Measuring Impedance Across the Channel of a Biodevice

23
Measuring Measuring Impedance Across Impedance Across the Channel of a the Channel of a Biodevice Biodevice Presented by: Kaidi He Presented by: Kaidi He August 24, 2007 August 24, 2007 Mentors: Prof. Reginald Mentors: Prof. Reginald Penner Penner Li-Mei Yang Li-Mei Yang

description

Measuring Impedance Across the Channel of a Biodevice. Presented by: Kaidi He August 24, 2007 Mentors: Prof. Reginald Penner Li-Mei Yang. Outline. Project Overview Methods Device Fabrication Experimental Setup Procedures Data and Analysis Conclusion. I. Project Overview. - PowerPoint PPT Presentation

Transcript of Measuring Impedance Across the Channel of a Biodevice

Measuring Impedance Measuring Impedance Across the Channel of a Across the Channel of a

Biodevice Biodevice

Presented by: Kaidi HePresented by: Kaidi HeAugust 24, 2007August 24, 2007

Mentors: Prof. Reginald Penner Mentors: Prof. Reginald Penner Li-Mei YangLi-Mei Yang

OutlineOutline

I.I. Project OverviewProject Overview

II.II. MethodsMethodsa.a. Device FabricationDevice Fabrication

b.b. Experimental SetupExperimental Setup

c.c. ProceduresProcedures

III.III. Data and AnalysisData and Analysis

IV.IV. ConclusionConclusion

I. Project OverviewI. Project Overview

Measure impedance across Measure impedance across the channel of a biodevice the channel of a biodevice for different channel widths for different channel widths exposed to various exposed to various concentrationsconcentrations

Construct a calibration curveConstruct a calibration curve

Courtesy of Prof. Penner

SU8

Glass

Au

SU8

Au

ExposureDevelopment

Au etch

II. Methods, (a) Device FabricationII. Methods, (a) Device Fabrication

A.B.

A.

B.

Courtesy of Li-Mei Yang

SU-8

Au

glassAu

SU-8

Original:Original:• NickelNickel• Wire attachmentsWire attachments• Silver contactsSilver contacts

Final:Final:• Gold with silver Gold with silver

contactscontacts

S

b. Experimental Setupb. Experimental Setup

electrochemical cell

reference

working

Nyquist Plot

0

50000

100000

150000

200000

250000

300000

350000

0 100000 200000 300000 400000 500000 600000 700000 800000

Zre(ohm)

Zim

(o

hm

)

5.00E-06

e-5

2.50E-05

5.00E-05

e-4

2.50E-04

5.00E-04

e-3

2.50E-03

5.00E-03

e-2

e-1

5.00e-6

E-1

Nyquist Plot: Zim vs. Zre

Bode Plot

0

100000

200000

300000

400000

500000

600000

700000

800000

0.1 1 10 100 1000 10000 100000 1000000

Freq (hz)

Zre

(o

hm

)

5.00E-06

e-5

2.50E-05

5.00E-05

e-4

2.50E-04

5.00E-04

e-3

2.50E-03

5.00E-03

e-2

e-1

Bode Plot: Zre, Zim, phase angle vs. Frequency

5E-4M NaCl 5E-1M NaClEISEIS

x3

H2O 5E-4M NaClEIS

x3

0.1 – 5e-6 M NaCl

EIS EIS EIS EIS EIS EIS

(3) Procedures(3) Procedures

Courtesy of Li-Mei

III. Data and Analysis, (1) Stability of DeviceIII. Data and Analysis, (1) Stability of Device

Stability in 5e-4 M NaCl, High Frequency

0.0E+001.0E+052.0E+053.0E+054.0E+055.0E+056.0E+057.0E+058.0E+059.0E+051.0E+06

1000 10000 100000 1000000

Frequency (Hz)

Zre

(oh

m)

3rd run

2nd run

1st run

1st

2nd

3rd

5E-4M NaCl 5E-1M NaClEISEIS

x3

H2O 5E-4M NaClEIS

x3

5E-1-5E-6M NaCl

EIS EIS EIS EIS EIS EIS

Courtesy of Li-Mei

Alternating Low and High Concentrations, High Frequency

0.0E+00

5.0E+05

1.0E+06

1000 10000 100000 1000000

Frequency (hz)

ZRe (

ohm) 5x10-4 M NaCl

5x10-1 M NaCl5E-4 M

5E-1 M

(2) Alternating, ZRe, Low and High Concentrations(2) Alternating, ZRe, Low and High Concentrations

5E-4 M

Alternating Low and High Concentrations, High Frequency

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

7.0E+05

8.0E+05

9.0E+05

1.0E+06

1000 10000 100000 1000000

Frequency (hz)

ZIm

(oh

m)

5x10-4 M NaCl

5x10-5 M NaCl

5E-4 M

5E-1 M

ZRe at Selected Frequencies

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1.2E+08

1.4E+08

1.6E+08

1.8E+08

2.0E+08

5x10^-4 5x10^-1 5x10^-4 5x10^-1 5x10^-4 5x10^-1

ZR

e (o

hm

)

0.1 hz

10 hz

100 hz

1000 hz

10 4̂ hz

10 5̂ hz

1. Low concentration, more noise2. Low frequency, more noise

ZRe at Selected Frequencies

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

5x10^-4 5x10^-1 5x10^-4 5x10^-1 5x10^-4 5x10^-1

ZR

e (o

hm

)

10 hz

100 hz

1000 hz

10 4̂ hz

10 5̂ hz

5E-4M NaCl 5E-1M NaClEISEIS

x3

H2O 5E-4M NaClEIS

x3

5E-1~5E-6M NaCl

EIS EIS EIS EIS EIS EIS

Courtesy of Li-Mei

(3) Random Sampling(3) Random Sampling

• As expected, increasing concentration results in decreasing resistance

ZRe at Selected Concentrations, High Frequency

0.0E+00

1.0E+05

2.0E+05

3.0E+05

4.0E+05

5.0E+05

6.0E+05

1000 10000 100000 1000000

Frequency (hz)

ZR

e (

oh

m)

5x10 -̂6

5x10 -̂5

5x10 -̂4 (2)

5x10 -̂4 (1)

5x10 -̂4 (3)

5x10 -̂3

5x10 -̂2

5x10 -̂1

ZIm at Selected Concentrations, High Frequency

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

6.E+05

1000 10000 100000 1000000

Frequecy (hz)

ZIm

(o

hm

)

5x10 -̂6

5x10 -̂5

5x10 -̂4 (3)

5x10 -̂4 (2)

5x10 -̂4 (1)

5x10 -̂3

5x10 -̂2

5x10 -̂1

Λ = Λº - (A+B Λº)cΛ = Λº - (A+B Λº)c1/21/2

for c< 0.001 mol/Lfor c< 0.001 mol/LΛ = equivalent molar conductivityΛ = equivalent molar conductivityΛ º = equivalent molar conductivity at Λ º = equivalent molar conductivity at

infinite dilutioninfinite dilutionA = 60.20A = 60.20B = 0.229B = 0.229C = electrolyte concentrationC = electrolyte concentration

Λ = κ/cΛ = κ/ceqeq

CCeqeq = c|z| = c|z|

•Plotting Λ against c1/2 will be linear…

Sample Data Set, 500 micronSample Data Set, 500 micronLog 1/(zre*c) vs. Log c1/2

y = -1.4527x - 4.5001

R2 = 0.9956

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-3 -2.5 -2 -1.5 -1 -0.5 0

log c1/2

log

1/(

zre*

c)

1000 hz

Linear (1000 hz)

Sample Data Set, 1 mm deviceSample Data Set, 1 mm devicelog 1/(zre*c) vs. log c1/2

y = -1.3475x - 4.1073

R2 = 0.9919

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-3 -2.5 -2 -1.5 -1 -0.5 0

log c1/2

log

1/(

zre*

c)

1000 hz

Linear (1000 hz)

Sample Data Set, 3.5 mm deviceSample Data Set, 3.5 mm device

Log 1/(zre*c) vs. Log c1/2

y = -1.6014x - 4.8176

R2 = 0.9483

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-3 -2.5 -2 -1.5 -1 -0.5 0

log c1/2

log

1/(z

re*c

)

1000 hz

Linear (1000 hz)

IV. ConclusionIV. Conclusion

We have achieved our goal of constructing a We have achieved our goal of constructing a calibration curve which will allow us to know calibration curve which will allow us to know concentration with a device of given channel concentration with a device of given channel width and impedance across the channelwidth and impedance across the channel

With photolithography, we are able to construct With photolithography, we are able to construct miniaturized conductivity cells quantitatively miniaturized conductivity cells quantitatively follow the Debye-Huckel-Onsanger Equation and follow the Debye-Huckel-Onsanger Equation and operate best at large interelectrode spacingsoperate best at large interelectrode spacings

This most likely will lead to their functioning as This most likely will lead to their functioning as biosensor transducers in the futurebiosensor transducers in the future

AcknowledgmentsAcknowledgments

Thank you to Prof. Penner, Li-Mei Thank you to Prof. Penner, Li-Mei Yang, Keith Donovan, Travis Kruse, Yang, Keith Donovan, Travis Kruse, Dat Hoang, Said Shokair, IM-SURE, Dat Hoang, Said Shokair, IM-SURE, and NSF for their guidance and and NSF for their guidance and support support