Measuring Vacuum Polarization with Josephson Junctionspenin/talks/eth10.pdfVacuum polarization...

27
Measuring Vacuum Polarization with Josephson Junctions Alexander Penin University of Alberta & INR Moscow ETH Zürich, May 2010 A. Penin, U of A & INR ETH 2010 – p.1/??

Transcript of Measuring Vacuum Polarization with Josephson Junctionspenin/talks/eth10.pdfVacuum polarization...

  • Measuring Vacuum Polarizationwith Josephson Junctions

    Alexander Penin

    University of Alberta & INR Moscow

    ETH Zürich, May 2010

    A. Penin, U of A & INR ETH 2010 – p.1/??

  • Topics Discussed

    Exact results in quantum mechanics

    Flux quantization

    Quantum Hall effect

    Josephson effect

    Vacuum polarization in strong magnetic field

    QED corrections to quantum Hall and Josephson effectTheory

    Experiment

    A. Penin, U of A & INR ETH 2010 – p.2/??

  • Exact result: an example

    Determination of the fine structure constant α ∝ e2/h

    electron g − 2

    experimental error: 10−10

    theoretical error: 10−10 - requires 4-loop calculation in QED

    quantum Hall effectexperimental error: 10−8 (could be 10−12)

    theoretical error: 0 - for free!

    A. Penin, U of A & INR ETH 2010 – p.3/??

  • Gauge invariance and quantum phase

    ~ = c = 1, α = e2

    ✔ Schrödinger equation (i∂t −H) Ψ = 0

    ✔ Wave function Ψ = |Ψ|eiθ

    ✔ Hamiltonian H = qA0 + F (B,E,D)D = ∂ − iqA

    ➥ If ∇ × A = 0 then θ(r1) − θ(r2) = q∫ r1

    r2A(r′) · dr′

    ➥ Also φ(r) = θ(r) − q∫ r

    A(r′) · dr′ is gauge invariant

    A. Penin, U of A & INR ETH 2010 – p.4/??

  • Flux quantization

    F. London (1948)

    Superconductivity ➪ coherent state of Cooper pairs ➪ q = 2e

    Meissner effect ➪ B = 0 inside superconductor

    ×B

    C

    Superconducting ring: S

    Single-valued wave function ➪ ∆θ = 2e∮

    CA · dx = 2πn

    A. Penin, U of A & INR ETH 2010 – p.5/??

  • Flux quantization

    F. London (1948)

    Superconductivity ➪ coherent state of Cooper pairs ➪ q = 2e

    Meissner effect ➪ B = 0 inside superconductor

    ×B

    C

    Superconducting ring: S

    Single-valued wave function ➪ ∆θ = 2e∮

    CA · dx = 2πn

    C A(r) · r =∫

    S B(r) · d2s ≡ Φ ➪ Φ = πne ≡ nΦ0

    Flux quantum: Φ0 = h2eA. Penin, U of A & INR ETH 2010 – p.6/??

  • Hall effect

    E. Hall (1879)

    B

    E

    I

    z xy

    Lorentz force vs electrostatic force

    eE = −ev × B

    current density j = ρev =ρe

    BE

    total current per length I =ρe

    BV

    Hall conductivity R−1 =ρe

    B

    A. Penin, U of A & INR ETH 2010 – p.7/??

  • Quantum Hall effect

    K. von Klitzing, G. Dorda, M. Pepper (1980)

    L

    2πeBL

    1√eB

    Wave function:Ψ(x, y) = ei2πm

    xL ψ(y − ym)

    ψ(y − ym) ➪ harmonic oscillatorcentered at ym = 2πmeBL

    Density of quantum states with

    n Landau levels filled: ρ = neB2π

    Quantum Hall conductivity: R−1 = 2nα = n/RK

    von Klitzing constant: RK = he2

    A. Penin, U of A & INR ETH 2010 – p.8/??

  • Gauge invariance argument

    R.B. Laughlin (1981)

    B

    E

    I

    Φ

    current density j ∝δH

    δA

    total current I =dE

    Flux quantization Φ = 4π|A|/L = n2Φ0

    Flux dependence ym(Φ + 2Φ0) = ym+1(Φ)

    for dΦ = 2Φ0 ➪ dE = neV

    ➥ I =neV

    2Φ0=nV

    RK

    A. Penin, U of A & INR ETH 2010 – p.9/??

  • Vacuum polarization

    J. Schwinger (1951)×

    ×

    = + + . . .q →

    Charge renormalization δe ∝ Πµν(q)/q2|q2→0

    Vacuum polarization in magnetic field

    δΠµν(q) = −α

    π

    (

    eB

    m2

    )

    2 1

    45

    [

    2(

    gµνq2 − qµqν

    )

    −7(

    gµνq2 − qµqν

    )

    ‖+4

    (

    gµνq2 − qµqν

    )

    ]

    Lorentz invariance broken!

    A. Penin, U of A & INR ETH 2010 – p.10/??

  • QED corrections to electromagnetic coupling

    Coulomb potential

    VC(r) = e2

    ∫(

    1 −δΠ00(q)

    q2

    )

    e−iq·r

    q2

    d3q

    (2π)3=

    α

    |r|

    [

    1 +α

    π

    (

    eB

    m2

    )

    2(

    2

    45−

    7

    90sin2 θ

    )]

    correction to the photon dispersion

    λ 6= cν

    local charge renormalization(

    1 +α

    π

    (

    eB

    m2

    )

    2 1

    45

    )

    e ≡ e∗

    A. Penin, U of A & INR ETH 2010 – p.11/??

  • QED corrections to electromagnetic coupling

    Coulomb potential

    VC(r) = e2

    ∫(

    1 −δΠ00(q)

    q2

    )

    e−iq·r

    q2

    d3q

    (2π)3=

    α

    |r|

    [

    1 +α

    π

    (

    eB

    m2

    )

    2(

    2

    45−

    7

    90sin2 θ

    )]

    correction to the photon dispersion

    1

    q20− (1 + Ciα)q2i

    ➪ νλ 6= c

    local charge renormalization

    (

    1 +α

    π

    (

    eB

    m2

    )

    2 1

    45

    )

    e ≡ e∗

    A. Penin, U of A & INR ETH 2010 – p.12/??

  • QED corrections to electromagnetic coupling

    Coulomb potential

    VC(r) = e2

    ∫(

    1 −δΠ00(q)

    q2

    )

    e−iq·r

    q2

    d3q

    (2π)3=

    α

    |r|

    [

    1 +α

    π

    (

    eB

    m2

    )

    2(

    2

    45−

    7

    90sin2 θ

    )]

    correction to the photon dispersion

    1

    q20− (1 + Ciα)q2i

    ➪ νλ 6= c

    local charge renormalization

    e ➪

    (

    1 +α

    π

    (

    eB

    m2

    )21

    45

    )

    e ≡ e∗

    A. Penin, U of A & INR ETH 2010 – p.13/??

  • QED corrections to RK

    A.P., Phys.Rev. B 79, 113303 (2009)

    Origin of the corrections R−1K ∝ e2 ➪ (e∗)2

    Result:

    R−1K =e2

    h

    [

    1 +2

    45

    α

    π

    (

    ~eB

    c2m2

    )2]

    ≈e2

    h

    [

    1 + 10−20 ×

    (

    B

    10 T

    )2]

    A. Penin, U of A & INR ETH 2010 – p.14/??

  • Josephson effect

    B.D. Josephson (1962); S. Shapiro (1963)

    E B

    |Ψ|eiθ1

    |Ψ|eiθ2

    Tunneling Josephson current I

    ✔ no voltage drop if the currentis time independent

    ✔ 2π periodic in θ1 − θ2

    ✔ simplest solution I = Ic sin(θ1 − θ2)

    ✔ with voltage V across the junctionthe current oscillates at frequency ν

    A. Penin, U of A & INR ETH 2010 – p.15/??

  • Josephson effect

    Time evolution of the phase:

    Ψ(t) ∝ eiEt ➪ θ1 − θ2 = (E1 − E2)t = 2eV t ➪ ω = 2eV

    Josephson frequency-voltage relation ν = KJV

    Josephson constant KJ = 2eh

    A. Penin, U of A & INR ETH 2010 – p.16/??

  • Gauge invariance argument

    F. Bloch (1968)

    Observables depend on ∆φ = θ1 − θ2 − 2e∫ r1

    r2A(r′) · dr′

    Gauge transformation

    Aµ′(r) = Aµ(r) − ∂µξ(r), ξ(r) = tA0(r)A′0(r) = 0, A

    ′(r) = A(r) + t∇A0(r)

    Gauge invariant phase difference∆φ = ∆φ0 − 2et (A0(r1) −A0(r2))

    ➥ ω = 2eV

    A. Penin, U of A & INR ETH 2010 – p.17/??

  • QED corrections to KJ

    A.P., Phys.Rev.Lett. 104, 097003 (2010)

    Correction to the coupling with scalar potential

    δv.p.H = −e

    δΠ0ν(q)

    q2Ãν(q)eiqr

    d4q

    (2π)4= 2δeA0(r)

    here δe = e∗ − e gauge invariant!

    A. Penin, U of A & INR ETH 2010 – p.18/??

  • QED corrections to KJ

    A.P., Phys.Rev.Lett. 104, 097003 (2010)

    Correction to the coupling with scalar potential

    δv.p.H = −e

    δΠ0ν(q)

    q2Ãν(q)eiqr

    d4q

    (2π)4= 2δeA0(r)

    here δe = e∗ − e gauge invariant!

    can be removed by δξ(r) = δeeξ(r)

    ➥ ω = 2e∗V

    A. Penin, U of A & INR ETH 2010 – p.19/??

  • QED corrections to KJ

    A.P., Phys.Rev.Lett. 104, 097003 (2010)

    Correction to the coupling with scalar potential

    δv.p.H = −e

    δΠ0ν(q)

    q2Ãν(q)eiqr

    d4q

    (2π)4= 2δeA0(r)

    here δe = e∗ − e gauge invariant!

    can be removed by δξ(r) = δeeξ(r)

    ➥ ω = 2e∗V

    Result:

    KJ =2e

    h

    [

    1 +1

    45

    α

    π

    (

    ~eB

    c2m2

    )2]

    ≈2e

    h

    [

    1 + 10−20 ×

    (

    B

    10 T

    )2]

    A. Penin, U of A & INR ETH 2010 – p.19/??

  • Experiment: quantum Hall effect

    F. Schopfer, W. Poirier (2007)

    gallium arsenide heterostructures

    ➥ two-dimensional electron gas

    ✘ thermal Johnson-Nyquist noise ➪ accuracy limit 10−12

    A. Penin, U of A & INR ETH 2010 – p.20/??

  • Experiment: Josephson effect

    A.K. Jain, J.E. Lukens, J.-S. Tsai (1987)

    SQUID

    MWJ1 J2

    linearly growing current I = t(V1 − V2)/L

    ✔ accuracy 10−19 – sensitive to gravitational red shift

    A. Penin, U of A & INR ETH 2010 – p.21/??

  • Metrology

    Fundamental relations

    electron charge e = 2KJRKPlanck constant h = 4

    K2JRK

    Quantum metrology triangle K.K. Likharev, A.B. Zorin (1985)

    quantum Hall effect V/I = RK

    Josephson effect V = ν/KJ

    Single electron tunneling I = eν (?)

    A. Penin, U of A & INR ETH 2010 – p.22/??

  • Summary

    A. Penin, U of A & INR ETH 2010 – p.23/??

  • Summary

    Vacuum polarization results in a weak dependence ofthe Josephson and von Klitzing constant on themagnetic field strength

    A. Penin, U of A & INR ETH 2010 – p.23/??

  • Summary

    Vacuum polarization results in a weak dependence ofthe Josephson and von Klitzing constant on themagnetic field strength

    This remarkable manifestation of a fine nonlinearquantum field effect in collective phenomena incondensed matter can be observed in a dedicatedexperiment

    A. Penin, U of A & INR ETH 2010 – p.23/??

  • Summary

    Vacuum polarization results in a weak dependence ofthe Josephson and von Klitzing constant on themagnetic field strength

    This remarkable manifestation of a fine nonlinearquantum field effect in collective phenomena incondensed matter can be observed in a dedicatedexperiment

    One literally can measure the vacuumpolarization with a voltmeter!

    A. Penin, U of A & INR ETH 2010 – p.23/??

    ormalsize bl Topics Discussed{ormalsize bl Exact result: an example}{ormalsize bl Gauge invariance and quantum phase}{ormalsize bl Flux quantization}{ormalsize bl Flux quantization}{ormalsize bl Hall effect}{ormalsize bl Quantum Hall effect}{ormalsize bl Gauge invariance argument }{ormalsize bl Vacuum polarization}{ormalsize bl QED corrections to electromagnetic coupling}{ormalsize bl QED corrections to electromagnetic coupling}{ormalsize bl QED corrections to electromagnetic coupling}{ormalsize bl QED corrections to $R_K$}{ormalsize bl Josephson effect}{ormalsize bl Josephson effect}{ormalsize bl Gauge invariance argument}{ormalsize bl QED corrections to $K_J$}{ormalsize bl QED corrections to $K_J$}{ormalsize bl Experiment: quantum Hall effect}{ormalsize bl Experiment: Josephson effect}{ormalsize bl Metrology}{ormalsize bl Summary}