MEC 3716 Present#9&10

download MEC 3716 Present#9&10

of 30

Transcript of MEC 3716 Present#9&10

  • 8/3/2019 MEC 3716 Present#9&10

    1/30

    MEC 3716 FLIGHT DYNAMICS and CONTROL

    Automatic Control TheoryAutomatic Control Theory

    The Classical ApproachThe Classical Approach

  • 8/3/2019 MEC 3716 Present#9&10

    2/30

    Introduction

    deals with the analysis and synthesis of logic for the control of system

    Control theory

    Classical approach Modern approachAnalytical approach based on:

    frequency response method

    the root locus technique transfer function

    Laplace transform

    Analytical approach based on:

    time response method

    the state-space formulation

    The System

    Systemnput signal Output signal

    Eqq

    22

    222222

    2222 = .... ..

    Short-Period model q

    E

  • 8/3/2019 MEC 3716 Present#9&10

    3/30

    Introduction

    Control System

    SystemCommand Output signalControllerInputsignal

    referenceinput Actuationsignal

    Open-loop control

    SystemCommand Output signalControllerInputsignal

    referenceinput+

    -

    errorsignalClosed-loop control

    Feedback signal

    Transfer Function (T.F.) = Laplace transform of the OutputLaplace transform of the Input

  • 8/3/2019 MEC 3716 Present#9&10

    4/30

    Introduction

    The symbols used in the block diagram of Control System

    R(s)

    SystemCommand Output signal

    ControllerInputsignal

    referenceinput+

    -

    errorsignal

    Feedback signal

    C(s)(s)

    B(s) Feedback Elements

    G(s) = C(s)/E(s) is open-loop transfer functionH(s) is feedback transfer function

    error signalE(s) = R(s) -B(s)

    Feedback signalB(s) = H(s) C(s)

    Output transfer functionC(s) = G(s)E(s)C(s) = G(s) R(s) - G(s) H(s) C(s)

    R(s)C(s) = G(s)

    1 + G(s) H(s)

  • 8/3/2019 MEC 3716 Present#9&10

    5/30

    Control System (example)

    given model ofp i t c h ing mo t i on of an aircraft as represented by secondorder differential equation below:

    E =222 .if in the closed-loop system, pitching rate (q) is used as the feedbackelement, and a gain of .4 is used as a controller, determine the outputtransfer function

    G(s)Command Output signal+-

    pitching rate

    qH(s)

    E

  • 8/3/2019 MEC 3716 Present#9&10

    6/30

    Control System (example)

    given model ofp i t c h ing mo t i on of an aircraft as represented by secondorder differential equation below:

    E =222 .if in the closed-loop system, pitching rate (q) is used as the feedbackelement, and a gain of .4 is used as a controller, determine the outputtransfer function

    system E =222 . has input and output E

    { } { }ELL =222 .Laplace transform)()()(.)( ssssss E 222

    2

    222

    2

    2 += ssss

    E .)(

    )(

    Transfer function of system

    222

    22

    2 += sssG ..

    )(

  • 8/3/2019 MEC 3716 Present#9&10

    7/30

    Control System (example)

    given model ofp i t c h ing mo t i on of an aircraft as represented by secondorder differential equation below:

    E =222 .if in the closed-loop system, pitching rate (q) is used as the feedbackelement, and a gain of .4 is used as a controller, determine the outputtransfer function

    Transfer function of feedback

    ss

    sqsH =

    )(

    )()(

    Feedback pitching rate (q) )()( sssq q

    the output transfer function

    )()(

    )(

    sHsG

    sG

    +2sss

    ss

    222

    222

    222

    22

    2

    2

    +++=

    .

    ..

    .

    222

    22

    2 += ss ..

  • 8/3/2019 MEC 3716 Present#9&10

    8/30

    Consider the characteristic equation

    ROUTHs CRITERION

    2... 22

    2

    2

    2 =++++

    aaaan

    nn

    nn

    n

    Rouths Table:

    2

    2

    n

    n

    n

    2

    2

    2

    c

    b

    aan

    n

    2

    2

    2

    2

    c

    b

    aan

    n

    2

    222

    2

    =

    n

    nnnn

    a

    aaaab

    2

    222

    2

    =

    n

    nnnn

    a

    aaaab

    2

    2

    2

    2

    c

    b

    aan

    n

    The Rouths stabil ity criterion states:If all the numbers of the first columnhave the same sign, the roots of thecharacteristic polynomial have negativereal parts.The system is stable.

  • 8/3/2019 MEC 3716 Present#9&10

    9/30

    ROUTHs CRITERION

    Check a stability of this system :

    2222

    22

    22)(+++

    =sss

    sG1.

    222222

    22

    )( +++=

    ssssG.

  • 8/3/2019 MEC 3716 Present#9&10

    10/30

    Consider the transfer function of a second order system

    TIME DOMAIN and FREQUENCY DOMAIN SPECIFICATIONS

    )()(2

    )(

    )(

    )(

    sHsG

    sG

    sR

    sC

    += 22

    2

    2 nn

    n

    ss

    ++=

    0.1

    0.5

    0.9

    1.05

    0.95

    tr

    tdtmax

    ts

  • 8/3/2019 MEC 3716 Present#9&10

    11/30

    TIME DOMAIN and FREQUENCY DOMAIN SPECIFICATIONSDelay time

    n

    dt

    2

    22.22.22 ++=

    Rise time

    n

    rt

    2

    2.22.22 ++=

    Time to peak amplitude

    22

    =

    n

    pt

    Settling time

    nst

    2.2

    =

    Percent maximum overshoot

    22/

    .222

    = e

  • 8/3/2019 MEC 3716 Present#9&10

    12/30

  • 8/3/2019 MEC 3716 Present#9&10

    13/30

    MEC 3716 FLIGHT DYNAMICS and CONTROL

    Automatic Control TheoryAutomatic Control Theory

    The Classical ApproachThe Classical Approach

    (2)(2)

  • 8/3/2019 MEC 3716 Present#9&10

    14/30

    if the closed-loop system has damping ratio of 0.707, determine the forward-pathcompensator (kc), and predict the time to half amplitude of the closed loop system of step

    response.

    Forward-path compensation

    kc

    +

    - 222

    22 +ss .

    ssH =)(

    E

    q

    forward-pathcompensator

    Transfer function of open-loop system

    2222 += ss ksG c.)(

    Transfer function of closed-loop system

    )()(

    )(

    sHsG

    sGTF +2

    s

    ss

    kss

    k

    c

    c

    222

    2

    222

    2

    2

    ++

    +=.

    .

    2222 += sks

    k

    c

    c

    ).(

  • 8/3/2019 MEC 3716 Present#9&10

    15/30

    The characteristic equation of CL system

    22222 =sks c ).(

    22222 .n

    ).( cn k222

    ).().)(.( ck22222222222 22.ck

    The time to half amplitude

    stn

    222222222222

    22222222

    2

    2 .).)(.(

    .. =

    PID C ll

  • 8/3/2019 MEC 3716 Present#9&10

    16/30

    :controlalDifferenti

    :controlIntegral

    :controlalProportion

    2

    sKsE

    sUte

    dt

    dKtu

    s

    K

    sE

    sUdtteKtu

    KsEsUteKtu

    dd

    it

    i

    pp

    )(

    )()()(

    )(

    )()()(

    )()()()(

    PID Controller

    PID Controller

    R(s) PlanOutput signal

    PID+- C(s)

    E(s) U(s)

    PID C t ll

  • 8/3/2019 MEC 3716 Present#9&10

    17/30

    PID Controller

    PID Controller )()()()( teKdtteKteKtu DIP sK

    s

    KK

    sE

    sUD

    IP =

    )(

    )(

    Find the gains KP, KI, andKD of system has second order of equation of motion of Plan

    TK nnP / 22+TK nI /

    2

    TK nD /22 + nT /22whereis the time constant of integral control

    Note: for Plan has order greater than two, the PID controller is determined by

    using the Ziegler-Nichols method

    PID C t ll

  • 8/3/2019 MEC 3716 Present#9&10

    18/30

    PID Controller

    Ziegler-Nichols Method

    P

    PI

    PID

    T/L

    0.9*T/L

    1.*T/L

    L/0.3

    *L 0.5*L

    KP TI TD

    L T

    L delay time

    T time constant

    Find the gains KP, KI, andKD using the Ziegler-Nichols method (1)

    sKs

    KK

    sE

    sUD

    IP =

    )(

    )(

    I

    pI

    T

    KK =

    DpD TKK =

    PID C t ll

  • 8/3/2019 MEC 3716 Present#9&10

    19/30

    PID Controller

    Find the gains KP, KI, andKD using the Ziegler-Nichols method ()Step 1

    determine a critical gain (Kcr) of the closed loop system by using Rouths stability criterion

    crP KK 2.2=cr

    PI

    P

    KK

    2.2

    = crPD PKK 222.2=

    crP KK 22.2= crPI PKK 22.2=

    crP KK 2.2=

    PID Controller

    PI Controller

    P Controller

    Ziegler-Nichols Method

    Step 2

    determine a critical frequency (cr), where the frequency is with corresponding to the

    critical gain (Kcr) of the closed loop system.

    cr

    crP

    2=

    Cont ol S stem (PID Cont olle )

  • 8/3/2019 MEC 3716 Present#9&10

    20/30

    Control System (PID Controller)

    determine the PID controller.

    PID+

    - sss 22

    222++

    The closed-loop transfer function

    p

    p

    Ksss

    KsG

    +++=

    2222

    )(

    22=cr

    K 222)(2)(2)(22

    =+++ iii crcrcr

    22=PK 2.22=IK 22.2=DK

    2

    2=crP

  • 8/3/2019 MEC 3716 Present#9&10

    21/30

    MEC 3716 FLIGHT DYNAMICS and CONTROL

    Automatic Control TheoryAutomatic Control Theory

    The Classical ApproachThe Classical Approach

    (Application to Aircraft Autopilot(Application to Aircraft Autopilot

    Design)Design)

    Aircraft Autopilot

  • 8/3/2019 MEC 3716 Present#9&10

    22/30

    Aircraft Autopilot

    AnAircraft Autopilot is a mechanical, electrical, or hydraulic system used toguide an aircraft without assistance from pilot.

    Advantages: improves the flying qualities of the aircraft lessen the pilot workloads

    The autopilot connectsAttitude indicator(pitch angle), a gyroscopicHeading indicator(yaw angle) and a bankindicator(roll angle) to hydraulicallyoperated elevators , rudder and ailerons.

    Autopilot for aircraft to fly straight and level on a compass course

    Aircraft Autopilot Design

    http://en.wikipedia.org/wiki/Attitude_indicatorhttp://en.wikipedia.org/wiki/Attitude_indicatorhttp://en.wikipedia.org/wiki/Gyroscopehttp://en.wikipedia.org/wiki/Heading_indicatorhttp://en.wikipedia.org/wiki/Heading_indicatorhttp://en.wikipedia.org/wiki/Heading_indicatorhttp://en.wikipedia.org/wiki/Heading_indicatorhttp://en.wikipedia.org/wiki/Elevator_%28aircraft%29http://en.wikipedia.org/wiki/Rudderhttp://en.wikipedia.org/wiki/Aileronhttp://en.wikipedia.org/wiki/Aileronhttp://en.wikipedia.org/wiki/Rudderhttp://en.wikipedia.org/wiki/Elevator_%28aircraft%29http://en.wikipedia.org/wiki/Heading_indicatorhttp://en.wikipedia.org/wiki/Heading_indicatorhttp://en.wikipedia.org/wiki/Gyroscopehttp://en.wikipedia.org/wiki/Attitude_indicator
  • 8/3/2019 MEC 3716 Present#9&10

    23/30

    Aircraft Autopilot Design

    Aim: determine compensator and feedback elements such that the closed-loop systemhas characteristics as desired specifications.

    kc+

    -

    input outputcompensatorA/C

    dynamicstransfer

    function

    feedback

    Values/parameters to be controlled: output of the dynamics model of an aircraftexample: altitude, velocity, pitch angle, roll/yaw

    angle, aoa, etc.

    Controller: measurable parameters that has contribution in the dynamics modelexample: engine power, velocity, pitch rate,roll/yaw rate, aoa, etc.

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    24/30

    Aircraft Autopilot Design

    kc+

    -

    input outputcompensatorA/C

    dynamicstransfer

    function

    feedback

    Phugoid dynamics

    2

    2

    =

    u

    u

    Z

    gXu

    u

    u

    22

    T

    E

    u

    Z

    u

    Z

    XX

    EE

    TE

    The Laplace transformation

    =)()() sgsu(s-Xu )()( sXsX TE TE +=)()( sssu

    u

    Zu 2

    )()( s

    u

    Zs

    u

    ZTE

    TE

    22

    Aircraft dynamics transfer function(an example problem)

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    25/30

    Aircraft Autopilot Design

    Aircraft dynamics transfer functionPhugoid dynamics

    EXs

    s

    gs

    su

    (s-X EEu

    =)()(

    )(

    )(

    )

    22 u

    Z

    s

    ss

    s

    su

    u

    Z E

    EE

    u

    )(

    )(

    )(

    )(

    uu

    gu

    u

    g

    E ZsXs

    ZsX

    ssu

    EE

    2

    22

    +

    = )( )(

    uu

    gu

    u

    XZZX

    u

    Z

    E ZsXs

    s

    ss

    EuEuE

    2

    22

    2

    +=

    )()(

    PID ControllerPID+-

    )(tE )(t

    )(

    )(

    s

    s

    E

    Pitch attitude autopilot with a PID controller

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    26/30

    Aircraft Autopilot Design

    Control Surface Actuator

    Model of control surface servo actuator

    amplifier

    ka-

    +cv flap

    Position

    feedback

    kf

    Servo motor

    sBm

    2

    Model of elevator servo actuator

    Ev E(Elevator)

    Servo

    2sk

    fkk 2=

    af

    m

    kk

    B=

    Pitch attitude autopilot with a PID controller

    PID Controller

    PID+- )(tE

    )(t

    )(

    )(

    s

    s

    E

    2sk

    Elevator Servo

    )(tvE

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    27/30

    Aircraft Autopilot Design

    Ro l l a t t i tude c on t ro l

    Roll dynamics

    Ap ALpLp =

    sensor

    +

    -)(tA

    )(t

    )()(ssA

    2sk

    Aileron Servo

    )(tvA

    sk

    The Laplace transformation

    )()()( sLspLsAp A

    =

    pA Ls

    L

    s

    sp A

    )(

    )(

    =p)()( sssp =

    ss

    sp =)(

    )(

    )()(

    )(

    pA Lss

    L

    s

    s A

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    28/30

    Aircraft Autopilot Design

    Head i ng a t t i t ude c on t ro l

    Pure yawing motion

    Rr RNNNN = )(

    if the closed-loop system has damping ratio of 0.50, and the settling time of CLsystem of step response is 3 s, determine gains , andsK rK

    sN

    sN

    r /.

    /.

    222

    2222

    =

    sN

    sNR

    /.

    /.

    222

    222

    =

    the stability derivatives

    sensor

    +

    -)(tR

    )(t

    )()(ss

    R

    Rudder Servo

    )(tvR

    sk

    rk

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    29/30

    Aircraft Autopilot Design

    Head i ng a t t i t ude c on t ro l

    Pure yawing motion

    Rr RNNNN = )(

    The Laplace transformation

    )()(])([ sNsNsNNsRr R

    =2

    NsNNs

    N

    s

    s

    rR

    R

    += )()()(

    2

    by given the stability derivatives

    222222

    22

    2 ..

    .

    )(

    )(

    += ssss

    R

    sensor

    +

    -)(tR

    )(t

    )()(ss

    R

    Rudder Servo

    )(tvR

    sk

    rk

    Aircraft Autopilot Design

  • 8/3/2019 MEC 3716 Present#9&10

    30/30

    Aircraft Autopilot Design

    Head i ng a t t i t ude c on t ro l

    sensor

    +

    -)(tR

    )(t

    )()(ss

    R

    rk

    Rudder Servo

    )(tvR

    sk

    The closed-loop system T.F.

    sss

    kss

    k

    R ksv

    s

    r

    r

    222222

    22

    222222

    22

    2

    2

    2..

    ...

    .

    )(

    )(

    ++

    +=

    )..(.

    .

    sr

    r

    kkss

    k

    22222222

    22

    2 +=