) high patient BMI contributed in muscle compression and

inadequate muscle perfusion leading to increased lactate production; or 2) high patient BMI

was associated with metabolic dysfunction in the liver resulting in decreased lactate

metabolism. As postoperative assessment of liver enzymes (ALP, AST, ALT, LD, and Bili)

in our patients was reported to be within normal limits, we therefore speculate that the

increased serum lactate was a result of excessive production due to inadequate perfusion,

and not inadequate lactate metabolism in the liver. This demonstrated that the patients were

at risk of hypoperfusion during brain tumour resection surgery. In the eighteen patients,

lactate was observed to increase. We further examined markers of muscle injury such as

creatine kinase and myoglobin which are released during muscle damage. In eight patients,

the CK values rose to greater than 1000U/L and six patients had myoglobinuria

postoperatively. These data supported our hypothesis that the lactate may be indicative of

inadequate muscle perfusion during surgery. Serum lactate may be an early indicator that

skeletal muscle perfusion is at risk, followed by muscle damage and the release of muscle

enzymes into the bloodstream. Indeed, the elevated lactate, creatine kinase and presence of

myoglobinuria suggested that muscle perfusion is jeopardized during brain tumour resection

craniotomy. Taken together, serum lactate, creatine kinase, and myoglobin are a cascade of

clinical markers that indicate muscle hypoperfusion and damage during craniotomy.

The frequent increase in lactate has been reported in neurosurgery and may occur in

other forms of surgery. Craniotomy may be predisposed the patient to increased lactate. The

rise in lactate may be due to increased sympathetic activity and high levels of

catecholamines associated with open brain surgery, which can also contribute to impaired

perfusion via increased vascular tone. In addition, the use of diuretics may decrease

intravascular volume and decrease tissue perfusion. Mannitol is a common diuretic that is

Page 116: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

103  

  

used during neurosurgery to prevent edema and reduce intracranial pressure which may

deplete intravascular volume and was considered as a potential cause of impaired muscle

perfusion. A positive correlation between urine output and mannitol was evident, however

no significant correlation was found between increased serum lactate and mannitol dose.

Therefore we excluded mannitol use during surgery as a factor that may be influencing

muscle perfusion as there was no significant relationship. Finally the frequent use of

steroids (dexamethasone) to reduce peritumoral edema during neurosurgery may alter

glucose metabolism and increase lactate.134 We found no evidence that these factors

influenced lactate production.

5.02 The Potential Source of Increased Serum Lactate

All tissues have the potential to produce lactate, especially during anaerobic

conditions, but only tissues with active glycolysis produce excess lactate from glucose under

normal conditions and release it into the bloodstream. At rest lactate is produced from

skeletal muscle (25%), skin (25%), brain (20%), red cell (20%), and gut (10%). The liver is

the primary site of lactate clearance (60%) and the kidneys metabolize approximately 20 to

30% of daily lactate.  The balance between release into the bloodstream and hepatorenal

uptake maintains plasma lactate at about 1 mmol/l. 41, 87, 88 During craniotomy for brain

tumour resection in eighteen patients, we observed that serum lactate increased to a peak

value of 3.73±1.60 mmol/L at 9 hours into the surgery. We hypothesized that the skeletal

muscle was the ultimate source of excessive lactate production as skeletal muscle covers

majority of the body and can produce lactate under anaerobic conditions. Other vital organs

such as the heart, brain, and liver may also contribute to lactate production, however

perfusion to these organs were well monitored and maintained by the anesthesiologist

Page 117: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

104  

  

during surgery and no cases of intraoperative hypotension occurred. All patients survived

craniotomy for brain tumour resection and did not suffer from any significant brain or

cardiovascular complications resulting from malperfusion during surgery. Assessment of

liver enzymes in patients postoperatively did not detect any abnormalities or dysfunction in

the liver. Thus it was unlikely that the heart, brain, or liver were engaged in anaerobic

production of serum lactate during craniotomy. The kidney may also contribute to lactate

production during hypoxia, however no signs of kidney injury resulting from malperfusion

during surgery were observed in our patients during postoperative care.

Interestingly, the brain tumour was also examined as a potential source of lactate,

and the tumour size, tumour grade and pathology were assessed, however the brain tumour

is very small in size compared to the overall mass of skeletal muscle tissues and was

unlikely to be the ultimate source of lactate production. Indeed metastatic cancerous

tumours are known to produce lactate by aerobic glycolysis through the Warburg effect,135-

137 however a large majority of the pathologies in our patient population were benign

tumours such as meningiomas that had a low tumour grade and were unlikely to be the

source of lactate production. No significant relationship between tumour grade and lactate

production was found in our 18 patients. If the tumour was the source of the lactate

production, we would expect our baseline values of lactate to start at a high value and

remain high until the tumour was removed, however, our baseline lactate values in the

eighteen patients started very low and gradually increase overtime within the first 3 hours of

surgery. Furthermore, elevated creatine kinase (CK) and positive myogloblinuria was

observed in some patients (8/18 CK, 6/18 myoglobinuria) suggestive of downstream muscle

damage and rhabdomyolysis resulting from inadequate muscle perfusion. This supported

Page 118: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

105  

  

our hypothesis which investigated skeletal muscle as the possible predominant source of

increased serum lactate over other vital organs and the tumour.

5.03 Body Mass Index as a Risk Factor for Increased Serum Lactate during Craniotomy

Although an elevation serum lactate, creatine kinase and myogloblin suggested that

the most likely source of serum lactate was indeed the ischemic muscle tissues, the precise

mechanism and cause leading to ischemia and muscle damage remained unclear. The

positive correlation between the body mass index and the early rise in serum lactate

supported our hypothesis that the skeletal muscle was the predominant source of lactate.

Indeed a high body mass index characteristic of obese patients is associated with co-

mordities such as cardiovascular disease, and diabetes and metabolic syndrome.138 Our data

lead us to derive a plausible mechanism involving BMI. While immobile heavy patients lay

on the operating table under the same pressure points impaired muscle perfusion can result.

It was hypothesized that muscle compression by the patient’s body mass may be involved

with the impairment of muscle perfusion resulting in rhabdomyolysis. Surprisingly, there

was no correlation between serum lactate and the length of surgery, which further supports

the role of body mass index in the mechanisms leading to increased lactate and muscle

damage. This mechanism supports the notion that impaired muscle perfusion resulting from

muscle ischemia leads to increased lactate production.

5.04 Mechanism 1: Muscle Compression leading to Muscle Ischemia and Rhabdomyolysis

Rhabdomyolysis (RM) can range from an asymptomatic condition involving an

increase in serum creatine kinase to a dangerous life threatening stage characterized by CK

levels > 5000 U/L myoglobinuria, electrolyte imbalances, and acute renal failure.5, 9, 11, 85

Page 119: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

106  

  

We propose that the mechanism behind the muscle hypoperfusion and rhabdomyolysis

observed in our patients was through muscle compression induced tissue ischemia due to

patient’s own heavy body mass. Muscle compression by the patients’ own body mass during

prolonged surgery will compress the microvasculature, resulting in muscle ischemia,

thereby impairing muscle perfusion. The early rise in serum lactate characteristic of

inadequate tissue perfusion, and downstream elevation of creatine kinase and myoglobinuria

was indicative of muscle damage in neurosurgical patients. Indeed, recent case studies

regarding RM in obese patients have been published and support our findings.5, 7 The term

positional rhabdomyolysis has been used by Poli et al to describe a phenomenon in which

muscle damage results when unconscious patients lie on the operating table under the same

pressure points during hours of prolonged surgery.7 Additionly, Alterman et al published a

case report of an overweight patient (22 years old, BMI = 29) in which muscle injury was

suspected to have occurred in the patients left thigh as a result of pressure of the thigh

against the table from prolonged lateral position.5 De Tommasi, and Cusimano also

reported three cases of RM in obese patients who were positioned in the lateral position that

had significant increases in CK levels followed by muscle damage.9 One of our own patients

with the most prolonged surgery (18 hours) did have myoglobinuria and evidence of muscle

breakdown suggesting that prolonged surgery can be a cause of RM. It is proposed that

physical compression of the muscle tissue and blood vessels lead to ischemia induced

necrosis accompanied by the release of muscle enzymes into the bloodstream. Therefore

muscle compression is a factor that may jeopardize skeletal muscle perfusion during surgery

in patients with high body mass index. (Figure 19)

Page 120: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

107  

  

  Figure 19. Muscle Compression during Surgery leads to Muscle Ischemia Followed by Elevated Serum Lactate, Creatine Kinase and Myoglobinuria. Body mass index is a risk factor for muscle hypoperfusion in patients during craniotomy. The heavy body mass of patients may be compressing the muscle and crushing the microvasculature resulting in muscle ischemia and inadequate tissue perfusion characterized by increased serum lactate. Downstream muscle damage is evident as verified by increased creatine kinase and myoglobinuria.

Page 121: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

108  

  

5.1 Development of the Rat Model of Muscle Perfusion

Our clinical study that assessed of skeletal muscle perfusion in patients during

surgery lead us to establish an experimental rodent model with our collaborators in the

department of plastic surgery. We proposed to study another important question in the

anesthesia and plastic surgery literature regarding the appropriate use of vasopressor during

reconstructive surgery. The hypothesis is that phenylephrine will increase MAP by severe

resistance artery constriction and actually limit perfusion in certain vascular beds (ie.

skeletal muscle). The initial goal of this animal model was to assess the impact of

vasopressor use (phenylephrine) on skeletal muscle perfusion during surgery. Vasopressors

are commonly administered during surgery to treat hypotension and may be a factor that can

influence muscle perfusion. Based on the rectus abdominus muscle model established by

Zhang et al,111 we decided that the bilateral rectus abdominus muscle model was the ideal

muscle perfusion system for our experimental study. The anatomy of the rectus abdominus

muscle in rat was reported to be the very similar to humans with a consistent double blood

supply and multiple musculocutaneous perforators.111 Furthermore, the rectus abdominus

muscle flap is widely used in breast reconstructive surgery which corresponds to the

specialty and research interests of Dr. Melinda Musgrave, one of the main principal

investigators of the project. Thus, we started our experiments by establishing a bilateral

rectus abdominus muscle blood flow model and verified that both the left and right sides of

the rectus abdominus muscle responded in a similar manner to PE treatment. The details

regarding the dosing of PE in our protocols is described in the next section (5.11). We also

measured bilateral rectus abdominus muscle tissue PO2 to study tissue perfusion. The

overall impact of PE increased MAP in a dose dependent manner and increased femoral

Page 122: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

109  

  

blood flow, but decreased microvascular blood flow; the significance of which will be

discussed in subsequent sections. The bilateral rectus abdominus muscle model allowed us

to study the perfusion of a muscle flap on one side, while using the nonoperated

contralateral muscle as a control. The main focus of our research project was then focused

on muscle flap perfusion. Identification of poor muscle flap perfusion prior to PE treatment

suggested that the muscle flap perfusion may be severely compromised by the flap surgery

procedure and treatments to improve flap perfusion will be the future emphasis.

5.11 Establishing the Dose of Phenylephrine for Increased Mean Arterial Pressure

We established a dose response for PE in the rat model. It was important to find a

dose response which caused minimal to no increase in MAP and higher doses that did

increase MAP. Our initial dose range (PE4 = 10ug/kg/min, PE5 = 20 ug/kg/min, and PE6 =

30ug/kg/min) was too high as all doses caused an increase in MAP. We adjusted the dose to

a lower level in 5 doses. (PE1 = 1.5ug/kg/min, PE2 = 3.0 ug/kg/min, PE3 = 6.0 ug/kg/min,

PE4 = 12.0 ug/kg/min, and PE5 = 18.0 ug/kg/min) The first two doses did not cause an

increase in MAP, but the subsequent 3 doses increased MAP in a dose dependent manner.

Discontinuation of the drug resulted in MAP returning to the baseline suggesting that the

duration of the drug effect was short (<30 minutes).

5.12 The Effect of Phenylephrine on Mean Arterial Pressure

Phenylephrine has been used for the last 60 years to treat intraoperative hypotension

and is a highly selective α1 agonist known to increase MAP by acting at the α1 receptors on

the resistance arteries. 21, 112 Differential distribution of α1 receptors on resistance arteries

occurs such that a larger proportion of α1 receptors in skeletal muscle cause specific

vasoconstriction while fewer α1 receptors in the brain result in less severe constriction.21, 113

Page 123: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

110  

  

The overall effect of increased MAP is thought to be the centralization of blood flow to the

brain.115 PE will act at the level of the α1 adrenergic receptors of the blood vessels, and

induce vasoconstriction, thereby increasing systemic vascular resistance and mean arterial

pressure, therefore it was expected that mean arterial pressure would increase in a dose

dependent manner with the highest elevation in blood pressure at the highest doses of drug

infusion. The dose dependent rise in mean arterial pressure in response to phenylephrine

infusion was consistent in all protocols. (Figure 6) During the 30 minute recovery phase, the

MAP decreased back down towards baseline value. This may be due to a wear off effect of

phenylephrine as the drug only has a lifetime of 15 minutes in the body.20, 21 With the drug

no longer in effect, the mean arterial pressure will decrease back towards baseline value.

5.13 The Effect of Phenylephrine on Heart Rate

Phenylephrine has minimal effects on the heart because it has very weak β

adrenergic properties and is predominantly an α1 adrenergic agonist.20, 21 In humans an

increase in MAP by PE will result in a decrease in heart rate through the baroreceptor

response to regulate blood pressure. However, in the rat the heart rate is approximately 300

bpm and is different from humans. Indeed in most of our protocols the heart rate was stable

throughout the experimentation and was not influenced by phenylephrine. (Figure 7)

Consistent with our findings, Banic et al also noted no change in heart rate in response to a

30% increase in MAP resulting from PE infusion in their pig model.121 However, in our

carotid and femoral blood flow protocol, heart rate was observed to increase at the highest

dosage of phenylephrine (PE5). This was the only case and it was unexpected as we would

have expected heart rate to decrease as phenylephrine increases mean arterial pressure and

stimulates the baroreceptors to decrease heart rate and control pressure. The elevation in

Page 124: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

111  

  

heart rate may in fact be a rat specific phenomenon as some other experimental data (Gengo

et al) have reported a 5% elevation in heart rate in sprague dawley rats with the infusion of

phenylephrine.139 Elevated catecholamines may have also contributed to the elevation in

heart rate during the surgery in our one protocol, but the overall pattern was a stable HR

throughout our protocols.

5.2 The Effects of Phenylephrine on Muscle Perfusion and Metabolism 5.21 Mechanism 2: The Effect of Phenylephrine on Muscle Perfusion

We assessed of the effects of phenylephrine (PE), a specific α1 agonist, on skeletal

muscle perfusion in a rodent model. Phenylephrine elevated MAP in the expected dose

dependent manner. Increasing doses of phenylephrine lead to subsequent progressive

increases in MAP which returned to baseline after discontinuing phenylephrine. Since

phenylephrine is used to maintain blood pressure in order to maintain perfusion, we assessed

blood flow in the conduit femoral artery. As might be expected, the higher doses of

phenylephrine almost doubled femoral artery flow as measured by ultrasound doppler. This

finding would support the use of phenylephrine to promote skeletal muscle perfusion.

However, when the effect of phenylephrine was assessed at its site of action in the

microcirculation using laser doppler flowmetry, we observed an early reduction in

microvascular blood flow at low doses of phenylephrine which did not influence blood

pressure. This effect progressed to be maximal at the highest doses of phenylephrine and

persisted even after phenylephrine infusion was discontinued. This data demonstrates that

there is no relationship between MAP and microvascular blood flow in skeletal muscle in

our model. More interestingly, the discrepancy between the increase in femoral blood flow

(conduit artery) and the decrease in microvascular blood flow(skeletal muscle tissue) must

Page 125: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

112  

  

be explained. As outlined in our summary diagram, we hypothesize that severe increase in

resistance artery constriction lead to the decrease in microvascular flow, and the increased

femoral conduit artery flow may signify the presence of an increased physiological shunting

of blood from the conduit artery to the vein in our model (Figure 20). If such shunting

occurred in the systemic circulation, it should be associated with the bypassing of the

microcirculation, reduction in tissue oxygen delivery and a reduction in tissue PO2.

However, by our measurements, tissue PO2 in the skeletal muscle consistently increased by

about 10% under the same experimental conditions (PE infusion). One plausible means by

which microvascular tissue blood flow can decrease (~20%) while PO2 increases would be

that PE has a direct effect on reducing skeletal muscle oxygen metabolic requirements. The

presence of α1 receptors on skeletal muscle provide plausibility for this explanation.

In summary, PE increased MAP and conduit artery blood flow, however consistently

reduced microvascular perfusion in the skeletal muscle, suggesting that a physiological

shunt had occurred. Furthermore, muscle PO2 was observed to paradoxically increase

suggesting that muscle oxygen consumption was reduced by phenylephrine. To our

knowledge, this is the first description of such an effect of phenylephrine on muscle oxygen

consumption. Therefore, phenylephrine infusion is another mechanism that may jeopardize

skeletal muscle perfusion during surgery.

Page 126: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

113  

  

       (C) Tissue PO2 Equation 

   Figure 20. The Effects of Phenylephrine on Rectus Abdominus Muscle Perfusion. (A) Baseline conditions: blood flow was optimal in the large conduit arteries and in the microvasculature. It is assumed that there was minimal physiological shunting of blood. (B). Phenylephrine treatment: femoral blood flow (surrogate of inferior epigastric artery) increased while microvascular blood flow was reduced, suggesting that there was an increase in the shunt fraction as indicated by the larger red arrow. The decrease in microvacscular muscle blood flow occurred in association with a paradoxical increase in muscle tissue PO2. One possible explanation is that phenylephrine directly decreased muscle oxygen metabolism to a greater degree than reduced flow. (C) Tissue PO2 is defined by the oxygen supply over the oxygen demand. An increase in muscle tissue PO2 was observed when microvascular blood flow was reduced suggesting that there was a reduction in muscle oxygen consumption. [Red arrow = blood flow]

Page 127: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

114  

  

5.22 The Effect of Phenylephrine (α1 Agonist) on Muscle Metabolism

The effects of vasoconstrictor stimuli on hindlimb skeletal muscle metabolism have

been extensively reviewed by Clark et al. Clark et al classify two groups of vasoconstrictors

based on their effects on muscle oxygen metabolism (Type A and Type B).140 Type A

vasoconstrictors are vasoconstrictors that stimulate oxygen consumption in the muscle

tissues. This group of vasoconstrictors include: norepinephrine (at low doses), epinephrine,

phenylephrine, methoxamine, amidephrine, ephedrine, norephedrine, angiotensin II, and

vasopressin, capsaicin, dihydrocapsaicin, [6] –gingerol, [6]-shogaol, and low frequency

sympathetic nerve stimulation.140 In contrast, Type B vasoconstrictors lead to a decrease in

muscle oxygen consumption with increased vascular resistance.140 Some examples of Type

B vasoconstrictors include norepinephrine at high doses (>1uM), serotonin, capsaicin

(>1uM), dihydrocapsaicin (>1uM), [6]-gingerol (>20uM), and high frequency sympathetic

nerve stimulation > 4Hz.140

In experimental models of hindlimb skeletal muscle in rats, oxygen consumption

was assessed by measuring the arteriovenous difference in oxygen content. Richter et al

were to first to show that alpha adrenergic effects of catecholamines increased glucose

uptake and oxygen consumption in the perfused rat hindlimb skeletal muscle.141 Increases in

oxygen consumption stimulated by epinephrine were prevented by α adrenergic blockade

(phentolamine mesylate) but not β adrenergic blockade (propranolol) suggesting that it was

predominantly the α adrenergic effect of the catecholamine that increased oxygen

consumption in skeletal muscle. Further studies revealed that epinephrine, norepinephrine

and phenylephrine elicit an increase in oxygen consumption and lactate efflux by the

skeletal muscle.142-144 Although the literature suggest that phenylephrine, an α1 agonist, is

Page 128: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

115  

  

associated with an increase in muscle oxygen consumption in relatively low doses, our own

experiments demonstrated that high doses of phenylephrine (18ug/kg/min) reduced

microvascular blood flow and increased skeletal muscle PO2 suggestive of decreased

oxygen metabolism in the nonoperated bilateral rectus abdominus muscles. One possible

explanation for this observation could be that in our model phenylephrine behaves similar to

norepinephrine which has been reported to increase oxygen consumption in low doses (Type

A vasocontrictor) and decreases oxygen consumption at high doses (Type B

vasocontrictor).140, 142 The exact cellular mechanisms that lead to the changes in muscle

metabolism are unknown, however a significant abundance of α1 adrenoceptors have been

reported to be expressed on skeletal muscle cells,140, 145-148 and it may be possible that

phenylephrine is acting through these receptors directly on the skeletal muscle to impact

muscle metabolism.140 Further experimental studies to investigate muscle metabolism and

molecular pathways are necessary.

In summary, phenylephrine is an α1 agonist that has been reported to increase

muscle metabolism and oxygen consumption in rat hindlimb skeletal muscle, however our

study which used high doses of phenylephrine showed a reduction in oxygen metabolism in

nonoperated bilateral skeletal muscle similar to a reduction in oxygen metabolism observed

with high doses of norepinephrine. These differences in the oxygen metabolism trends

observed require further investigation including metabolic studies to investigate actual

oxygen consumption in our model.

Page 129: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

116  

  

5.3 The Effects of Surgery and Phenylephrine on Muscle Flap Perfusion   5.31 Mechanism 3: The Effects of Muscle Flap Preparation and Microvascular Surgery on Muscle Flap Perfusion

The effects of muscle flap preparation on microvascular flap perfusion was very

surprising as flap perfusion was severely reduced compared to control after the free flap

preparation. Muscle flap blood flow was reduced by about 50% of the muscle control blood

flow, and muscle flap PO2 was a small fraction (~20%) of the muscle control PO2 at

baseline before the treatment of phenylephrine. The flap tissue PO2 was assessed to be

extremely low at around 5 torr. These findings suggest that surgical manipulation and

preparation of the muscle flap has a profound effect in diminishing muscle flap perfusion.

We have not identified any literature that has identified this severe basal reduction in flap

perfusion and interstitial PO2 associated with the creation of a free flap. However, Kamolz

et al have monitored flap tissue PO2 with Licox for over three years and have identified that

flap tissue PO2 was lower than 10 torr in all of their failing flaps.63 Additionally, PO2 values

of 8 – 12 torr is suggestive of ischemia in the brain and values at 2 torr or lower is indicative

of cell death. Our low flap tissue PO2 value of 5 torr at baseline prior to drug infusion

suggests that our muscle flaps which appear healthy and pink visually may indeed be at risk

of flap complications or failure. The effect of surgery on muscle flap perfusion was more

severe than the subsequent effects of phenylephrine infusion. After phenylephrine infusion,

the flap microvascular blood flow was further reduced by 16%. Thus phenylephrine may

have an added detrimental effect in addition to the poor perfusion of the flap at baseline.

The main finding was that flap perfusion was poor from the start of the experiment

immediately after surgery before drug treatment. The low basal perfusion suggests that

resistance arteries were already vasoconstricted with high vascular tone. Further infusion of

Page 130: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

117  

  

phenylephrine reduced blood flow but did not change muscle flap PO2. Therefore, the

creation of a free flap is another mechanism that can impair muscle perfusion during

surgery. (Figure 21)

5.32 Muscle Flap Oxygen Metabolism after Flap Preparation

The extremely low muscle flap PO2 was suggestive of high oxygen consumption

within the muscle flap. According to the tissue PO2 equation: Tissue PO2 = oxygen supply/

oxygen demand (metabolism), we observed a severe reduction in oxygen supply in the

muscle flap and also extremely low levels of flap tissue PO2 at 5 torr, which is one of the

lowest tissue PO2 value our lab has ever measured in a living tissue. This low PO2 occurred

while 50% of the blood flow was maintained. Thus, this suggests that the oxygen

metabolism within the flap is very high, and that skeletal muscle flap oxygen consumption

is increased as a result of free flap preparation and associated ischemia and reperfusion.

This increase in oxygen consumption occurred during reperfusion of the muscle flap.

Nugent et al have performed in vivo measurements of rat skeletal muscle oxygen

consumption following brief periods of ischemia and reperfusion using phosphorescence

quenching microscopy and demonstrated an increase in oxygen consumption following

ischemia and reperfusion.149 Following 10 minutes of ischemia and reperfusion, oxygen

consumption was observed to be 254% of baseline oxygen consumption five seconds after

reperfusion.149 Forty five seconds later, oxygen consumption remained elevated at 175%

over baseline values.149 In another study, Harris et al used a canine gracilus muscle model to

study the metabolic response of skeletal muscle to ischemia, upon reperfusion of the skeletal

muscles after 7 hours of ischemia, the oxygen consumption was observed to increase greatly

compared to control muscle oxygen consumption.150 Thus, ischemia and reperfusion is

Page 131: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

118  

  

generally accompanied by an increase in oxygen consumption. These findings support our

findings of high oxygen metabolism within the muscle flap, which was subjected to

approximately 30 minutes of ischemia and reperfusion when the vessels were transected and

reanastomsed during flap surgery. Furthermore, flap tissue may have higher metabolism

compared to control tissue. Im et al studied oxygen consumption and metabolism in skin

flaps. The rate of oxygen consumption in skin flaps was reported to be higher than control

skin.151 Their data suggested that skin flaps may be more metabolically active compared to

normal skin and that demand for energy in flap tissues may be met by increased metabolic

rate.151, 152 Similarly, in our skeletal muscle flap model, skeletal muscle flap tissue may be

more metabolically active than control nonoperated muscle which may explain why oxygen

metabolism in the muscle flap is very high, while the nonoperated control muscle exhibits

lower oxidative metabolism characterized by higher levels of tissue PO2. Thus, the

reperfusion of any tissue is reflected by increased metabolism and blood flow. In the event

that skeletal muscle blood flow is reduced, oxygen extraction and consumption will increase

until there is no oxygen available in which anaerobic metabolism occurs. Therefore, free

flap preparation resulted in a large reduction in skeletal muscle perfusion and the muscle

flap was suggestive of high oxygen consumption as tissue PO2 levels were very low. This

may be in part due to the fact that the microenvironment of the flap has been altered by flap

surgery and a period of associated ischemia and reperfusion which may be attributed to the

differences observed in muscle metabolism between the muscle flap (increased metabolism)

and the nonoperated skeletal muscle (decreased metabolism). Therefore, muscle oxygen

consumption in the muscle flap was observed to be high and may be attributed to surgical

manipulation and ischemia and reperfusion associated with flap preparation.

Page 132: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

119  

  

5.33The Effect of Phenylephrine on Muscle Flap Perfusion

Phenylephrine also reduced microvascular muscle and muscle flap blood flow.

There was a 30% reduction in blood flow in the control muscle and a 16% reduction in

muscle flap blood flow at the highest infusion of phenylephrine. This reduction in blood

flow was a result of the α1 adrenergic vasoconstriction at the level of the resistance arteries

that was impairing muscle and flap blood flow. Furthermore, phenylephrine had no

significant effect on muscle and flap tissue PO2. The muscle PO2 remained stable, although

there was a slight increasing trend similar to the muscle PO2 response described in the

bilateral muscle protocol, while the flap tissue PO2 was far less than the muscle tissue PO2.

Oxygen consumption within the flap tissue may be very high. Thus, phenylephrine induced

elevation in mean arterial pressure did not improve muscle or muscle flap perfusion.

Furthermore, surgical preparation of the muscle flap had a more profound effect than

phenylephrine on the reduction of muscle flap perfusion. Alternative drug treatments may

be necessary to improve perfusion to the poorly perfused muscle flap.

Page 133: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

120  

  

       (C) Tissue PO2 Equation  

 Figure 21. The Effects of Free Flap Surgery and Phenylephrine on Muscle Flap Perfusion. (A) Free flap surgery was accompanied with an ischemia time of 27.7±6.1 minutes (B) Surgical manipulation and preparation of the muscle flap resulted in a severe reduction in microvascular blood flow and flap PO2 after reanastomosis. Phenylephrine further reduced microvascular blood flow by about 16% from baseline in the muscle flap without any further decrease in tissue PO2. This may have been because the tissue PO2 was at very low level and will not go down further. (C) In response to a reduction in microvascular blood flow to the flap, the tissue PO2 was extremely low in the muscle flap. This suggests that oxygen metabolism in the muscle flap is very high.

Page 134: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

121  

  

5.4 The Potential Benefits and Harms of Phenylephrine use during Reconstructive Surgery

Vasopressors such as phenylephrine are commonly administered during surgery to

treat hypotension, however microsurgeons warn against their use as peripheral

vasoconstriction may compromise flap perfusion and lead to flap complications or failure.

Several animal studies, including our own data support this view as microvascular blood

flow to the muscle flaps is compromised.26, 27 One animal study suggests that

phenylephrine has no effect on microvascular blood flow.121 This finding complements

some recent clinical retrospective and prospective studies that investigated the safety of

vasopressor use during reconstructive surgery in breast reconstruction and head and neck

surgery. Indeed many clinical studies have demonstrated that there is no correlation between

vasopressor use and flap complications and failure.22-25 These data suggest that vasopressor

use does not negatively affect flap perfusion. However these studies are limited due to

small sample size, variable flap type, different doses of drug, and variable clinical

conditions. Thus no clear conclusions can be made about use of vasopressor and flap

viability in these studies. Whether or not vasopresor use is safe during reconstructive

surgery is still under clinical debate. We created our rectus abdominus muscle flap perfusion

model in sprague dawley rats with the initial intent on studying the effect of vasopressors on

muscle flap perfusion, and had similar observations with other animal studies performed in

pig models.26, 27 Mean arterial pressure was elevated at the expense of skeletal muscle tissue

perfusion. Phenylephrine reduced muscle and muscle flap microvascular blood flow. Our

animal data suggests that phenylephrine may be detrimental to muscle perfusion, however

our data suggests that the surgical preparation of the free muscle flap has a more profound

effect on muscle flap perfusion before the infusion of the drug. Further investigation is

Page 135: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

122  

  

required to study the health of the muscle over a longer period of time to assess flap hypoxic

status, flap survival, flap tissue necrosis and cell death to confirm whether or not the

observed reduction in microvascular perfusion will lead to downstream skeletal muscle

damage, flap complications, and flap failure.

5.5 The Effect of Temperature on Muscle Perfusion

Temperature is known to have a profound effect on tissue oxygen metabolism.

Increasing or decreasing temperature causes a proportional change in oxygen consumption.

It is important to assess the impact of temperature on all of our clinical and experimental

models. In our clinical study, patient temperature remained stable throughout the early

phase of surgery (6 hours), and therefore was unlikely to influence the observed increase in

lactate which correlated with BMI at 3 hours. Similarly measurements of rectal, muscle,

and muscle flap temperature remain stable throughout all experimental protocols. By the

same logic we suggest that changes in temperature could not have strongly influenced the

observed changes in blood flow and tissue PO2 associated with phenylephrine infusion or

muscle flap preparation. We did observed that both muscle and muscle flap were colder

than rectal temperature by about 3-6oC, likely due to the superficial position of muscle and

its exposure to the environment during surgery. The stable nature of the muscle and muscle

flap temperature during our experimental protocols suggest that they could not have caused

acute changes in muscle metabolism. Of interest, the muscle flap and contralateral muscle

(internal control) were of comparable temperatures throughout the experiments. Therefore

temperature could not explain the profound reduction in muscle flap PO2 that we measured

in our study. The very low tissue PO2 in muscle flap despite clinical parameters of adequate

Page 136: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

123  

  

perfusion suggests an important opportunity for improving muscle flap perfusion and

reducing flap failure in the clinic

5.6 The Effect of Isoflurane on Muscle Perfusion

Isoflurane, a vasodilator, is a general anesthetic used in our experiments to

anesthetize the rat in the experimental protocol. Although isoflurane can be a factor that can

influence skeletal muscle perfusion, we kept the isoflurane constant at 2% throughout the

experiment, and thus isoflurane was stable and unlikely to have a large impact on our

results. Of course, muscle perfusion may be higher in awake rats compared to anesthetized

rats as recently demonstrated by Wilson et al48, however, isoflurane was a necessary part of

the experiment. The effect of isoflurane on skeletal muscle blood flow has been reported in

the literature. Hartmen et al have shown that isoflurane resulted in dose related decreases in

skeletal muscle blood flow in dogs due to systemic hypotension.153 Similarly, other studies

showed a sharp significant decrease in skeletal muscle blood flow during isoflurane

anesthesia.154, 155 Wilson et al have examined muscle tissue PO2 in awake and anesthetized

rats under isoflurane. Rats under isoflurane had lower tissue PO2 values compared to awake

rats. Therefore, high dose isoflurane can reduce skeletal muscle perfusion as a result of

decreased perfusion pressure, however isoflurane was unlikely to influence our results as it

was constant at 2.0% in our experiments and we monitored mean arterial pressure and did

not observe hypotension in our rats. The minor effects of the isoflurane would have already

been accounted in the baseline measurements, and the decreases in skeletal muscle blood

flow observed in our protocols was predominantly a result of the infusion of phenylephrine

and not isoflurane anesthesia.

Page 137: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

124  

  

5.7 Limitations of the Study 5.71 Clinical Study Limitations

One limitation of our clinical study was the limited frequency of sampling for our

clinical parameters (serum lacate, CK, and myoglobin). We only assessed serum lactate

every 3 hours and CK and myoglobin in urine every 4 hours. Our data is discontinuous and

missing data points for the times in between the 3-4 hour intervals where significant events

may have occurred. For instance, serum lactate may have peaked at 2 hours and returned to

lower baseline lactate values at 3 hours. Our 3 hour sampling method would have missed

this peak lactate value. The frequency of sampling for lactate, CK, and myoglobin was

limited by financial cost, however taking too many blood samples may be detrimental to the

patient. Nevertheless, the 3-4 hour sampling interval should be able to capture any

significant trends that occurred over time. For instance, whether or not serum lactate, and

CK increased, decreased, or remained the same during surgery. A small sample size (n = 18

patients) was a major limitation of the study and established trends may become more

reinforced with a larger sample size (n = 1000 patients) or even change. In fact, the positive

correlation between BMI and early rise in serum lactate at 3 hours was only a relatively

moderate correlation (r = 0.587), nevertheless the correlation between lactate and BMI was

established (p = 0.010). Thus, the main finding is based on a low number of patients with a

moderate correlation.

This clinical study provided some insight into a potential mechanism that may

jeopardize skeletal muscle perfusion during surgery, however was unable to definitely

determine the origin of the lactate. Although, it is proposed that the skeletal muscle is the

source of serum lactate during neurosurgery, no clear evidence firmly concludes that the

Page 138: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

125  

  

lactate production is occurring only from the skeletal muscles, and that other tissues such as

the brain, heart, and tumour are not contributing to elevated lactate levels as well. Thus the

inability to specifically determine the specific source of lactate and the proportion produced

by organ(s) involved was a limitation. Further studies are necessary to specifically identify

the source of serum lactate and the contribution of all organs on a global scale.

5.72 Rat Study Limitations

One major limitation of our experimental study was that we did not create a

hypotension model which is clinically relevant. Instead we focused on assessing the effect

of PE on muscle flap independent of hypotension. It was necessary to first study the effect

of the drug in isolation. Future studies will incorporate a hypotension model for greater

clinical relevance. Another limitation of our experimental study include the inability to

simultaneously measure microvascular blood flow with laser doppler and tissue PO2 with

microsensor G4 oxyphor within the same animal due to wavelength interference between

the two different probes. This means that the blood flow patterns and tissue PO2 patterns

were from different animals, however we performed several experiments with consistent

results. Microvascular blood flow consistently decreased and tissue PO2 consistently

increased with phenylephrine infusion in rats. We concluded that these results indicate a

reduction in muscle metabolism derived from the tissue PO2 formula. However no

experimental procedures were carried out to specifically assess muscle metabolism directly.

Future studies may assess oxygen consumption by measuring arteriovenous PO2 difference.

Additionally, the hypoxic status of the muscle flap was unverified, and can be assessed via

western blot by assessing HIF-1α levels. A larger sample size (n=30 rats) may provide

more statistical power in our experiments, however our results are consistent with the

Page 139: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

126  

  

smaller sample size used (n=6-10 rats). Temperature was stable throughout our experiments

and unlikely to influence our results, but was not perfectly controlled for at physiological

temperature (37oC). Temperature in our rats ranged from 30oC – 37oC depending on the

protocol and tissue source (ie. rectal (36-37 oC), muscle (33 oC) and flap (30 oC)). The age

group of rats differed between protocols and may contribute to a minor age effect. In our

developmental model we used 500g rats and in our carotid and femoral blood flow model

and bilateral muscle PO2 model we used 600-700g rats. As we progressed with the flap

model, we decided to use larger rats for larger rectus abdominus muscle flaps (800-900g

rats) as discussed with the plastic surgeon (Dr. Sami Alissa). More importantly, the

observed responses in microvascular blood flow and muscle PO2 to phenylephrine between

different age groups were identical. Therefore, rat age did not play a significant role in our

results. Furthermore, the study assessed muscle flap perfusion via blood flow and tissue PO2

in response to phenylephrine infusion, but does not clearly assess the long term outcomes

such as flap necrosis and survival. No clear conclusions can be made regarding the safety of

vasopressor use on flap perfusion without long term monitoring of the muscle flap for flap

survival or failure. Finally, our rectus abdominus muscle flap model may not reflect a true

free flap model, because the rectus abdominus muscle flap was reanastomosed back onto its

original location instead of to another distant region of the body (Ie. groin).

5.8 Future Directions 5.81 Future Directions for the Clinical Study Future directions for our serum lactate clinical study includes a retrospective

analysis of serum lactate in large population of patients. This larger clinical study will

verify the increased serum lactate commonly observed in patients during craniotomy and

Page 140: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

127  

  

reexamine the correlation between patient BMI and early serum lactate rise in a larger

population of patients (n = 500 patients). A PSI grant has also been submitted to request

funding for another larger and more detailed prospective study. In this new study, we will

be assessing serum lactate, CK and myoglobin in a population of neurosurgical patients and

bariatric patients to compare for differences between surgery type. We will also increase the

sample size to n = 32 patients in each group of surgery for a total of n = 64 patients in the

study. Furthermore, near infrared spectroscopy (NIRS) will be used during the surgery to

monitor patient muscle PO2. Collaboration with radiologists will also enable us to assess for

muscle damage and rhabdomyolysis with MRI. Our two new future clinical studies will

further verify and expand our knowledge in this research field.

5.82 Future Directions for the Experimental Study Although we have shown that microvascular blood flow to the skeletal muscle and

flap tissue is reduced with PE infusion, tissue PO2 was observed to have increased in native

skeletal muscle and remained low in the muscle flap. Whether or not these conditions are

beneficial or detrimental to the muscle remains unknown. This could be suggestive of either

a state of hibernation in the muscle tissue, or inadequate perfusion leading to tissue hypoxia.

Thus, future assessment of the hypoxic status within the muscle tissue and flap tissue via

western blot analysis of HIF-1α will be performed. It is expected that the muscle flap will

express high levels of HIF-1α and the muscle control tissue will express relatively low

levels of HIF-1α. This additional set of experiments will help determine whether or not the

muscle flap is at hypoxic risk due to the effects of phenylephrine and provide some evidence

for the clinical debate regarding vasopressor use during reconstructive surgery. However,

long term experiments are also required to assess whether or not flap necrosis or flap failure

Page 141: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

128  

  

occurs after surgery. Flap survival rate over a period of days after the PE infusion protocol

should be examined in order to provide evidence for whether or not PE infusion will

compromise the flap. Thus, one of the directions of our research will be to assess long term

downstream effects of PE on overall flap survival. We will also perform a set of

experiments in which PE will be administered to treat hypotension in a rat model to address

the effects of hypotension.

Another future direction will be examining novel drug therapies that may improve

flap perfusion during reconstructive surgery as we have identified severe impairment of

perfusion to the flap as a result of free flap surgery. The exact cause and mechanism of the

impairment of microvascular blood flow to the muscle flaps is unknown, however we

hypothesize that flap surgery may result in resistance artery dysfunction leading to increased

microvascular tone. A potential mechanism that we will investigate in the future is the

effect of inflammation associated with surgery on the muscle flap perfusion. TNF-1α is an

inflammatory cytokine secreted by immune cells associated with inflammation. Recent

research have shown that skeletal muscle fibers can also synthesize TNF-1α and also

express both type 1 and type II TNF-1α receptors.156 TNF-1α has a significant role in

muscle metabolism as it promotes early myogenesis in undifferentiated myocytes, yet

stimulates the breakdown of muscle fibers in mature myotubes and is associated with

contractile dysfunction in skeletal muscle.156 Thus, high levels of TNF-1α may contribute to

skeletal muscle damage. TNF1α has also been shown to have proconstrictive effects on

microvasculature through sphingosine 1 phosphate signaling.157-159 We hypothesize that the

proconstrictive effects of TNF-1α may be responsible for increasing the microvascular tone

during reconstructive surgery leading to the severe impairment in microvascular skeletal

muscle flap perfusion. Therefore we proposed that the potential cause of the reduction in

Page 142: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

129  

  

microvascular perfusion may be due to increased microvascular tone associated with

inflammation and the proconstrictive effects of TNF-1α. Etanercept is a TNF-1α antagonist

that will bind to TNF-1α and prevent it from interacting with it’s receptors and is a potential

treatment that may reduce the microvascular tone in the skeletal muscle flaps. Dantrolene is

another drug that we plan on investigating. Dantrolene is a ryanodine receptor antagonist,

and prevents the release of calcium from the sarcoplasmic reticulum. Calcium is required

for smooth muscle contraction and vasoconstriction of blood vessels. The inhibition of

calcium release will lead to vasodilation of the blood vessels thereby improving perfusion to

the muscle flap. Numerous of vasodilators have been studied in the literature and have been

reported to generally improve local flap perfusion in animal models.160-162

Page 143: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

130  

  

CHAPTER 6 SUMMARY 6.0 Summary

Factors that impair tissue perfusion during surgery are associated with significant

adverse events. Identification of reversible causes of inadequate perfusion may help to improve

patient outcome. We have focused on the assessment of factors that may impair skeletal muscle

perfusion during surgery by testing the hypothesis that modifiable factors may reversibly impair

muscle perfusion during surgery including, physical compression, vasopressor administration,

free flap surgery and temperature. To achieve this goal, we assessed muscle tissue perfusion in

translational human and animal models. Muscle perfusion was assessed in patients undergoing

craniotomy for brain tumor resection by measuring systemic lactate, creatine kinase (CK) and

urinary myoglobin levels. A rat model of skeletal muscle and free muscle flap perfusion was

also developed to assess the impact of: 1) phenylephrine (α1-adrenergic agonist); 2) surgical

preparation of a free muscle flap and 3) temperature on skeletal muscle perfusion as assessed by

measurements of tissue blood flow (ultrasound and laser Doppler) and quantitative tissue PO2

(G4 oxyphor microsensors). Our results demonstrated an early increase in serum lactate in

craniotomy patients, which correlated with body mass index, but not length of surgery.

Increased lactate was associated with elevated CK and urine myoglobin, suggesting that muscle

compression contributed to inadequate muscle perfusion and anaerobic production of lactate.

Assessment of rectus abdominus muscle perfusion in rats demonstrated that administration of

phenylephrine, consistently reduced microvascular skeletal muscle blood flow (~20%, laser

doppler). Paradoxically, this reduction in tissue blood flow was accompanied by an increase in

tissue PO2 (~10%), suggesting that the α1-adrenergic agonist also reduced the muscle tissues

metabolic requirement for oxygen by a greater degree than it had reduced tissue blood flow.

Page 144: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

131  

  

Preparation of a free skeletal muscle flaps, by cutting and re-anastamosing the feeding artery,

resulted in severe attenuation of both tissue blood flow and PO2 suggesting that a severe degree

of microvascular constriction had attenuated free flap muscle perfusion. Administration of

phenylephrine further reduced blood flow (~20%), but not PO2 possibly because the muscle

tissue PO2 values were very low. The proportionally greater reduction in basal PO2, relative to

flow suggests that muscle ischemia and reperfusion resulted in an increase in muscle

metabolism and PO2 consumption during reperfusion. Finally, in both human and animal

models, muscle temperature did not appear to influence the observed changes in muscle

perfusion as the temperature was stable throughout the experiments. In conclusion, assessment

of muscle perfusion during surgery has identified specific conditions and treatments, which

jeopardize muscle perfusion. These included elevated body mass index of patients undergoing

craniotomy, phenylephrine infusion and surgical preparation of skeletal muscle flaps. In each

case these findings have identified modifiable risk factors for inadequate muscle perfusion

during surgery thereby providing a means to optimize muscle perfusion and minimize adverse

outcomes associated with skeletal muscle damage during surgery.

Page 145: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

132  

  

6.1 Key Experimental Findings 6.11 Assessing Skeletal Muscle Perfusion and Health during Neurosurgery

1) Hyperlactatemia occurs during neurosurgery and the skeletal muscle is the most likely source of lactate (Figure 22A)

2) Elevated muscle enzymes (Creatine kinase) and myoglobinuria indicated muscle damage in some patients (Figure 22C)

3) Body mass index is a risk factor for elevated serum lactate and muscle damage markers in patients undergoing craniotomy (Figure 22B)

4) There was no correlation between the peak serum lactate and the length of surgery. (Figure 22D)

5) Muscle compression induced ischemia may lead to rhabdomyolysis in patients 6.12 The Effects of Phenylephrine use on Muscle and Muscle Flap Perfusion

1) Phenylephrine elevated MAP in a dose dependent manner (Figure 23A, 24A), but did not improve muscle or muscle flap perfusion

2) Phenylephrine had minimal effects on heart rate 3) Phenylephrine did not have any effect on the carotid artery, however increased blood flow

in the femoral artery, nevertheless it is at the level of the resistance arteries that perfusion is regulated

4) Phenylephrine reduced microvascular muscle blood flow, but a paradoxical increase in muscle tissue PO2 was observed suggesting reduced muscle O2 metabolism (Figure 23 C,D)

5) Phenylephrine reduced microvascular muscle flap blood flow in a dose dependent manner, flap PO2 was low and remained stable throughout the experiment (Figure 24C,D) 6.13 The Effects of Surgical Free Flap Preparation on Muscle Flap Perfusion during Reconstructive Surgery

1) Surgical manipulation and preparation of the free flap resulted in a reduction in muscle flap perfusion as both microvascular flap blood flow, and flap PO2 was severely diminished compared to the contralateral muscle control perfusion. (Figure 24C,D)

2) Increased microvascular tone associated with inflammation and resistance artery dysfunction may be the cause for the observed impairment in muscle flap perfusion 6.14 The Effects of Temperature on Muscle and Muscle Flap Perfusion

1) Temperature was stable throughout the experiments and was unlikely to have a significant effect on muscle and muscle flap perfusion (Figure 23B, 24B)

Page 146: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

133  

  

Time (Hours)0 10 20 30 40 50 60 70

Seru

m L

acta

te (m

mol

/L)

0

1

2

3

4

5

6

7

8Patient 1Patient 2Patient 3Patient 4Patient 5Patient 6Patient 7Patient 8Patient 9Patient 10Patient 11Patient 12Patient 13Patient 14Patient 15Patient 16Patient 17Patient 18

Time (Hours)

0 10 20 30 40 50 60 70

Cre

atin

e K

inas

e (U

/L)

0

2000

4000

6000

8000

10000

A B

C DBody Mass Index (BMI)

15 20 25 30 35 40

ΔLac

tate

3hr (m

mol

/L)

0

1

2

3

4

5

6N = 18R = 0.587Rsqr = 0.344P = 0.010

Length of Surgery (Hours)

0 2 4 6 8 10 12 14 16 18 20

Δ Lac

tate

Peak

(mm

ol/L

)

0

1

2

3

4

5

6

7

8N = 18R = 0.0499Rsqr = 0.00249P = 0.844

*

**

* *

** * *

*

*

 

Figure 22. Clinical Study Summary: Elevated Serum Lactate, CK and Myoglobinuria Characteristic of Muscle Ischemia Induced Muscle Damage Associated with Patient BMI (A) Increased serum lactate in patients undergoing craniotomy for brain tumour resection (n = 18). (B) Positive correlation between body mass index (BMI) and change in lactate was observed after 3 hours (∆Lactate3hr) (p=0.010). (C) Elevated serum creatine kinase occurred later than lactate increases in patients with a higher lacate response (n=6). In some patients with a high CK, myoglobinuria was detected (*= myoglobinuria positive). (D) No correlation between peak serum lactate and length of surgery (p = 0.844).

Page 147: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

134  

  

 

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

180

*PE1:1.5ug/kg/minPE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5: 18.0ug/kg/min

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Tem

pera

ture

(oC

)

26

28

30

32

34

36

38

40

42

Muscle TemperatureRectal Temperature

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mus

cle

PO2

(torr

)

0

10

20

30

40

50

60

70

* * *

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Nor

mal

ized

Mus

cle

Blo

od F

low

0.0

0.2

0.4

0.6

0.8

1.0

1.2

* **

n = 6 muscles n = 12 muscles

A B

C D

 Figure 23. Bilateral Rectus Abdominus Muscle Perfusion Model Summary (n = 6). (A) Mean arterial pressure increased with PE infusion in a dose dependent manner (ANOVA, p <0.001), (B) Rectal and muscle temperature was stable throughout the experiment. There did not appear to be an effect of temperature on muscle blood flow. (C) Normalized muscle blood flow decreased with infusion of phenylephrine (ANOVA, p<0.001), and (D) Muscle PO2 increased with phenylephrine infusion (n = 6 rats, 12 muscles). (ANOVA, p < 0.001). [A,B,D,: ANOVA = 1 way repeated measures analysis of variance, *: adjusted p <0.05 post hoc Tukey Test,]

Page 148: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

135  

  

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mea

n A

rter

ial P

ress

ure

(mm

Hg)

0

20

40

60

80

100

120

140

160

**

PE1: 1.5ug/kg/minPE2: 3.0ug/kg/minPE3: 6.0ug/kg/minPE4: 12.0ug/kg/minPE5:18.0ug/kg/min

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Tem

pera

ture

(oC

)

0

10

20

30

40 Muscle TemperatureFlap Temperature

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mus

cle/

Flap

Blo

od F

low

(BPU

)

0

200

400

600

800

1000

1200

1400

1600Muscle Blood FlowMuscle Flap Blood Flow

* **

A B

C D

Baseline PE1 PE2 PE3 PE4 PE5 Recovery

Mus

cle

PO2

(torr

)

0

10

20

30

40

50Muscle PO2 Flap PO2

 Figure 24. Muscle Flap vs Contralateral Control Muscle Perfusion Model Summary (A) Mean Arterial Pressure increased with PE infusion in a dose dependent manner (ANOVA, p <0.001) (n = 5). (B) Flap and muscle temperature were stable throughout the experiment (n = 5), (C) Absolute muscle blood flow was greater than flap blood flow by 50% during the baseline period and phenyephrine infusion reduced both muscle and flap blood flow in a dosage dependent manner. (ANOVA, treatment p<0.001, muscle type p = 0.009, and interaction effect p = 0.137). (n = 6), and (D) There was a significant difference between muscle and flap tissue PO2 (ANOVA, p <0.001). Muscle PO2 was greater than flap PO2 throughout the experiment. There was no treatment effect of PE on muscle and flap PO2 which were both stable throughout the experiment (ANOVA, p =0.057) and no interaction effect existed (ANOVA, p = 0.123) (n = 9). [A: ANOVA = 1 way repeated measures analysis of variance, B, C, D: ANOVA = 2 way repeated measures analysis of variance, * post hoc Tukey Test, adjusted p <0.05]

Page 149: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

136  

  

CHAPTER 7 CONCLUSION 7.0 Conclusion

In our clinical study we characterized an early increase in serum lactate in patients

undergoing craniotomy for brain tumour resection which was characteristic of inadequate

tissue perfusion. Subsequent muscle damage markers such as creatine kinase and

myoglobin also were elevated and suggested rhabdomyolysis. Suprisingly, the early rise in

lactate was correlated to BMI and not length of surgery. This suggests that heavy body

mass may be inducing muscle compression leading to ischemia and muscle damage.

Therefore, muscle compression is a valid mechanism that can impair skeletal muscle

perfusion during surgery. In our experimental rodent model, PE infusion increased MAP but

did not have a large effect on blood flow in the carotid artery, and increased femoral artery

blood flow. At the level of skeletal muscle microvasculature, PE decreased tissue blood

flow but resulted in a paradoxical increase in tissue PO2. These data suggest that PE may

have reduced muscle tissue perfusion and concomitantly decreased the metabolic rate of O2

consumption. Prolonged surgery resulted in a reduction in muscle PO2, possibly due to

impact of inflammatory mediators on microvascular tone. Muscle free flap tissue blood flow

and PO2 (perfusion) were dramatically lower than contralateral control muscle suggesting

that surgical manipulation had severely altered the flap microvascular tone. Creation of a

free muscle flap dramatically impairs muscle perfusion (blood flow and PO2) possibly due

to severe microvascular dysfunction or resistance artery constriction.

In conclusion, assessment of muscle perfusion during surgery has identified specific

conditions and treatments, which jeopardize muscle perfusion. These included elevated

body mass index of patients undergoing craniotomy, phenylephrine infusion and surgical

Page 150: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

137  

  

preparation of skeletal muscle flaps. In each case these findings have identified modifiable

risk factors for inadequate muscle perfusion during surgery thereby providing a means to

optimize muscle perfusion and minimize adverse outcomes associated with skeletal muscle

damage during surgery.

Page 151: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

138  

  

References

1. Gjerde G, Naess H. Risk factor burden predicts long-term mortality after cerebral infarction. Acta

neurologica Scandinavica. 2013

2. Bijker JB, Gelb AW. Review article: The role of hypotension in perioperative stroke. Canadian

journal of anaesthesia = Journal canadien d'anesthesie. 2013;60:159-167

3. Ng JL, Chan MT, Gelb AW. Perioperative stroke in noncardiac, nonneurosurgical surgery.

Anesthesiology. 2011;115:879-890

4. Landesberg G, Beattie WS, Mosseri M, Jaffe AS, Alpert JS. Perioperative myocardial infarction.

Circulation. 2009;119:2936-2944

5. Alterman I, Sidi A, Azamfirei L, Copotoiu S, Ezri T. Rhabdomyolysis: Another complication

after prolonged surgery. Journal of clinical anesthesia. 2007;19:64-66

6. Huerta-Alardin AL, Varon J, Marik PE. Bench-to-bedside review: Rhabdomyolysis -- an

overview for clinicians. Critical care. 2005;9:158-169

7. Poli D, Gemma M, Cozzi S, Lugani D, Germagnoli L, Beretta L. Muscle enzyme elevation after

elective neurosurgery. European journal of anaesthesiology. 2007;24:551-555

8. Ankichetty S, Angle P, Margarido C, Halpern SH. Case report: Rhabdomyolysis in morbidly

obese patients: Anesthetic considerations. Canadian journal of anaesthesia = Journal canadien

d'anesthesie. 2013;60:290-293

9. De Tommasi C, Cusimano MD. Rhabdomyolysis after neurosurgery: A review and a framework

for prevention. Neurosurgical review. 2013;36:195-202; discussion 203

10. Cervellin G, Comelli I, Lippi G. Rhabdomyolysis: Historical background, clinical, diagnostic and

therapeutic features. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2010;48:749-

756

11. Khan FY. Rhabdomyolysis: A review of the literature. The Netherlands journal of medicine.

2009;67:272-283

Page 152: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

139  

  

12. Garavaglia M, Mak T, Cusimano MD, Rigamonti A, Crescini C, McCredy V, Romaschin A,

Baker AJ, Hare GM. Body mass index as a risk factor for increased serum lactate during

craniotomy. Minerva anestesiologica. 2013

13. Abrahamsen SO, Stilling M. Life-threatening rhabdomyolysis after prolonged hypoperfusion of

the lower legs. BMJ case reports. 2013;2013

14. Handschel J, Burghardt S, Naujoks C, Kubler NR, Giers G. Parameters predicting complications

in flap surgery. Oral surgery, oral medicine, oral pathology and oral radiology. 2013;115:589-

594

15. Pattani KM, Byrne P, Boahene K, Richmon J. What makes a good flap go bad? A critical analysis

of the literature of intraoperative factors related to free flap failure. The Laryngoscope.

2010;120:717-723

16. Jones BM. Predicting the fate of free tissue transfers. Annals of the Royal College of Surgeons of

England. 1985;67:63-70

17. Haughey BH, Wilson E, Kluwe L, Piccirillo J, Fredrickson J, Sessions D, Spector G. Free flap

reconstruction of the head and neck: Analysis of 241 cases. Otolaryngology--head and neck

surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

2001;125:10-17

18. Genden EM, Rinaldo A, Suarez C, Wei WI, Bradley PJ, Ferlito A. Complications of free flap

transfers for head and neck reconstruction following cancer resection. Oral oncology.

2004;40:979-984

19. Pohlenz P, Klatt J, Schon G, Blessmann M, Li L, Schmelzle R. Microvascular free flaps in head

and neck surgery: Complications and outcome of 1000 flaps. International journal of oral and

maxillofacial surgery. 2012;41:739-743

20. Ferguson-Myrthil N. Vasopressor use in adult patients. Cardiology in review. 2012;20:153-158

21. Thiele RH, Nemergut EC, Lynch C, 3rd. The physiologic implications of isolated alpha(1)

adrenergic stimulation. Anesthesia and analgesia. 2011;113:284-296

Page 153: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

140  

  

22. Chen C, Nguyen MD, Bar-Meir E, Hess PA, Lin S, Tobias AM, Upton J, 3rd, Lee BT. Effects of

vasopressor administration on the outcomes of microsurgical breast reconstruction. Annals of

plastic surgery. 2010;65:28-31

23. Harris L, Goldstein D, Hofer S, Gilbert R. Impact of vasopressors on outcomes in head and neck

free tissue transfer. Microsurgery. 2012;32:15-19

24. Monroe MM, Cannady SB, Ghanem TA, Swide CE, Wax MK. Safety of vasopressor use in head

and neck microvascular reconstruction: A prospective observational study. Otolaryngology--head

and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck

Surgery. 2011;144:877-882

25. Monroe MM, McClelland J, Swide C, Wax MK. Vasopressor use in free tissue transfer surgery.

Otolaryngology--head and neck surgery : official journal of American Academy of

Otolaryngology-Head and Neck Surgery. 2010;142:169-173

26. Cordeiro PG, Santamaria E, Hu QY, Heerdt P. Effects of vasoactive medications on the blood

flow of island musculocutaneous flaps in swine. Annals of plastic surgery. 1997;39:524-531

27. Massey MF, Gupta DK. The effects of systemic phenylephrine and epinephrine on pedicle artery

and microvascular perfusion in a pig model of myoadipocutaneous rotational flaps. Plastic and

reconstructive surgery. 2007;120:1289-1299

28. Wilson DF. Quantifying the role of oxygen pressure in tissue function. American journal of

physiology. Heart and circulatory physiology. 2008;294:H11-13

29. J P. Experiments and observations on different kinds of air (2nd edition). 1776

30. Vincent JL, De Backer D. Oxygen transport-the oxygen delivery controversy. Intensive care

medicine. 2004;30:1990-1996

31. Hare GM, Freedman J, David Mazer C. Review article: Risks of anemia and related management

strategies: Can perioperative blood management improve patient safety? Canadian journal of

anaesthesia = Journal canadien d'anesthesie. 2013;60:168-175

32. Hare GM. Anaemia and the brain. Current opinion in anaesthesiology. 2004;17:363-369

Page 154: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

141  

  

33. Hare GM, Tsui AK, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral

outcomes: Many questions, fewer answers. Anesthesia and analgesia. 2008;107:1356-1370

34. Hare GM, Tsui AK, Ozawa S, Shander A. Anaemia: Can we define haemoglobin thresholds for

impaired oxygen homeostasis and suggest new strategies for treatment? Best practice & research.

Clinical anaesthesiology. 2013;27:85-98

35. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen-

derived variables in predicting outcome in human septic shock. Chest. 1991;99:956-962

36. Bernardin G, Pradier C, Tiger F, Deloffre P, Mattei M. Blood pressure and arterial lactate level

are early indicators of short-term survival in human septic shock. Intensive care medicine.

1996;22:17-25

37. Luft FC. Lactic acidosis update for critical care clinicians. Journal of the American Society of

Nephrology : JASN. 2001;12 Suppl 17:S15-19

38. Morelli A, Lange M, Ertmer C, Dunser M, Rehberg S, Bachetoni A, D'Alessandro M, Van Aken

H, Guarracino F, Pietropaoli P, Traber DL, Westphal M. Short-term effects of phenylephrine on

systemic and regional hemodynamics in patients with septic shock: A crossover pilot study.

Shock. 2008;29:446-451

39. Nguyen HB, Rivers EP, Knoblich BP, Jacobsen G, Muzzin A, Ressler JA, Tomlanovich MC.

Early lactate clearance is associated with improved outcome in severe sepsis and septic shock.

Critical care medicine. 2004;32:1637-1642

40. Phyphers B PJ. Lactate physiology in health and disease. Continuing Education in Anaesthesia,

Critical Care and Pain 2006;6:128-132

41. Rachoin JS, Weisberg LS, McFadden CB. Treatment of lactic acidosis: Appropriate confusion.

Journal of hospital medicine : an official publication of the Society of Hospital Medicine.

2010;5:E1-7

42. Barros LF. Metabolic signaling by lactate in the brain. Trends in neurosciences. 2013

43. Law R BH. The physiology of oxygen delivery Update in Anaesthesia. 1999;10:20-25

Page 155: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

142  

  

44. Hu T, Beattie WS, Mazer CD, Leong-Poi H, Fujii H, Wilson DF, Tsui AK, Liu E, Muhammad

M, Baker AJ, Hare GM. Treatment with a highly selective beta(1) antagonist causes dose-

dependent impairment of cerebral perfusion after hemodilution in rats. Anesthesia and analgesia.

2013;116:649-662

45. Hare GM, Worrall JM, Baker AJ, Liu E, Sikich N, Mazer CD. Beta2 adrenergic antagonist

inhibits cerebral cortical oxygen delivery after severe haemodilution in rats. British journal of

anaesthesia. 2006;97:617-623

46. Wilson DF, Finikova OS, Lebedev AY, Apreleva S, Pastuszko A, Lee WM, Vinogradov SA.

Measuring oxygen in living tissue: Intravascular, interstitial, and "tissue" oxygen measurements.

Advances in experimental medicine and biology. 2011;701:53-59

47. Wilson DF, Lee WM, Makonnen S, Apreleva S, Vinogradov SA. Oxygen pressures in the

interstitial space of skeletal muscle and tumors in vivo. Advances in experimental medicine and

biology. 2008;614:53-62

48. Wilson DF, Lee WM, Makonnen S, Finikova O, Apreleva S, Vinogradov SA. Oxygen pressures

in the interstitial space and their relationship to those in the blood plasma in resting skeletal

muscle. Journal of applied physiology. 2006;101:1648-1656

49. Ragoonanan TE, Beattie WS, Mazer CD, Tsui AK, Leong-Poi H, Wilson DF, Tait G, Yu J, Liu E,

Noronha M, Dattani ND, Mitsakakis N, Hare GM. Metoprolol reduces cerebral tissue oxygen

tension after acute hemodilution in rats. Anesthesiology. 2009;111:988-1000

50. Yu J, Ramadeen A, Tsui AK, Hu X, Zou L, Wilson DF, Esipova TV, Vinogradov SA, Leong-Poi

H, Zamiri N, Mazer CD, Dorian P, Hare GM. Quantitative assessment of brain microvascular and

tissue oxygenation during cardiac arrest and resuscitation in pigs. Anaesthesia. 2013

51. McLellan SA WT. Oxygen delivery and haemoglobin. Continuing Education in Anaesthesia,

Critical Care and Pain. 2004;4:123-126

52. Dobkin AB. The effects of anaesthetic agents on the cardiovascular system: A review. Canadian

Anaesthetists' Society journal. 1960;7:317-342

Page 156: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

143  

  

53. AlMomani TD, Vigmostad SC, Chivukula VK, Al-zube L, Smadi O, BaniHani S. Red blood cell

flow in the cardiovascular system: A fluid dynamics perspective. Critical reviews in biomedical

engineering. 2012;40:427-440

54. Wolff CB. Normal cardiac output, oxygen delivery and oxygen extraction. Advances in

experimental medicine and biology. 2007;599:169-182

55. Shepherd AP, Granger HJ, Smith EE, Guyton AC. Local control of tissue oxygen delivery and its

contribution to the regulation of cardiac output. The American journal of physiology.

1973;225:747-755

56. Magder S. Phenylephrine and tangible bias. Anesthesia and analgesia. 2011;113:211-213

57. Granger HJ, Shepherd AP, Jr. Intrinsic microvascular control of tissue oxygen delivery.

Microvascular research. 1973;5:49-72

58. Stewart C, Haitsma I, Zador Z, Hemphill JC, 3rd, Morabito D, Manley G, 3rd, Rosenthal G. The

new licox combined brain tissue oxygen and brain temperature monitor: Assessment of in vitro

accuracy and clinical experience in severe traumatic brain injury. Neurosurgery. 2008;63:1159-

1164; discussion 1164-1155

59. Ahmad R, Kuppusamy P. Theory, instrumentation, and applications of electron paramagnetic

resonance oximetry. Chemical reviews. 2010;110:3212-3236

60. Jonas R, Schaal T, Krimmel M, Gulicher D, Reinert S, Hoffmann J. Monitoring in microvascular

tissue transfer by measurement of oxygen partial pressure: Four years experience with 125

microsurgical transplants. Journal of cranio-maxillo-facial surgery : official publication of the

European Association for Cranio-Maxillo-Facial Surgery. 2013;41:303-309

61. Keddie S, Rohman L. Reviewing the reliability, effectiveness and applications of licox in

traumatic brain injury. Nursing in critical care. 2012;17:204-212

62. Morgalla MH, Haas R, Grozinger G, Thiel C, Thiel K, Schuhmann MU, Schenk M. Experimental

comparison of the measurement accuracy of the licox((r)) and raumedic ((r)) neurovent-pto brain

tissue oxygen monitors. Acta neurochirurgica. Supplement. 2012;114:169-172

Page 157: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

144  

  

63. Kamolz LP, Giovanoli P, Haslik W, Koller R, Frey M. Continuous free-flap monitoring with

tissue-oxygen measurements: Three-year experience. Journal of reconstructive microsurgery.

2002;18:487-491; discussion 492-483

64. He G. Electron paramagnetic resonance oximetry and redoximetry. Methods in molecular

biology. 2010;594:85-105

65. Liu S, Timmins GS, Shi H, Gasparovic CM, Liu KJ. Application of in vivo epr in brain research:

Monitoring tissue oxygenation, blood flow, and oxidative stress. NMR in biomedicine.

2004;17:327-334

66. Presley T, Kuppusamy P, Zweier JL, Ilangovan G. Electron paramagnetic resonance oximetry as

a quantitative method to measure cellular respiration: A consideration of oxygen diffusion

interference. Biophysical journal. 2006;91:4623-4631

67. Berchtold MW, Brinkmeier H, Muntener M. Calcium ion in skeletal muscle: Its crucial role for

muscle function, plasticity, and disease. Physiological reviews. 2000;80:1215-1265

68. P H. Skeletal muscle physiology. Continuing Education in Anaesthesia, Critical Care and Pain.

2006;6

69. Hirsch NP. Neuromuscular junction in health and disease. British journal of anaesthesia.

2007;99:132-138

70. Andersson DC, Betzenhauser MJ, Reiken S, Umanskaya A, Shiomi T, Marks AR. Stress-induced

increase in skeletal muscle force requires protein kinase a phosphorylation of the ryanodine

receptor. The Journal of physiology. 2012;590:6381-6387

71. Dirksen RT. Checking your soccs and feet: The molecular mechanisms of ca2+ entry in skeletal

muscle. The Journal of physiology. 2009;587:3139-3147

72. Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. Journal of applied physiology.

2008;104:551-558

73. Behringer EJ, Segal SS. Spreading the signal for vasodilatation: Implications for skeletal muscle

blood flow control and the effects of ageing. The Journal of physiology. 2012;590:6277-6284

Page 158: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

145  

  

74. Saltin B, Mortensen SP. Inefficient functional sympatholysis is an overlooked cause of

malperfusion in contracting skeletal muscle. The Journal of physiology. 2012;590:6269-6275

75. Blaisdell FW. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: A

review. Cardiovascular surgery. 2002;10:620-630

76. Eckert P, Schnackerz K. Ischemic tolerance of human skeletal muscle. Annals of plastic surgery.

1991;26:77-84

77. Gabriel A, Chaney N, Stephenson LL, Zamboni WA. Effect of total venous occlusion on

capillary flow and necrosis in skeletal muscle. Plastic and reconstructive surgery. 2001;108:430-

433

78. Whalen WJ, Nair P. Intracellular po2 and its regulation in resting skeletal muscle of the guinea

pig. Circulation research. 1967;21:251-261

79. Behnke BJ, Kindig CA, Musch TI, Koga S, Poole DC. Dynamics of microvascular oxygen

pressure across the rest-exercise transition in rat skeletal muscle. Respiration physiology.

2001;126:53-63

80. Poole DC, Behnke BJ, McDonough P, McAllister RM, Wilson DF. Measurement of muscle

microvascular oxygen pressures: Compartmentalization of phosphorescent probe.

Microcirculation. 2004;11:317-326

81. Johnson PC, Vandegriff K, Tsai AG, Intaglietta M. Effect of acute hypoxia on microcirculatory

and tissue oxygen levels in rat cremaster muscle. Journal of applied physiology. 2005;98:1177-

1184

82. Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG. Human skeletal muscle

intracellular oxygenation: The impact of ambient oxygen availability. The Journal of physiology.

2006;571:415-424

83. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: Cellular mechanisms. Physiological

reviews. 2008;88:287-332

Page 159: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

146  

  

84. Kemp GJ, Taylor DJ, Radda GK. Control of phosphocreatine resynthesis during recovery from

exercise in human skeletal muscle. NMR in biomedicine. 1993;6:66-72

85. Dayer-Berenson L. Rhabdomyolysis: A comprehensive guide. ANNA journal / American

Nephrology Nurses' Association. 1994;21:15-18; quiz 19-20

86. Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased

mortality in hemodynamically stable, high-risk, surgical patients. Critical care. 2004;8:R60-65

87. Bellomo R. Bench-to-bedside review: Lactate and the kidney. Critical care. 2002;6:322-326

88. Levy B. Lactate and shock state: The metabolic view. Current opinion in critical care.

2006;12:315-321

89. Revelly JP, Tappy L, Martinez A, Bollmann M, Cayeux MC, Berger MM, Chiolero RL. Lactate

and glucose metabolism in severe sepsis and cardiogenic shock. Critical care medicine.

2005;33:2235-2240

90. RD C. Clinical and biochemical aspects of lactic acidosis. Blackwell Scientific Publications,

Oxford, London, Edinburgh, and Melbourne 1976

91. Visweswaran P, Guntupalli J. Rhabdomyolysis. Critical care clinics. 1999;15:415-428, ix-x

92. Allison RC, Bedsole DL. The other medical causes of rhabdomyolysis. The American journal of

the medical sciences. 2003;326:79-88

93. Kikuno N, Urakami S, Shigeno K, Kishi H, Shiina H, Igawa M. Traumatic rhabdomyolysis

resulting from continuous compression in the exaggerated lithotomy position for radical perineal

prostatectomy. International journal of urology : official journal of the Japanese Urological

Association. 2002;9:521-524

94. Biswas S, Gnanasekaran I, Ivatury RR, Simon R, Patel AN. Exaggerated lithotomy position-

related rhabdomyolysis. The American surgeon. 1997;63:361-364

95. Glassman DT, Merriam WG, Trabulsi EJ, Byrne D, Gomella L. Rhabdomyolysis after

laparoscopic nephrectomy. JSLS : Journal of the Society of Laparoendoscopic Surgeons / Society

of Laparoendoscopic Surgeons. 2007;11:432-437

Page 160: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

147  

  

96. Kim TK, Yoon JR, Lee MH. Rhabdomyolysis after laparoscopic radical nephrectomy -a case

report. Korean journal of anesthesiology. 2010;59 Suppl:S41-44

97. Lagandre S, Arnalsteen L, Vallet B, Robin E, Jany T, Onraed B, Pattou F, Lebuffe G. Predictive

factors for rhabdomyolysis after bariatric surgery. Obesity surgery. 2006;16:1365-1370

98. Choban PS, Flancbaum L. The impact of obesity on surgical outcomes: A review. Journal of the

American College of Surgeons. 1997;185:593-603

99. Turrentine FE, Hanks JB, Schirmer BD, Stukenborg GJ. The relationship between body mass

index and 30-day mortality risk, by principal surgical procedure. Archives of surgery.

2012;147:236-242

100. Schultheiss KE, Jang YG, Yanowitch RN, Tolentino J, Curry DJ, Luders J, Asgarzadie-Gadim F,

Macdonald RL. Fat and neurosurgery: Does obesity affect outcome after intracranial surgery?

Neurosurgery. 2009;64:316-326; discussion 326-317

101. Capen DA, Calderone RR, Green A. Perioperative risk factors for wound infections after lower

back fusions. The Orthopedic clinics of North America. 1996;27:83-86

102. Friedman ND, Sexton DJ, Connelly SM, Kaye KS. Risk factors for surgical site infection

complicating laminectomy. Infection control and hospital epidemiology : the official journal of

the Society of Hospital Epidemiologists of America. 2007;28:1060-1065

103. Wimmer C, Gluch H, Franzreb M, Ogon M. Predisposing factors for infection in spine surgery: A

survey of 850 spinal procedures. Journal of spinal disorders. 1998;11:124-128

104. Patel N, Bagan B, Vadera S, Maltenfort MG, Deutsch H, Vaccaro AR, Harrop J, Sharan A,

Ratliff JK. Obesity and spine surgery: Relation to perioperative complications. Journal of

neurosurgery. Spine. 2007;6:291-297

105. Godden DR, Little R, Weston A, Greenstein A, Woodwards RT. Catecholamine sensitivity in the

rat femoral artery after microvascular anastomosis. Microsurgery. 2000;20:217-220

106. Oden B. Micro-lymphangiographic studies of experimental skin autografts. Acta chirurgica

Scandinavica. 1961;121:219-232

Page 161: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

148  

  

107. Zhong T, Neinstein R, Massey C, McCluskey SA, Lipa J, Neligan P, Hofer SO. Intravenous fluid

infusion rate in microsurgical breast reconstruction: Important lessons learned from 354 free

flaps. Plastic and reconstructive surgery. 2011;128:1153-1160

108. Kruse AL, Bredell MG, Lubbers HT, Jacobsen C, Gratz KW, Obwegeser JA. Clinical reliability

of radial forearm free-flap procedure in reconstructive head and neck surgery. The Journal of

craniofacial surgery. 2011;22:822-825

109. Selber JC, Angel Soto-Miranda M, Liu J, Robb G. The survival curve: Factors impacting the

outcome of free flap take-backs. Plastic and reconstructive surgery. 2012;130:105-113

110. Herold C, Gohritz A, Meyer-Marcotty M, Steiert A, Jokuszies A, Vaske B, Vogt PM. Is there an

association between comorbidities and the outcome of microvascular free tissue transfer? Journal

of reconstructive microsurgery. 2011;27:127-132

111. Zhang F, Lineaweaver WC, Kao S, Tonken H, Degnan K, Newlin L, Buncke HJ. Microvascular

transfer of the rectus abdominis muscle and myocutaneous flap in rats. Microsurgery.

1993;14:420-423

112. Thiele RH, Nemergut EC, Lynch C, 3rd. The clinical implications of isolated alpha(1) adrenergic

stimulation. Anesthesia and analgesia. 2011;113:297-304

113. Harik SI, Sharma VK, Wetherbee JR, Warren RH, Banerjee SP. Adrenergic and cholinergic

receptors of cerebral microvessels. Journal of cerebral blood flow and metabolism : official

journal of the International Society of Cerebral Blood Flow and Metabolism. 1981;1:329-338

114. Duebener LF, Hagino I, Schmitt K, Stamm C, Zurakowski D, Jonas RA. Effects of hemodilution

and phenylephrine on cerebral blood flow and metabolism during cardiopulmonary bypass.

Journal of cardiothoracic and vascular anesthesia. 2004;18:423-428

115. Hare GM, Hum KM, Kim SY, Barr A, Baker AJ, Mazer CD. Increased cerebral tissue oxygen

tension after extensive hemodilution with a hemoglobin-based oxygen carrier. Anesthesia and

analgesia. 2004;99:528-535, table of contents

Page 162: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

149  

  

116. Graham RM, Perez DM, Hwa J, Piascik MT. Alpha 1-adrenergic receptor subtypes. Molecular

structure, function, and signaling. Circulation research. 1996;78:737-749

117. Cotecchia S. The alpha1-adrenergic receptors: Diversity of signaling networks and regulation.

Journal of receptor and signal transduction research. 2010;30:410-419

118. Akinaga J, Lima V, Kiguti LR, Hebeler-Barbosa F, Alcantara-Hernandez R, Garcia-Sainz JA,

Pupo AS. Differential phosphorylation, desensitization, and internalization of alpha1a-

adrenoceptors activated by norepinephrine and oxymetazoline. Molecular pharmacology.

2013;83:870-881

119. Chen ZJ, Minneman KP. Recent progress in alpha1-adrenergic receptor research. Acta

pharmacologica Sinica. 2005;26:1281-1287

120. Muszkat M, Kurnik D, Sofowora GG, Wood AJ, Stein CM. Independent regulation of alpha1 and

alpha2 adrenergic receptor-mediated vasoconstriction in vivo. Journal of hypertension.

2011;29:251-256

121. Banic A, Krejci V, Erni D, Wheatley AM, Sigurdsson GH. Effects of sodium nitroprusside and

phenylephrine on blood flow in free musculocutaneous flaps during general anesthesia.

Anesthesiology. 1999;90:147-155

122. Carr RW, Delaney CA, Westerman RA, Roberts RG. Denervation impairs cutaneous

microvascular function and blister healing in the rat hindlimb. Neuroreport. 1993;4:467-470

123. Pang CY, Forrest CR, Morris SF. Pharmacological augmentation of skin flap viability: A

hypothesis to mimic the surgical delay phenomenon or a wishful thought. Annals of plastic

surgery. 1989;22:293-306

124. Sigurdsson GH, Thomson D. Anaesthesia and microvascular surgery: Clinical practice and

research. European journal of anaesthesiology. 1995;12:101-122

125. Skubas N, Barner HB, Apostolidou I, Lappas DG. Phenylephrine to increase blood flow in the

radial artery used as a coronary bypass conduit. The Journal of thoracic and cardiovascular

surgery. 2005;130:687-692

Page 163: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

150  

  

126. Diederich RS, Mowlavi A, Meldrum G, Medling B, Bueno RA, Neumeister MW. Local cooling

provides muscle flaps protection from ischemia-reperfusion injury in the event of venous

occlusion during the early reperfusion period. Hand. 2009;4:19-23

127. Kinnunen I, Laurikainen E, Schrey A, Laippala P, Aitasalo K. Effect of hypothermia on blood-

flow responses in pedicled groin flaps in rats. British journal of plastic surgery. 2002;55:657-663

128. Faber JE. Effect of local tissue cooling on microvascular smooth muscle and postjunctional alpha

2-adrenoceptors. The American journal of physiology. 1988;255:H121-130

129. Awwad AM, White RJ, Webster MH, Vance JP. The effect of temperature on blood flow in

island and free skin flaps: An experimental study. British journal of plastic surgery. 1983;36:373-

382

130. Hussl H, Guy RJ, Eriksson E, Russell RC. Effect of temperature on blood flow and metabolism in

a neurovascular island skin flap. Annals of plastic surgery. 1986;17:73-78

131. Lockette W, Kirkland K, Farrow S. Alpha 2-adrenergic agonists increase cellular lactate efflux.

Hypertension. 1996;27:1104-1107

132. Binzoni T, Tchernin D, Richiardi J, Van De Ville D, Hyacinthe JN. Haemodynamic responses to

temperature changes of human skeletal muscle studied by laser-doppler flowmetry. Physiological

measurement. 2012;33:1181-1197

133. Kaufman T, Granick MS, Hurwitz DJ, Klain M. Is experimental muscle flap temperature a

reliable indicator of its viability? Annals of plastic surgery. 1987;19:34-41

134. Kotsarini C, Griffiths PD, Wilkinson ID, Hoggard N. A systematic review of the literature on the

effects of dexamethasone on the brain from in vivo human-based studies: Implications for

physiological brain imaging of patients with intracranial tumors. Neurosurgery. 2010;67:1799-

1815; discussion 1815

135. Warburg O. Is aerobic glycolysis specific to tumours? . Biochem.Z. 1929;204:482-483

136. Koppenol WH, Bounds PL, Dang CV. Otto warburg's contributions to current concepts of cancer

metabolism. Nature reviews. Cancer. 2011;11:325-337

Page 164: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

151  

  

137. Ferreira LM. Cancer metabolism: The warburg effect today. Experimental and molecular

pathology. 2010;89:372-380

138. Meigs JB, Wilson PW, Fox CS, Vasan RS, Nathan DM, Sullivan LM, D'Agostino RB. Body

mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. The

Journal of clinical endocrinology and metabolism. 2006;91:2906-2912

139. Gengo PJ, Bowling N, Wyss VL, Hayes JS. Effects of prolonged phenylephrine infusion on

cardiac adrenoceptors and calcium channels. The Journal of pharmacology and experimental

therapeutics. 1988;244:100-105

140. Clark MG, Colquhoun EQ, Rattigan S, Dora KA, Eldershaw TP, Hall JL, Ye J. Vascular and

endocrine control of muscle metabolism. The American journal of physiology. 1995;268:E797-

812

141. Richter EA, Ruderman NB, Galbo H. Alpha and beta adrenergic effects on metabolism in

contracting, perfused muscle. Acta physiologica Scandinavica. 1982;116:215-222

142. Grubb B, Folk GE, Jr. The role of adrenoceptors in norepinephrine-stimulated vo2 in muscle.

European journal of pharmacology. 1977;43:217-223

143. Hettiarachchi M, Parsons KM, Richards SM, Dora KA, Rattigan S, Colquhoun EQ, Clark MG.

Vasoconstrictor-mediated release of lactate from the perfused rat hindlimb. Journal of applied

physiology. 1992;73:2544-2551

144. Trager K, DeBacker D, Radermacher P. Metabolic alterations in sepsis and vasoactive drug-

related metabolic effects. Current opinion in critical care. 2003;9:271-278

145. McGillivray-Anderson KM, Faber JE. Effect of reduced blood flow on alpha 1- and alpha 2-

adrenoceptor constriction of rat skeletal muscle microvessels. Circulation research. 1991;69:165-

173

146. Mauger JP, Sladeczek F, Bockaert J. Characteristics and metabolism of alpha 1 adrenergic

receptors in a nonfusing muscle cell line. The Journal of biological chemistry. 1982;257:875-879

Page 165: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

152  

  

147. Hughes RJ, Insel PA. Agonist-mediated regulation of alpha 1- and beta 2-adrenergic receptor

metabolism in a muscle cell line, bc3h-1. Molecular pharmacology. 1986;29:521-530

148. Martin WH, 3rd, Tolley TK, Saffitz JE. Autoradiographic delineation of skeletal muscle alpha 1-

adrenergic receptor distribution. The American journal of physiology. 1990;259:H1402-1408

149. W N. In vivo measurement of rat skeletal muscle oxygen consumption following brief periods of

ischemia with reperfusion as assessed by phosphorescence quenching microscopy. PhD Thesis.

2010;Virginia Commonwealth University 1-179

150. Harris K, Walker PM, Mickle DA, Harding R, Gatley R, Wilson GJ, Kuzon B, McKee N,

Romaschin AD. Metabolic response of skeletal muscle to ischemia. The American journal of

physiology. 1986;250:H213-220

151. Im MJ, Su CT, Hoopes JE, Anthenelli RM. Skin-flap metabolism in rats: Oxygen consumption

and lactate production. Plastic and reconstructive surgery. 1983;71:685-688

152. Im MJ, Hoopes JE. Enzyme activities in experimental skin flaps. The Journal of surgical

research. 1978;25:465-470

153. Hartman JC, Pagel PS, Proctor LT, Kampine JP, Schmeling WT, Warltier DC. Influence of

desflurane, isoflurane and halothane on regional tissue perfusion in dogs. Canadian journal of

anaesthesia = Journal canadien d'anesthesie. 1992;39:877-887

154. Manohar M, Gustafson R, Nganwa D. Skeletal muscle perfusion during prolonged 2.03% end-

tidal isoflurane-o2 anesthesia in isocapnic ponies. American journal of veterinary research.

1987;48:946-951

155. Lundeen G, Manohar M, Parks C. Systemic distribution of blood flow in swine while awake and

during 1.0 and 1.5 mac isoflurane anesthesia with or without 50% nitrous oxide. Anesthesia and

analgesia. 1983;62:499-512

156. Li YP, Reid MB. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Current

opinion in rheumatology. 2001;13:483-487

Page 166: MECHANISMS THAT JEOPARDIZE SKELETAL MUSCLE … · Mechanisms that Jeopardize Skeletal Muscle Perfusion during Surgery Timothy H Mak Master of Science Department of Physiology University

153  

  

157. Yang J, Noyan-Ashraf MH, Meissner A, Voigtlaender-Bolz J, Kroetsch JT, Foltz W, Jaffray D,

Kapoor A, Momen A, Heximer SP, Zhang H, van Eede M, Henkelman RM, Matthews SG,

Lidington D, Husain M, Bolz SS. Proximal cerebral arteries develop myogenic responsiveness in

heart failure via tumor necrosis factor-alpha-dependent activation of sphingosine-1-phosphate

signaling. Circulation. 2012;126:196-206

158. Meissner A, Yang J, Kroetsch JT, Sauve M, Dax H, Momen A, Noyan-Ashraf MH, Heximer S,

Husain M, Lidington D, Bolz SS. Tumor necrosis factor-alpha-mediated downregulation of the

cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate

signaling in a mouse model of heart failure. Circulation. 2012;125:2739-2750

159. Scherer EQ, Yang J, Canis M, Reimann K, Ivanov K, Diehl CD, Backx PH, Wier WG, Strieth S,

Wangemann P, Voigtlaender-Bolz J, Lidington D, Bolz SS. Tumor necrosis factor-alpha

enhances microvascular tone and reduces blood flow in the cochlea via enhanced sphingosine-1-

phosphate signaling. Stroke; a journal of cerebral circulation. 2010;41:2618-2624

160. Morain WD, Pettit RJ, Rothkopf DM, Coombs DW. Augmentation of surviving flap area by

intraarterial vasodilators administered through implantable pumps. Annals of plastic surgery.

1983;11:46-52

161. Finseth F, Adelberg MG. Prevention of skin flap necrosis by a course of treatment with

vasodilator drugs. Plastic and reconstructive surgery. 1978;61:738-743

162. Waters LM, Pearl RM, Macaulay RM. A comparative analysis of the ability of five classes of

pharmacological agents to augment skin flap survival in various models and species: An attempt

to standardize skin flap research. Annals of plastic surgery. 1989;23:117-122