ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542...

24
ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:303:00pm Huei Peng 3012 PML Department of Mechanical Engineering [email protected], 1-734-769-6553 Office hours: Mon. 4-5pm (Peng), Wed. 1-2pm (Peng) GSI office hours to be announced ME542 Vehicle Dynamics-Lecture 1- 2 Vehicle Dynamics and Safety Accident occurred in May 2006 on I-96, caught by police dash-cam. Induced by an initial light side impact, SUV rolled over multiple times.

Transcript of ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542...

Page 1: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 1

ME542  Vehicle Dynamics

Winter 2014

Tu & Th 1:30‐3:00pm

Huei Peng 3012 PMLDepartment of Mechanical Engineering

[email protected], 1-734-769-6553

Office hours: Mon. 4-5pm (Peng), Wed. 1-2pm (Peng)

GSI office hours to be announced

ME542 Vehicle Dynamics-Lecture 1- 2

Vehicle Dynamics and Safety 

• Accident occurred in May 2006 on I-96, caught by police dash-cam.

• Induced by an initial light side impact, SUV rolled over multiple times.

Page 2: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 3

Lecture 1‐‐Introduction and Motivation(and administrative stuff)

• About this course

– Introduction and administrative information

– Major course content

– Grading policy

– MATLAB/SIMULINK

• Review of rigid body dynamics

ME542 Vehicle Dynamics-Lecture 1- 4

Administrative Information• Textbook (not required)

– J.Y. Wong, Theory of Ground Vehicles, John Wiley &Sons, Inc, 4th

edition, 2008. (http://www.wiley.com/WileyCDA/WileyTitle/productCd‐

0470170387.html)

• Course material will be made available on the Ctools site (PPT files should be downloaded and printed before the lectures, HW, solutions, example MATLAB programs will be distributed using this site)

Page 3: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 5

Course Requirements

• Prerequisites

– Knowledge in Newtonian Dynamics (ME240 level) is essential

– That of Automotive Engineering (ME458) and Intermediate Dynamics (ME440) are helpful but not required.  

– Familiarity with Matlab/Simulink, since Matlab/Simulink is used extensively in the lecture examples and homework assignments.

ME542 Vehicle Dynamics-Lecture 1- 6

Major course content

Background

Tire

Handling

Ride

Lec.  Date  Lecture contents 1   1/9 Introduction, motivation 2   1/14  Review of Rigid Body Dynamics 3   1/16  MATLAB‐SIMULINK review 4 1/21 Tire Models: Overview, Terminology, Definitions 5   1/23  Brush Tire Model (Lateral) 6   1/28  Brush Tire Model (Lateral) 7   1/30 Brush Tire Model (Longitudinal) 8   2/4  Combined‐Slip Tire Model 9   2/6 (Lateral) Taut String Tire Model, Magic Formula Tire Model 10 2/11 Off‐road tire model 11   2/13  Steady‐State Handling 12 2/18 Steady‐State Handling: Understeering and Oversteering13   2/20  Transient Handling 14   2/25  Lateral‐Yaw‐Roll model 15 2/27 Lateral‐Yaw‐Roll model16  3/11  Four‐Wheel Steering   3/13  Midterm (in class) 17 3/18 Guest lecture: chassis control systems 18   3/20  On‐Center  Handling,  Steady‐State  And  Transient  Handling  of  Articulated 

Vehicles 19   3/25  Driver‐vehicle interaction 20 3/30 Cross‐wind stability  21   4/1  Ride dynamics—Principle and Vibration Isolation and human perception 22   4/3  Ride dynamics—road excitations 23 4/8 Ride dynamics—Quarter‐car suspension Model 24   4/10  Ride dynamics—Quarter‐car suspension Model 25   4/15  Ride dynamics—Bounce and Pitch Model 26   4/17  Ride dynamics—Active Suspensions 27 4/22 Summary   4/25  Final exam (4‐6pm) 

Page 4: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 7

Related Courses

• ME458 Automotive EngineeringEmphasizes the vehicle as an engineering system and 

review design consideration associated with all major systems including the vehicle structure, powertrain, suspension, steering and braking.  

• ME568 Vehicle Control Systems

Covers control issues for all major vehicle control systems including engine control, cruise control, ABS/traction control, four‐wheel steering, active suspension and advanced control systems for Intelligent Transportation Systems.  

ME542 Vehicle Dynamics-Lecture 1- 8

Grading Policy

• Grading: 5‐6 Homework 55%

Midterm exam 20%

Final exam 25%

• Homework: Must be handed in on the due date in class (on‐campus

students) or uploaded to Ctools (distance learning students). Latehomework will be accepted up to 48 hours late with a 20% penalty foreach 24 hours (rounded up, i.e., 0 to 24 hours late = 24 hours late). Allproblem sets (home work assignments) are to be completed on yourown. You may discuss homework assignments with your fellowstudents at the conceptual level, but must complete all calculations andwrite‐up, from scrap to final form, on your own. Verbatim copying ofanother student's work is forbidden. If you have any questions aboutthis policy, please do not hesitate to contact the instructor.

• Exams: Midterm: in class, Dynamics, Tire, HandlingFinal exam: 2 hours, Accumulative but more weight on Handling and Ride

Page 5: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 9

MATLAB/SIMULINK Tutorial 

http://www.engin.umich.edu/class/ctms/

ME542 Vehicle Dynamics-Lecture 1- 10

Getting a Copy of MATLAB/SIMULINK

http://www.mathworks.com/products/studentversion/

CAEN labs

Student version:

Virtual Site

http://virtualsites.umich.edu/

Page 6: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 11

MATLAB/SIMULINK 

• Example MATLAB/SIMULINK programs will be distributed, which you can freely use/modify.

• MATLAB is used for simple (usually linear) vehicle dynamic simulations and analysis for this course.

• SIMULINK: A GUI based simulation program.  Strength:

– Realistic dynamic phenomenon such as nonlinearity, quantization, noise, switches, look‐up tables, delays, etc. can be simulated easily.

– GUI makes it easy to recycle vehicle simulation modules

ME542 Vehicle Dynamics-Lecture 1- 12

Review of Rigid Body Dynamics

• Vehicle Coordinate Systems

• Newton/Euler Formulation

• Lagrange Formulation

Page 7: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 13

Vehicle Coordinate System

• First step in deriving vehicle dynamic equations.

• The Society of Automotive Engineers (SAE) has introduced standard coordinates and notations for describing vehicle dynamics

x

y

z

longitudinal roll

lateral pitch

vertical yaw

ISO coordinate: x is the same but y and z are reversed.

ME542 Vehicle Dynamics-Lecture 1- 14

SAE Vehicle‐Fixed Coordinate System‐‐Symbols and Definitions

Pitch angle: the angle between x‐axis and the horizontal plane.  Roll angle: the angle between y‐axis and the horizontal plane. Yaw angle: the angle between x‐axis and the X‐axis of a inertia frame

Axis TranslationalVelocity

AngularDisplacement

AngularVelocity

ForceComponent

MomentComponent

x u (forward) p or (roll) Fx Mx

y v (lateral) q or (pitch) Fy My

z w (vertical) r or (yaw) Fz Mz

/ˈθiːtə/, US /ˈθeɪtə/

/ˈfaɪ/

/ˈsaɪ/, /ˈpsaɪ/

Page 8: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 15

Earth Fixed Coordinate and Vehicle Slip

Course angle = +

OXYZ fixed on Earth (does not turn with the vehicle)

Heading angle

Sideslip angle

O

In the left figure, sideslip angle is negative)

tanv

u

ME542 Vehicle Dynamics-Lecture 1- 16

Tire Slip

o: Center of tire contact patchZ: Perpendicular to the ground plane.X and Y axes: On the ground plane. Tire camber angle: Angle between the XZ plane and the

wheel plane.

Source: Wong page 7

Page 9: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 17

Ride/Handling Dynamics

SPRUNG MASS RIDE HANDLING longitudinal

lateral vertical pitch roll yaw

UNSPRUNG MASS vertical

wheel rotation

Involves vehicle motions in several directions

( )

ME542 Vehicle Dynamics-Lecture 1- 18

Newton/Euler Formulation

Consider a rigid body of mass m, with c.g. at point o, subject to N external forces.  

For unconstrained motion, a rigid body possesses 6 DOF, 3 translational (x, y, z) and 3 rotational ().

oi j

k1F

2F

NF

Page 10: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 19

Let V and to denote the absolute velocity of mass center and angular velocity of the rigid body, ( ) be unit vectors of the body-fixed coordinate oxyz. The Newton/Euler equations of motion are then

Newton/Euler Equations

ˆ i , ˆ j , ˆ k

1

N

ii

dV d LF F m

dt dt

ri Fii1

N

Mo d H

dt

Where L is the linear momentum and H is the angular momentum of the rigid body about the mass center o.

Newton’s2nd law:

oi

j

k1F

2F

NF

1r

2r Nr

Euler

ME542 Vehicle Dynamics-Lecture 1- 20

Angular Momentum

Let H Hxˆ i Hy

ˆ j Hzˆ k

x

y

z

H

H I

H

wherexx xy xz

xy yy yz

xz yz zz

I I I

I I I I

I I I

2 2( )xx

V

I y z dV xy

V

I xy dV etc.

x xx xy xz xx xy xz

y xy yy yz xy yy yz

z xz yz zz xz yz zz

H I I I p I p I q I r

H H I I I q I p I q I r

H I I I r I p I q I r

Page 11: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 21

Rigid Body Motion of a Vehicle(a key concept: rate of change of a vector with respect to a rotating frame)

Translational motion:

ˆˆ ˆDF ma m ui vj wk

Dt

( )

( )

( )

x

y

z

qw rv

ru pw

p

u

v

w v q

F

F m

F m u

m

F ma

d

dt t

D

D

Cross Product

Change of the unit vectors

Rate of change wrt a fixed frame

Rate of change wrt a rotating frame

Rate of change due to the rotation of the frame

ˆˆˆ ˆˆˆ ui vj wkui vj km w

ud

vdt

w

p u

q v

r

m

w

ME542 Vehicle Dynamics-Lecture 1- 22

Rigid Body Motion of a Vehicle (cont.)

Rotational motion:

xx xy xz

xy yy yz

xx xy xz

xy yy yz

xzxz y yz zzz zz

p I p I q I r

q I p I q I r

r I p I q I

I p I q I rd

I p I q I rdt

I rp I q I r

M

2 2

2 2

2 2

xz yz zz xy yy yz

xx x

xx

y xz xz yz zz

xy yy y

x

y

z xx xy xz

xy xz

xy yy yz

xz yzz zz

I pq I q I rq I pr I qr I r

I p

I p I q I r

I r I qr I r I p I qp I rpp I q I r

I p I qp I r p I pq II p I q Ir r

M

M qq

M

I

xx xy xz

xy yy yz

xz yz zz

I p I q I r

H I p I q I r

I p I q I r

D d

Dt dt

M H

Page 12: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 23

Equations of Vehicle Rigid Body Motion

2 2

2 2

2

( )

( )

( )

x

y

z

x xx xy xz xz yz zz xy yy yz

y xy yy yz xx xy xz xz yz zz

z xz yz zz xy yy yz

F m u qw rv

F m v ru pw

F m w pv qu

M I p I q I r I pq I q I rq I pr I qr I r

M I p I q I r I pr I qr I r I p I qp I rp

M I p I q I r I p I qp I r p

2xx xy xzI pq I q I rq

ME542 Vehicle Dynamics-Lecture 1- 24

Simplified Equations of Motion• Assume

– vehicle is symmetric wrt the xz plane (Ixy = Iyz =0)

– p,q,r,v, and w are small, i.e., their higher order terms are negligible.

– u=uo + u’, u’ is small compared with uo.

Linear!

Naturally groupsinto 3 sets

'

( )

( )

x

y o

z o

x xx xz

y yy

z xz zz

F mu

F m v ru

F m w qu

M I p I r

M I q

M I p I r

)( rvqwumFx

)( pwruvmFy

)( qupvwmFz

.

.

.

Page 13: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 25

Review of Rigid Body Kinematics

• Kinematics: study of the geometry of motions.

• Quantities: position, velocity and acceleration.

oi j

k

OI J

Kp

or

pr

relr

Given: Kinematics quantities of onepoint (mass center), and the angular motion of the rigid body.

Find: Those at another point on thesame rigid body. 

Application: e.g., use motion of c.g.to infer motion of other points on the vehicle 

ME542 Vehicle Dynamics-Lecture 1- 26

Rigid Body Kinematics

Position:

p o relr r r oi j

k

OI J

K

p

or

pr

relr

p o relr r r Velocity:

p o relV V r

p o rel relV V r r

Acceleration:

p rel rel( )oa a r r

Page 14: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 27

Example 1

A car is traveling in the xz plane, pitching, bouncing

o pGiven:

Find:

o

rel

ˆˆ

ˆ

ˆ

V ui wk

qj

r li

pV pa

l

ME542 Vehicle Dynamics-Lecture 1- 28

Example 1 Solution

o p o

rel

ˆˆ

ˆ

ˆ

V ui wk

qj

r li

l

p o rel

0

0 0 0

0 0

ˆˆ ( )

u l u

V V r q

w w ql

ui w ql k

Page 15: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 29

Example 1 Solution

p r rel

2

el ( )

0 0

0

0

0

0

0

0 0

0

0

0 0

oa r

q

ql

u qw q l

w q

a r

l

q

u

u

q

w

q

u

l

w

o

rel

ˆˆ

ˆ

ˆ

V ui wk

qj

r li

ME542 Vehicle Dynamics-Lecture 1- 30

Another Kinematic Example (hw1)

• Vehicle Bicycle Model

• Vehicle is driving in the xy plane at a constant forward speed, and turning.  All other motions are ignored

• Find the speed and acceleration at the center of the front axle and the rear left tire

Page 16: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 31

Example 2

• Vehicle Bicycle Model

• Vehicle is driving in the xy plane, and yawing.  All other motions are ignored

• Find the dynamic equations

vr

a

b

f

u

1xF

2xF

1yF

2yF

ME542 Vehicle Dynamics-Lecture 1- 32

Example 2 Solution( )

( )

( )

x

y

z

F m u qw rv

F m v ru pw

F m w pv qu

2 2

2 2

2 2

x xx xy xz xz yz zz xy yy yz

y xy yy yz xx xy xz xz yz zz

z xz yz zz xy yy yz xx xy xz

M I p I q I r I pq I q I rq I pr I qr I r

M I p I q I r I pr I qr I r I p I qp I rp

M I p I q I r I p I qp I r p I pq I q I rq

?

Page 17: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 33

Lagrange’s Formulation • An alternative way to formulate the equations of motion.

• Starts from “energy” (scalar!) rather than vectors.

• We first define three terms

Degrees Of Freedom (DOF):

Constraints

Generalized coordinates

Number of independent coordinates required to uniquely define the motion of a particle, a body or a system of bodies.

Kinematic relationship that limit possible motions.

A set of independent coordinates whose number is equal to the DOF and which uniquely define the position and orientation of the rigid body.

ME542 Vehicle Dynamics-Lecture 1- 34

Examples for DOF, Constraints, and GC

Position of a particle in space: 3DOF

Position of a particle on a cylindrical surface

constraint

2DOF, position uniquely described by 2 coordinates, which are referred to as generalized coordinates (q1, q2).

Rigid wheel rolling on flat surface without slip, DOF=? Rigid wheel rolling on flat surface with slip, DOF=?

Page 18: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 35

Lagrange EquationsConsider a system of particles or rigid bodies with n DOFdescribed by n generalized coordinates {q1(t), …, qn(t)}.The Lagrange's equation is then

where 

ii i i

d T T VQ

dt q q q

i 1n

( , )i iT T q q

V V(qi )

: kinetic energy

: potential energy

Qi : the ith generalized non‐conservative force.

Qi F jj1

k

r j

qi

ME542 Vehicle Dynamics-Lecture 1- 36

Example 3: Compound Pendulum

Derive the equation of motion for the compound pendulum shown below for large angle q.

mb

Ib

L

Is

msr

g

Page 19: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 37

mb

Ib

L

Is

msr

g

DOF: only 1 (q)

Kinetic energy

Potential energy

2 2 2 2 21 1 1 1( ) ( )

2 2 2 2 2s s b b

LT m L r I m I

disk bar

( )(1 cos ) (1 cos )2s b

LV m g L r m g

disk bar

i

d T T VQ

dt

0

2 2( ) ( ) sin ( ) 02 2s b s b s b

L Lm L r m I I g m L r m

ME542 Vehicle Dynamics-Lecture 1- 38

Example 4: Inverted Pendulum

• Later in the term, we will apply the Lagrange’s method to derive the lateral‐yaw‐roll model.  

• Here we will start from a simpler system, which only involves lateral and roll (yaw is ignored for now)

mc

x

Lp,mp

F

Page 20: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 39

Example 4 Solution

mc

x

Lp,mp

pm g

xF

yF

mc

xF

yF

F

Newtonian Method: for the pendulum

sin cos2 2

p pp p

L Lx x y

2

2( ) ( cos )

2p

x p p p

Ld dF m x m x

dt dt

2( cos sin )2 2

p pp

L Lm x

2

2( ) ( sin )

2p

y p p p p

Ld dF m g m y m

dt dt

2( sin cos )2

pp

Lm

x-direction

y-direction

roll-direction

sin cos2 2

p py x p

L LF F I 21

12p p pI m L

F

ME542 Vehicle Dynamics-Lecture 1- 40

Example 4 Solution (cont.)Newtonian Method: for the cart

x cF F m x

2( ) cos sin2 2

p pc p p p

L LF m m x m m

2sin cos

3p p p pm g m x m L

sin cos2 2

p py x p

L LF F I Plug-in equations from x- and y- direction

We wrote down four equations, two of them used to cancel the internal forces Fx and Fy.

mc

xF

yF

F

Page 21: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 41

Example 4 Solution (cont.)

sin cos2 2

cos sin2 2

p pp p

p pp p

L Lx x x x

L Ly y

Lagrange’s method

The kinetic energy and potential energy are then

2 2 2 2 2 2 2 21 1 1 1 1 1[ ] [ 2 cos ]

2 2 2 2 2 2 3p

c p p p p c p p

LT m x m x y I m x m x x L

cos2

pp

LV m g

For x-direction: x

d T T VQ F

dt x x x

2( ) cos sin2 2

p pc p p p

L LF m m x m m

For -direction: 0d T T V

Qdt

2sin cos

3p p p pm g m x m L We worked with two equations

ME542 Vehicle Dynamics-Lecture 1- 42

Example 5: Double Pendulum

gl1

m1

l2

k

2

x

1

The double pendulum system consists of a mass‐less rigid bar of length l1, a point‐mass m1, a spring with free length l2 and spring constant k, and another point‐mass m2. Use Lagrange's equation to derive the equations of motion.

2m

Page 22: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 43

DOF: 3 (1, 2, x)

Kinetic energy

Potential energy

2

1 1 1

2 2

2 1 1 2 1 2 2 1 1 2 1

1( )

21

sin( ) ( ) cos( )2

T m l

m x l l x l

gl1

m1

l2

k

2

x

1

21 2 1 1 2 2 2 2 2

1( ) (1 cos ) (1 cos ) cos

2V m m gl m gl m gx kx

A

B

1 1l

2 2( )l x

x

2 1

ME542 Vehicle Dynamics-Lecture 1- 44

1 1 1

0d T T V

dt

2 21 1 1 2 1 2 2 1 2 1 2 1 2 1 1

22 1 2 2 2 1 2 1 2 2 2 1 1 2 1 1

2 cos( ) sin( )

( ) sin( ) ( ) cos( ) ( ) sin( ) 0

m l m l x m l x m l

m l l x m l l x m m gl

2 2 2

0d T T V

dt

2 22 2 2 2 1 2 1 2 1 2 1 2 1 2 1

2 2 2 2 2 2

( ) ( ) cos( ) ( ) sin( )

2 ( ) ( )sin( ) 0

m l x m l l x m l l x

m x l x m g l x

0x

d T T V

d xt x

22 2 1 1 2 1 2 1 1 2 1

22 2 2 2 2

sin( ) cos( )

cos ( ) 0

m x m l m l

m g kx m l x

Page 23: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 45

Appendix

ME542 Vehicle Dynamics-Lecture 1- 46

Rotation about a fixed axis

Beer, Johnson And Clausen, Vector Mechanics for Engineers, Dynamics, 8th edition, page 920

di dj dk

i j kdt dt dt

ˆˆ ˆu p u

v q v

w

ui v

w

j k

r

w

Page 24: ME542 Vehicle Dynamics - U-M Personal World Wide Web …hpeng/ME542-Lecture1-2pp.pdf · ME542 Vehicle Dynamics-Lecture 1- 1 ME542 Vehicle Dynamics Winter 2014 Tu & Th 1:30‐3:00pm

ME542 Vehicle Dynamics-Lecture 1- 47

Cross Product

• An operation on two vectors in the three‐dimensional space 

http://en.wikipedia.org/wiki/Cross_product

ME542 Vehicle Dynamics-Lecture 1- 48

x

y

ij

k

dij

dt

dji

dt

ˆˆ ˆ

ˆ ˆ0 0

1 0 0

i j kd

i jdt

ˆˆ ˆ

ˆ ˆ0 0

0 1 0

i j kd

j idt