ME36500 Homework #5 Due: 10/02/2014 Problem#1( Homework #5 Due: 10/02/2014 2/3...

3
ME36500 Homework #5 Due: 10/02/2014 1/3 Problem #1 (30%) A disk type flywheel with moment of inertia J of mass 10 kg and radius of 0.5 m is driven by a gasoline engine which generates a constant torque of T=10 Nm. The bearings in the shaft may be modeled as a viscous rotary dampers with damping coefficient of B=0.1 Nms/rad. If the flywheel is at rest at t=0 sec and the power is suddenly applied to the engine, the 1 st order ODE can be expressed as + = 1 () [Hint: moment of inertia J is= mR 2 /2] (A) Calculate the time constant τ=12.5 sec (B) Calculate the total solution (homogeneous and particular solution) homogeneous solution: ! = ! ! !".! ! ; particular solution: ! = 100 rad/s total solution: = ! + ! = ! ! !".! ! + 100 plug in t=0, = 0; C=100. Thus = 100 ! ! !".! ! + 100 (C) What is the steady state angular velocity? ! = 100 rad/s (D) Plot the step response for m=10 kg (given) and also for m=20 kg. What is the difference? Change in m values cause change in time constants, which leads to different response rates. (E) Plot the step response for m=10 kg, radius =0.5 m (given) and compare the response when your radius increases to 0.8 m. What is the difference? 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 100 110 Time [S] Rotate Velocity [rad/s] m=10kg m=20kg 0 20 40 60 80 100 120 140 160 180 200 0 10 20 30 40 50 60 70 80 90 100 110 Time [S] Rotate Velocity [rad/s] r=0.5 r=0.8

Transcript of ME36500 Homework #5 Due: 10/02/2014 Problem#1( Homework #5 Due: 10/02/2014 2/3...

Page 1: ME36500 Homework #5 Due: 10/02/2014 Problem#1( Homework #5 Due: 10/02/2014 2/3 Change&in&radius&values&cause&change&in&time&constants,&which&leads&todifferent responserates.& Problem#2(40%)&

ME36500 Homework #5 Due: 10/02/2014

1/3

Problem  #1  (30%)  A  disk  type  flywheel  with  moment  of  inertia  J  of  mass  10  kg  and  radius  of  0.5  m  is  driven  by  a  gasoline  engine  which  generates  a  constant  torque  of  T=10  Nm.  The  bearings  in  the  shaft  may  be  modeled  as  a  viscous  rotary  dampers  with  damping  coefficient  of  B=0.1  N-­‐m-­‐s/rad.  If  the  flywheel  is  at  rest  at  t=0  sec  and  the  power  is  suddenly  applied  to  the  engine,  the  1st  order  ODE  can  be  expressed  as  

𝐽𝐵𝑑𝜔𝑑𝑡 + 𝜔 =

1𝐵 𝑇(𝑡)  

[Hint:  moment  of  inertia  J  is=  mR2/2]  (A) Calculate  the  time  constant  

τ=12.5  sec  (B) Calculate  the  total  solution  (homogeneous  and  particular  solution)  

homogeneous  solution:  𝜔! = 𝐶𝑒!!

!".!!;  particular  solution:  𝜔! = 100  rad/s  

total  solution:  𝜔 = 𝜔! + 𝜔! = 𝐶𝑒!!

!".!! + 100  

plug  in  t=0,  𝜔 = 0;  C=-­‐100.  Thus  𝜔 = −100𝑒!!

!".!! + 100  (C) What  is  the  steady  state  angular  velocity?  

𝜔! = 100  rad/s  (D) Plot  the  step  response  for  m=10  kg  (given)  and  also  for  m=20  kg.  What  is  the  

difference?  

 Change  in  m  values  cause  change  in  time  constants,  which  leads  to  different  response  rates.    

(E) Plot  the  step  response  for  m=10  kg,  radius  =0.5  m  (given)  and  compare  the  response  when  your  radius  increases  to  0.8  m.  What  is  the  difference?  

 

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

80

90

100

110

Time [S]

Rot

ate

Velo

city

[rad

/s]

m=10kgm=20kg

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

80

90

100

110

Time [S]

Rot

ate

Velo

city

[rad

/s]

r=0.5r=0.8

Page 2: ME36500 Homework #5 Due: 10/02/2014 Problem#1( Homework #5 Due: 10/02/2014 2/3 Change&in&radius&values&cause&change&in&time&constants,&which&leads&todifferent responserates.& Problem#2(40%)&

ME36500 Homework #5 Due: 10/02/2014

2/3

Change  in  radius  values  cause  change  in  time  constants,  which  leads  to  different  response  rates.    

Problem  #2  (40%)  (A) Reduce  the  following  complex  numbers  to  the  form  𝐴 + 𝑗𝐵:  

a. 1+ 𝑗𝜔 !=1− 3𝜔! + (3𝜔 − 𝜔!)j  

b. (!!!")(!!!")!! ! =− !

!"− !!

!"  

c. !!!!!!!!

=− !!"+ !!

!"𝑗  

(B) Convert  the  following  exponentials  to  the  form  𝐴 cos 𝜔𝑡 + 𝑗  sin 𝜔𝑡 :  

a. 7𝑒!!.!!=7[cos(0.4t)+jsin(0.4t)]  

b. 2  𝑗 𝑒!!!! + 𝑒!!! =2 2 cos(6𝑡)𝑗  

(C) Find  the  magnitude  and  phase  (in  degrees)  of  the  following:  

a. −4+ 𝑗2  mag:  2 5;  phase:  153.43  deg  

b. 6.21𝑒 !!!  !!  !  mag:339;  phase:  !!  𝑡  

c. !!!(!")!!! !" !!" !" !  mag:  

!"!!"!!

(!!!"!!)!!!"!!;  phase:  −atan !!

!−atan( !!

!!!"!!)  

(D) Let    𝑧! = 5+ 𝑗8  and    𝑧! = −2− 𝑗7.    

a. Solve  𝑧!×𝑧!  by  expanding  terms  and  reducing  your  answer  to  the  form  A+jB.  

𝑧!×𝑧!=(5+8j)  ×(-­‐2-­‐7j)=46-­‐51j  

b. Compute  𝑧!×𝑧!  by  converting  𝑧!  and  𝑧!  to  the  form  𝐴𝑒!" ,  then  solving  for  an  answer  in  the  same  form.    

z1= 25+ 64𝑒!.!"!;  z2= 4+ 49𝑒 !.!"±! !;  𝑧!×𝑧!=68.68𝑒(!.!±!)!=46-­‐51j  

c. Convert  your  answer  from  part  (ii)  into  the  form  𝐴 cos𝜙 + 𝑗 sin𝜙 .  

68.68[cos(2.3±𝜋)+jsin(2.3±𝜋)]  d. Draw  a  diagram  on  the  complex  plane  that  shows  why  your  answers  for  parts  

(a)  and  (c)  are  different  representations  of  the  same  value.  

 

Page 3: ME36500 Homework #5 Due: 10/02/2014 Problem#1( Homework #5 Due: 10/02/2014 2/3 Change&in&radius&values&cause&change&in&time&constants,&which&leads&todifferent responserates.& Problem#2(40%)&

ME36500 Homework #5 Due: 10/02/2014

3/3

Problem  #3  (30%)  An  accelerometer’s  behavior  can  be  modeled  by  a  second  order  differential  equation  with  a  natural  frequency  (fn)  of  120  Hz,  damping  ratio  (ζ)  of  0.1,  and  a  static  sensitivity  of  5  mV/g.    The  accelerometer  is  used  in  a  feedback  system  on  a  shaker  and  is  measuring  the  shaker’s  acceleration.    The  shaker  table  is  initially  at  rest  and  then  a  sinusoidal  excitation  is  turned  on  with  an  acceleration  level  of  4  m/sec2  peak-­‐to-­‐peak  and  frequency  12  Hz.  You  may  assume  there  are  no  bias  voltages.    (A) Write  down  the  differential  equation  that  relates  output  voltage,  v(t),  to  input  

accelerations  a(t).  The  coefficient  of  the  differential  equation  should  have  numerical  values.  Please  make  sure  the  units  are  consistent.  

1𝜔!!

𝑦 +2𝜍𝜔!

𝑦 + 𝑦 = 𝐾𝑥  

plug  in  parameters:  𝜔! = 2𝜋𝑓 = 754  𝑟𝑎𝑑/𝑠;  K=5.1×10-­‐4  V/m*s2  1.76×10!!𝑦 + 2.65×10!!𝑦 + 𝑦 = 5.1×10!!𝑥  

(B) Calculation  the  steady-­‐state  response  of  the  accelerometer  to  the  12  Hz  input  excitation  described  above  using  both  of  the  following  approaches:  Approach  1:  Assume  the  steady  state  response  is   vSS (t) = A ⋅sin(ωt)+ B ⋅ cos(ωt)  where  ω = 2π f  and  f  is  the  frequency  of  the  excitation.  Substitute  the  above  representation  into  the  differential  equation  and  solve  for  A  and  B.  1 − !!

!!! A − !"#

!!B = K    (1)  

!"#!!

A + 1 − !!

!!! B = 0    (2)  

A=0.00101  B=-­‐0.00002  thus,  Vss  =  0.00101sin(𝜔𝑡)  -­‐0.00002cos(𝜔𝑡)  =  0.00103sin(ωt  –  0.02)  [V]  Approach  2:  Calculate  the  frequency  response  function  (T)  by  assuming  the  acceleration  is   a(t)= A ⋅ e jωt  and  the  output  voltage  is   v(t)=V ⋅ e jωt .    Substitute  these  representations  into  the  differential  equation  and  then  determine  the  steady-­‐state  response.  Your  answer  should  be  the  same  as  in  Approach  1.    Make  sure  the  steps  to  get  this  result  are  clearly  provided  in  your  solution.  

plug  in  a(t)  and  v(t),  we  could  get  − !!

!!!∙ 𝑣𝑒!"# + !!

!!v jω 𝑒!"# + v𝑒!"# = KAe!!!  

by  rearrangement:  !"!"#

!!!"#= !

!!!!

!!!! !"!!

!!=G(j𝜔)  

𝐺(𝑗𝜔) = !

(!!!!

!!!)!!( !"!!!)

!

=5.15*10-­‐4;  

∠ 𝐺(𝑗𝜔) = −atan  ( !"!!ω/(1 − !!

!!!))=-­‐0.02  rad  

Vss  =  0.2*5.15*10-­‐4*sin(ωt  –  0.02)  =  0.000103*  sin(ωt  –  0.02)  [V]  =  0.00101sin(𝜔𝑡)  –0.00002cos(𝜔𝑡)