Mechanical Vibrations FUNDAMENTALS OF VIBRATION

33
Prof. Carmen Muller-Karger, PhD Figures and content adapted from Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition Mechanical Vibrations Mechanical Vibrations FUNDAMENTALS OF VIBRATION Prof. Carmen Muller-Karger, PhD Florida International University Figures and content adapted from Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition. Chapter 1: Fundamentals of Vibration

Transcript of Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Page 1: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Mechanical Vibrations

FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhD

Florida International University

Figures and content adapted from

Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition.

Chapter 1: Fundamentals of Vibration

Page 2: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Learning Objectives

โ€ข Recognize the importance of studying Vibration

โ€ข Describe a brief the history of vibration

โ€ข Understand the definition of Vibration

โ€ข State the process of modeling systems

โ€ข Determine the Degrees of Freedom (DOF) of a system

โ€ข Identify the different types of Mechanical Vibrations

โ€ข Compute equivalent values for Spring elements, Mass elements and Damping elements

โ€ข Characterize harmonic motion and the different possible representation

โ€ข Add and subtract harmonic motions

โ€ข Conduct Fourier series expansion of given periodic functions

Page 3: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Importance of studying Vibration

โ€ข All systems that have mass and any type of flexible components are vibrating system.

โ€ข Examples are many: โ€ข We hear because our eardrums vibrate

โ€ข Human speech requires the oscillatory motion of larynges

โ€ข In machines, vibration can loosen fasteners such as nuts.

โ€ข In balance in machine can cause problem to the machine itself or surrounding machines or environment.

โ€ข Periodic forces bring dynamic responses that can cause fatigue in materials

โ€ข The phenomenon known as Resonance leads to excessive deflections and failure.

โ€ข The vibration and noise generated by engines causes annoyance to people and, sometimes, damage to property.

Page 4: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Importance of studying Vibration

Page 5: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Brief historyโ€ข People became interested in vibration when they created the first musical instruments ( as long as 4000 B.C.).

โ€ข Pythagoras ( 582 โ€“ 507 B.C) is considered the fisrt person to investigate musical sounds.

โ€ข Galileo Galilei (1564-1642) is considered to be the founder of modern experimental science, he conduct experiments on the simple pendulum, describing the dependence of the frequency of vibration and the length.

โ€ข Robert Hooke (1635โ€“1703) also conducted experiments to find a relation between the pitch and frequency of vibration of a string.

โ€ข Joseph Sauveur (1653โ€“1716) coined the word โ€œacousticsโ€ for the science of sound.

โ€ข Sir Isaac Newton (1642โ€“1727) his law of motion is routinely used to derive the equations of motion of a vibrating body.

โ€ข Brook Taylor (1685โ€“1731), obtained the natural frequency of vibration observed by Galilei and Mersenne.

โ€ข Daniel Bernoulli (1700โ€“1782), Jean Dโ€™Alembert (1717โ€“1783), and Leonard Euler (1707โ€“1783)., introduced partial derivatives in the equations of motion.

โ€ข J. B. J. Fourier (1768โ€“1830) contributed on the development of the theory of vibrations and led to the possibility of expressing any arbitrary function using the principle of superposition.

โ€ข Joseph Lagrange (1736โ€“1813) presented the analytical solution of the vibrating string.

โ€ข Charles Coulomb did both theoretical and experimental studies in 1784 on the torsional oscillations of a metal cylinder suspended by a wire. He also contributed in the modeling of dry friction.

โ€ข E. F. F. Chladni (1756โ€“1824) developed the method of placing sand on a vibrating plate to find its mode shapes.

โ€ข Simeon Poisson (1781โ€“1840) study vibration of a rectangular flexible membrane.

โ€ข Lord Baron Rayleigh (1842 โ€“ 1919) Among the many contributions, he develop the method of finding the fundamental frequency of vibration of a conservative system by making use of the principle of conservation of energy.

Page 6: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Definition of Vibration

โ€ข Any motion that repeats itself after an interval of time.

โ€ข A vibratory system, in general, includes a means for storing potential energy (spring or elasticity), a means for storing kinetic energy (mass or inertia), and a means by which energy is gradually lost (damper).

Excitations(input): Initial conditions of external force

Responses (output) T U

DEnergy dissipation

F(t) r(t)

Page 7: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Modeling systemsโ€ข All mechanical

and structural systems can be modeled as mass-spring-damper systems

Real system

Mechanical Model

Mathematical Model

Solution

Analysis

๐‘š แˆท๐‘ฅ + ๐‘ แˆถ๐‘ฅ + ๐‘˜๐‘ฅ = 0

Respuesta

anรกlisis del

sistema para

que la

respuesta

sea

coherente.

๐‘š แˆท๐‘ฅ + ๐‘ แˆถ๐‘ฅ + ๐‘˜๐‘ฅ = 0

Respuesta

anรกlisis del

sistema para

que la

respuesta

sea

coherente.

Page 8: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Degrees of freedom

Single DoF systems: Two DOF System

The minimum number of independent coordinates required to determine completely the positions of all parts of a system at any instant of time

Three DoF systems:

Page 9: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Classification of Vibration

โ€ข Free Vibration: When a system, after an initial disturbance, is left to vibrate on its own. No external force acts on the system. The system oscillates at its natural frequency. Example: a pendulum.

โ€ข Forced Vibration: When a system is subjected to an external force (often, a repeating type of force). The oscillation that arises in machines such as diesel engines is an example of forced vibration.

Page 10: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Types of response

โ€ข Undamped and damped Vibration

โ€ข Linear of nonlinear Vibration

โ€ข Deterministic ond Random Vibration

๐‘™ แˆท๐œƒ + ๐‘š๐‘”๐‘ ๐‘–๐‘›๐œƒ = 0

Page 11: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Mechanical Vibrations

SPRING, MASS and DAMPING ELEMENTS

Prof. Carmen Muller-Karger, PhD

Florida International University

Figures and content adapted from

Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition.

Chapter 1: Fundamentals of Vibration

Page 12: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Spring Elements

The force related to a elongation or reduction in length opposes to the displacement of the end of the spring and is given by :

๐น = ๐‘˜๐‘ฅ

The work done (U) in deforming a spring is stored as strain or potential energy in the spring, and it is given by

๐‘ˆ =1

2๐‘˜๐‘ฅ2

๐น = ๐‘Ž๐‘ฅ + ๐‘๐‘ฅ3

Non-linear spring element:

แ‰ค๐‘˜ =๐‘‘๐น

๐‘‘๐‘ฅ๐‘ฅโˆ—

Page 13: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Example: Spring constant of a rodโ€ข Find the equivalent spring constant of a uniform rod of length l, cross-

sectional area A, Area Moment of Inertia I and Youngโ€™s modulus E

๐›ฟ =๐›ฟ

๐‘™๐‘™ = ํœ€๐‘™ =

๐น๐‘™

๐ด๐ธ

๐‘˜ =๐น๐‘œ๐‘Ÿ๐‘๐‘’

๐‘‘๐‘’๐‘“๐‘™๐‘’๐‘ฅ๐‘–๐‘œ๐‘›=๐‘Š

๐›ฟ=3๐ธ๐ผ

๐‘™3

๐›ฟ =๐‘Š๐‘™3

3๐ธ๐ผ

๐‘˜ =๐น๐‘œ๐‘Ÿ๐‘๐‘’

๐‘‘๐‘’๐‘“๐‘™๐‘’๐‘ฅ๐‘–๐‘œ๐‘›=๐น

๐›ฟ=๐ด๐ธ

๐‘™

1. Subjected to an axial tensile (or compressive) force F

2. Cantilever bean subjected to a transversal load at the free end.

Page 14: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Original system Equivalent model Spring Constant of a

Rod under axial load

Cantilever beam with end force

Simple support beam with load in the middle

Propeller Shaft subjected to a torsional moment

Equivalent spring constants

๐‘˜ =๐ด๐ธ

๐‘™

๐‘˜ =3๐ธ๐ผ

๐‘™3

๐‘˜ =๐บ๐ฝ

๐‘™๐ฝ =

๐œ‹(๐ท4 โˆ’ ๐‘‘4)

32

๐‘˜ =48๐ธ๐ผ

๐‘™3

Page 15: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Combination of Springs Springs in Parallel Springs in Series

W= ๐‘˜1๐›ฟ๐‘ ๐‘ก + ๐‘˜2๐›ฟ๐‘ ๐‘ก

W= (๐‘˜1+๐‘˜2)๐›ฟ๐‘ ๐‘ก

W= (๐‘˜๐‘’๐‘ž)๐›ฟ๐‘ ๐‘ก

๐‘˜๐‘’๐‘ž = (๐‘˜1+๐‘˜2)

W= ๐‘˜1๐›ฟ1 = ๐‘˜2(๐›ฟ๐‘ ๐‘กโˆ’๐›ฟ1) = ๐‘˜๐‘’๐‘ž๐›ฟ๐‘ ๐‘ก

๐›ฟ1 =๐‘Š

๐‘˜1

1

๐‘˜๐‘’๐‘ž=

1

๐‘˜1+

1

๐‘˜2

๐›ฟ1 = ๐‘˜2(๐›ฟ2โˆ’๐›ฟ1)

๐›ฟ๐‘ ๐‘ก =๐‘Š

๐‘˜๐‘’๐‘ž

๐‘˜2 ๐›ฟ๐‘ ๐‘ก โˆ’๐‘Š

๐‘˜1= ๐‘Š ๐›ฟ๐‘ ๐‘ก =

๐‘Š

๐‘˜2+๐‘Š

๐‘˜1

Page 16: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Mass or Inertia Elements

โ€ข The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic energy whenever the velocity of the body changes.

โ€ข For single DoF system for a simple analysis, we can replace several masses by a single equivalent mass.

โ€ข The key step is to choose properly a parameter that will describe the motion of the system and express all other parameters in term of the chosen one.

โ€ข Calculate the kinetic energy of the system and make it equal to the kinetic energy of the equivalent system

Page 17: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Kinetic energy

าง๐‘ฃ = าง๐‘ฃ๐‘ + เดฅ๐œ”๐‘ง ร— าง๐‘Ÿ

xยด

yยด

๐‘

๐บ

GENERAL MOTION

๐œ”

๐›ผ

dm

x

y

๐‘œ

In general for one rigid body the

kinetic energy can be calculated

as

๐‘‡ =1

2๐‘š( าง๐‘ฃ๐‘)

2+1

2๐ผ๐‘๐‘ง๐‘ง(๐œ”๐‘ง)

2+ าง๐‘ฃ๐‘ โˆ™ เดฅ๐œ”๐‘ง ร—๐‘š าง๐‘Ÿ๐บ

For a system with several rigid bodies is

the sum of the kinetic energy of each

body:

Page 18: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Example 1: Translational masses by a rigid bar

๐‘‡ =1

2๐‘š1( แˆถ๐‘ฅ1)

2+1

2๐‘š2( แˆถ๐‘ฅ2)

2+1

2๐‘š3( แˆถ๐‘ฅ3)

2 แˆถ๐‘ฅ๐‘’๐‘ž = แˆถ๐‘ฅ1

แˆถ๐‘ฅ3 =๐‘™3

๐‘™1แˆถ๐‘ฅ1แˆถ๐‘ฅ2 =

๐‘™2

๐‘™1แˆถ๐‘ฅ1

๐‘‡ =1

2๐‘š1( แˆถ๐‘ฅ1)

2+1

2๐‘š2

๐‘™2๐‘™1

แˆถ๐‘ฅ1

2

+1

2๐‘š3

๐‘™3๐‘™1

แˆถ๐‘ฅ1

2

๐‘‡ =1

2๐‘š1 +๐‘š2

๐‘™2๐‘™1

2

+๐‘š3

๐‘™3๐‘™1

2

( แˆถ๐‘ฅ1)2

๐‘š๐‘’๐‘ž = ๐‘š1 +๐‘š2

๐‘™2๐‘™1

2

+๐‘š3

๐‘™3๐‘™1

2

โ€ข Letโ€™s choose แˆถ๐‘ฅ1 as the parameter that will describe the motion of the system and find the equivalent kinetic energy

Page 19: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Example 2: Translational and rotational masses coupled together

Since the system is rotating without slipping and the gear is fix at its center แˆถ๐œƒ = แˆถ๐‘ฅ/๐‘…

๐‘‡ =1

2๐‘š( แˆถ๐‘ฅ)2+

1

2๐ฝ๐‘œ( แˆถ๐œƒ)2

โ€ข If we choose as the parameter that will describe the motion of the system แˆถ๐‘ฅ๐‘’๐‘ž = แˆถ๐‘ฅ

๐‘‡ =1

2๐‘š( แˆถ๐‘ฅ)2+

1

2๐ฝ๐‘œ

แˆถ๐‘ฅ

๐‘…

2

โ€ข If we choose as the parameter that will describe the motion of the system แˆถ๐‘ฅ๐‘’๐‘ž = แˆถ๐œƒ

๐‘‡ =1

2๐‘š( แˆถ๐‘ฅ)2+

1

2๐ฝ๐‘œ( แˆถ๐œƒ)2

๐‘‡ =1

2๐‘š( แˆถ๐œƒ๐‘…)2+

1

2๐ฝ๐‘œ แˆถ๐œƒ

2

๐‘š๐‘’๐‘ž = ๐‘š๐‘…2 + ๐ฝ๐‘œ๐‘‡ =

1

2๐‘š๐‘…2 + ๐ฝ๐‘œ ( แˆถ๐œƒ)2

Page 20: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Damping element

โ€ข In many practical systems, the vibrational energy is gradually converted to heat or sound. Due to the reduction in the energy, the response, such as the displacement of the system, gradually decreases. Damping force exists only if there is relative velocity between the two ends of the damper.

โ€ข We will consider three types of damping:โ€ข Viscous Damping: the damping force is proportional to the velocity of the

vibrating body.

โ€ข Coulomb or Dry-Friction Damping: damping force is constant in magnitude but opposite in direction to that of the motion

โ€ข Material or Solid or Hysteretic Damping: due to friction between the internal planes, which slip or slide as the deformations take place

Page 21: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

In general viscous Dampers

Dampers in ParallelDampers in Series

๐‘๐‘’๐‘ž = (๐‘1+๐‘2)1

๐‘๐‘’๐‘ž=

1

๐‘1+1

๐‘2

Non-linear damper element:

แ‰ค๐‘ =๐‘‘๐น

๐‘‘ แˆถ๐‘ฅ๐‘ฅโˆ—

Non-linear damper element:

๐น = ๐‘๐‘ฃ

Page 22: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Damping constant of parallel plates separated by viscous fluid.โ€ข According to Newtonโ€™s laws of viscous flow:

๐œ = ๐œ‡๐‘‘๐‘ข

๐‘‘๐‘ฆ

๐น = ๐œ๐ด =๐œ‡๐ด๐‘ฃ

โ„Ž

๐‘‘๐‘ข

๐‘‘๐‘ฆ=๐‘ฃ

โ„Ž

๐น = ๐‘๐‘ฃ =๐œ‡๐ด

โ„Ž๐‘ฃ

๐‘ =๐œ‡๐ด

โ„Ž

โ€ข If A is the surface area at the moving plate, and expressing the force in term of the damping constant:

โ€ข Gradient of the velocity:

Page 23: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Damping constant of a journal bearingโ€ข According to Newtonโ€™s laws of viscous flow, u

is the radial velocity, and v the tangential velocity of the shaft:

๐œ = ๐œ‡๐‘‘๐‘ข

๐‘‘๐‘Ÿ

๐‘‡ = (๐œ๐ด)๐‘… =๐œ‡(๐œ”๐‘…) 2๐œ‹๐‘…๐‘™ ๐‘…

๐‘‘

๐‘‡ = ๐‘๐œ”

๐‘ =๐œ‡2๐œ‹๐‘…3๐‘™

๐‘‘

๐‘‘๐‘ข

๐‘‘๐‘Ÿ=๐‘ฃ

๐‘‘=๐œ”๐‘…

๐‘‘

If A is the surface area at the moving shaft (2๐œ‹๐‘…๐‘™), and expressing the torque T=F R in term of the damping constant:

โ€ข Gradient of the velocity:

Page 24: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Mechanical Vibrations

Harmonic Motion

Prof. Carmen Muller-Karger, PhD

Florida International University

Figures and content adapted from

Textbook: Singiresu S. Rao. Mechanical Vibration, Pearson sixth edition.

Chapter 1: Fundamentals of Vibration

Page 25: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Harmonic Motion or Periodic Motion, Definitions and Terminology

Harmonic motion: Motion is repeated after equal intervals of time

Cycle: The movement from one position, going to the other direction and returning to the same position

Amplitude: The maximum displacement of a vibrating body from its equilibrium position.

Period of oscillation: The time taken to complete one cycle of motion, is denoted by ฯ„.

Frequency of oscillation: The number of cycles per unit time

Circular frequency of oscillation: The number of cycles per unit time.

๐œ =2๐œ‹

๐œ”

๐‘“ =1

๐œ=

๐œ”

2๐œ‹

๐œ” =2๐œ‹

๐œ

๐ด

Page 26: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Harmonic Motion or Periodic Motion, Definitions and Terminology

Synchronous motion : have the same frequency or angular velocity, ฯ‰. Need not have the same amplitude, and they need not attain their maximum values at the same time.

Phase angle: means that the maximum of the second vector would occur f radians earlier than that of the first vector.

wt

wt+f

O

P1

P2

Vectorial representation

๐‘ฅ ๐‘ก = sin(๐œ”๐‘ก)

แˆถ๐‘ฅ ๐‘ก = โˆ’ฯ‰๐‘๐‘œ๐‘ (๐œ”๐‘ก)

Displacement:

Velocity:

Acceleration: แˆท๐‘ฅ ๐‘ก = โˆ’๐œ”2sin(๐œ”๐‘ก)

Page 27: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Complex-number representationโ€ข Any vector in the xy-plane can be represented as a complex

number:

เดค๐‘‹ = a + ib = ๐ด cos ๐œ”๐‘ก + ๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘ก

โ€ข The magnitude

โ€ข Using Euler form

เดค๐‘‹ = A๐‘’๐‘–๐œ”๐‘ก = A๐‘’๐‘–๐œƒ = ๐ด cos ๐œ”๐‘ก + ๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘ก

A = ๐‘Ž2 + ๐‘2

เดค๐‘‹ = A๐‘’โˆ’๐‘–๐œ”๐‘ก = A๐‘’โˆ’๐‘–๐œƒ = ๐ด cos ๐œ”๐‘ก โˆ’ ๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘ก

เดค๐‘‹ = A๐‘’๐‘–๐œ”๐‘ก

or

แˆถเดค๐‘‹ =๐‘‘ เดค๐‘‹

๐‘‘๐‘ก=๐‘‘(A๐‘’๐‘–๐œ”๐‘ก)

๐‘‘๐‘ก= ๐‘–ฯ‰A๐‘’๐‘–๐œ”๐‘ก

แˆทเดค๐‘‹ =๐‘‘2 เดค๐‘‹

๐‘‘๐‘ก2=๐‘‘2(A๐‘’๐‘–๐œ”๐‘ก)

๐‘‘๐‘ก2= โˆ’ฯ‰2A๐‘’๐‘–๐œ”๐‘ก

Displacement:

Velocity:

Acceleration:

Expansion by series

cos ๐œƒ = 1 โˆ’๐œƒ2

2!+๐œƒ4

4!โˆ’๐œƒ6

6!+ โ‹ฏ

sin ๐œƒ = ๐œƒ โˆ’๐œƒ3

3!+๐œƒ5

5!โˆ’๐œƒ7

7!+ โ‹ฏ

For very small angles:

cos ๐œƒ โ‰ˆ 1

sin ๐œƒ โ‰ˆ ๐œƒ

Page 28: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Adding harmonic motion

โ€ข Recall trigonometry identities:

๐‘ฅ1(๐‘ก) = ๐ด1 cos ๐œ”๐‘ก

๐‘ฅ2 (๐‘ก) = ๐ด2 ๐‘ ๐‘–๐‘› ๐œ”๐‘ก

๐‘ฅ๐‘ก(๐‘ก) = ๐‘ฅ1 ๐‘ก + ๐‘ฅ2 ๐‘ก = ๐ด1 cos ๐œ”๐‘ก +๐ด2 sin ๐œ”๐‘ก = ๐ด๐‘๐‘œ๐‘  ๐œ”๐‘ก โˆ’ ๐›ผ

sin ๐‘Ž + ๐‘ = sin ๐‘Ž ๐‘๐‘œ๐‘  ๐‘ + cos ๐‘Ž ๐‘ ๐‘–๐‘› ๐‘

cos ๐‘Ž + ๐‘ = ๐‘๐‘œ๐‘  ๐‘Ž ๐‘๐‘œ๐‘  ๐‘ โˆ’ sin ๐‘Ž ๐‘ ๐‘–๐‘› ๐‘

โ€ข Adding harmonic motions:

๐‘ฅ๐‘ก(๐‘ก) = ๐ด๐‘๐‘œ๐‘  ๐œ”๐‘ก โˆ’ ๐›ผ = Acos(๐›ผ) cos ๐œ”๐‘ก + Asin(๐›ผ) sin ๐œ”๐‘ก

๐ด1 = Acos(๐›ผ)

๐ด2 = Asin(๐›ผ)๐ด = ๐ด1

2 + ๐ด22 = (Acos(๐›ผ))2+(Asin(๐›ผ))2

๐›ผ = ๐‘ก๐‘Ž๐‘›โˆ’1๐ด2๐ด1

โ€ข Two different ways of write a harmonic motion:

๐’™๐’•(๐’•) = ๐‘จ๐Ÿ ๐œ๐จ๐ฌ ๐Ž๐’• +๐‘จ๐Ÿ ๐ฌ๐ข๐ง ๐Ž๐’•

๐’™๐’•(๐’•) = ๐‘จ๐’„๐’๐’” ๐Ž๐’• โˆ’ ๐œถ

or

๐‘จ = ๐‘จ๐Ÿ๐Ÿ + ๐‘จ๐Ÿ

๐Ÿ

๐œถ = ๐’•๐’‚๐’โˆ’๐Ÿ๐‘จ๐Ÿ๐‘จ๐Ÿ

Page 29: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Adding harmonic motion

โ€ข Recall trigonometry identities:

cos A + cos B = 2 cos๐ด + ๐ต

2cos

๐ด โˆ’ ๐ต

2

Phenomenon Beats: occurs when adding two harmonic motion with frequencies close too one another the resultant motion

๐’™๐Ÿ(๐’•) = X๐’„๐’๐’” ๐Ž ๐’•

cos A โˆ’ cos B = โˆ’2 sin๐ด + ๐ต

2sin

๐ด โˆ’ ๐ต

2

sin A โˆ’ sin B = 2 cos๐ด + ๐ต

2sin

๐ด โˆ’ ๐ต

2

sin A + sin B = 2 sin๐ด + ๐ต

2cos

๐ด โˆ’ ๐ต

2

๐’™๐Ÿ(๐’•) = X๐’„๐’๐’” ๐Ž + ๐œน ๐’•

๐’™(๐’•) = X๐’„๐’๐’” ๐Ž ๐’•+X๐’„๐’๐’” ๐Ž + ๐œน ๐’•

๐’™(๐’•) = ๐— ๐œ๐จ๐ฌ๐œน

๐Ÿ๐’• ๐’„๐’๐’” ๐Ž +

๐œน

๐Ÿ๐’•

Beats frequency is twice the frequency of the term ๐— ๐œ๐จ๐ฌ๐œน

๐Ÿ๐’• since

two peaks pass in each cycle.

Page 30: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Harmonic Analysis: Fourier Series

where ฯ‰=2ฯ€/ฯ„ is the fundamental frequency.

To determine the coefficients , we multiply by cos(nฯ‰t) and sin(nฯ‰t), respectively, and integrate over one period ฯ„=2ฯ€/ฯ‰โ€”for example, from 0 to 2ฯ€/ฯ‰.

๐‘ฅ ๐‘ก =๐‘Ž0

2+ ๐‘Ž1 ๐‘๐‘œ๐‘  ๐œ”๐‘ก + ๐‘Ž2 ๐‘๐‘œ๐‘  2๐œ”๐‘ก + โ‹ฏ ๐‘1 ๐‘ ๐‘–๐‘› ๐œ”๐‘ก + ๐‘2 ๐‘ ๐‘–๐‘› 2๐œ”๐‘ก + โ‹ฏ

๐‘ฅ ๐‘ก =๐‘Ž02+

๐‘›=1

โˆž

๐‘Ž๐‘› ๐‘๐‘œ๐‘  ๐‘›๐œ”๐‘ก + ๐‘๐‘› ๐‘ ๐‘–๐‘› ๐‘›๐œ”๐‘ก

Any periodic function of time can be represented by Fourier series as an infinite sum of sine and cosine terms

๐‘Ž0 =๐œ”

๐œ‹เถฑ0

2๐œ‹/๐œ”

๐‘ฅ ๐‘ก ๐‘‘๐‘ก =2

๐œเถฑ0

๐œ

๐‘ฅ ๐‘ก ๐‘‘๐‘ก

๐‘Ž๐‘› =๐œ”

๐œ‹เถฑ0

2๐œ‹/๐œ”

๐‘ฅ ๐‘ก ๐‘๐‘œ๐‘  ๐‘›๐œ”๐‘ก ๐‘‘๐‘ก =2

๐œเถฑ0

๐œ

๐‘ฅ ๐‘ก ๐‘๐‘œ๐‘  ๐‘›๐œ”๐‘ก ๐‘‘๐‘ก

๐‘๐‘› =๐œ”

๐œ‹เถฑ0

2๐œ‹/๐œ”

๐‘ฅ ๐‘ก ๐‘ ๐‘–๐‘› ๐‘›๐œ”๐‘ก ๐‘‘๐‘ก =2

๐œเถฑ0

๐œ

๐‘ฅ ๐‘ก ๐‘ ๐‘–๐‘› ๐‘›๐œ”๐‘ก ๐‘‘๐‘ก

Page 31: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Harmonic Analysis: Fourier Series

Where:

๐‘ฅ ๐‘ก = ๐‘‘0 + ๐‘‘1 ๐‘๐‘œ๐‘  ๐œ”๐‘ก โˆ’ ๐œ‘1 + ๐‘‘2 ๐‘๐‘œ๐‘  2๐œ”๐‘ก โˆ’ ๐œ‘1 +โ‹ฏ

๐‘ฅ ๐‘ก = ๐‘‘0 +

๐‘›=1

โˆž

๐‘‘๐‘› ๐‘๐‘œ๐‘  ๐‘›๐œ”๐‘ก โˆ’ ๐œ‘๐‘›

Fourier series can also be represented by the sum of sine terms only or cosine terms only.

๐‘‘0 =๐‘Ž02

๐‘‘๐‘› = ๐‘Ž๐‘›2 + ๐‘๐‘›

2

๐œ‘๐‘› = ๐‘ก๐‘Ž๐‘›โˆ’1๐‘๐‘›๐‘Ž๐‘›

Page 32: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Fourier Series in complex numbers

๐‘ฅ ๐‘ก =๐‘Ž02+

๐‘›=1

โˆž

๐‘Ž๐‘›๐‘’๐‘–๐‘›๐œ”๐‘ก + ๐‘’โˆ’๐‘–๐‘›๐œ”๐‘ก

2+ ๐‘๐‘›

๐‘’๐‘–๐‘›๐œ”๐‘ก โˆ’ ๐‘’โˆ’๐‘–๐‘›๐œ”๐‘ก

2= ๐‘’๐‘–๐œ”0

๐‘Ž02โˆ’ ๐‘–

๐‘02

+

๐‘›=1

โˆž

๐‘’๐‘–๐‘›๐œ”๐‘ก๐‘Ž๐‘› โˆ’ ๐‘–๐‘๐‘›

2+ ๐‘’โˆ’๐‘–๐œ”๐‘ก

๐‘Ž๐‘› + ๐‘–๐‘๐‘›2

๐‘โˆ’๐‘› =๐‘Ž๐‘› + ๐‘–๐‘๐‘›

2

๐‘’๐‘–๐œ”๐‘ก = cos ๐œ”๐‘ก + ๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘ก

๐‘’โˆ’๐‘–๐œ”๐‘ก = cos ๐œ”๐‘ก โˆ’ ๐‘–๐‘ ๐‘–๐‘› ๐œ”๐‘ก

cos ๐œ”๐‘ก =๐‘’๐‘–๐œ”๐‘ก+๐‘’โˆ’๐‘–๐œ”๐‘ก

2

sin ๐œ”๐‘ก =๐‘’๐‘–๐œ”๐‘กโˆ’๐‘’โˆ’๐‘–๐œ”๐‘ก

2

Since:

The Fourier Series can be written as :

With:

๐‘๐‘› =๐‘Ž๐‘› โˆ’ ๐‘–๐‘๐‘›

2๐‘0 = 0

The Fourier Series can be written in a very compact form :

๐‘ฅ ๐‘ก =

๐‘›=โˆ’โˆž

โˆž

๐‘๐‘›๐‘’๐‘–๐‘›๐œ”๐‘ก ๐‘๐‘› =

๐œ”

๐œ‹เถฑ0

2๐œ‹/๐œ”

๐‘ฅ ๐‘ก ๐‘๐‘œ๐‘  ๐‘›๐œ”๐‘ก โˆ’ ๐‘ ๐‘–๐‘› ๐‘›๐œ”๐‘ก ๐‘‘๐‘ก =1

๐œเถฑ0

๐œ

๐‘ฅ ๐‘ก ๐‘’โˆ’๐‘–๐‘›๐œ”๐‘ก๐‘‘๐‘กwith

Page 33: Mechanical Vibrations FUNDAMENTALS OF VIBRATION

Prof. Carmen Muller-Karger, PhDFigures and content adapted from Textbook:

Singiresu S. Rao. Mechanical Vibration, Pearson sixth editionMechanical Vibrations

Time and frequency domain representations

โ€ข The Fourier series expansion permits the description of any periodic function using either a time-domain or a frequency-domain representation.

โ€ข Note that the amplitudes ๐‘‘๐‘› and the phase angles ๐œ‘๐‘› corresponding to the frequencies ฯ‰n can be used in place of the amplitudes ๐‘Ž๐‘› and ๐‘๐‘› for representation in the frequency domain.