ME3122 Handbook of Heat Transfer Equations 2014 Final

download ME3122 Handbook of Heat Transfer Equations 2014 Final

of 22

Transcript of ME3122 Handbook of Heat Transfer Equations 2014 Final

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    1/22

    HANDBOOK OF EQUATIONS, TABLES

    AND CHARTS FOR

    ME3122/ME3122E HEAT TRANSFER

    Department of Mechanical Engineering

    National University of SingaporeNovember 2014

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    2/22

    1

    CONDUCTION HEAT TRANSFER

    1stlaw of thermodynamics: WQdU

    Conduction:

    Convection:

    Radiation: where -4-28 KWm10675 .

    Control Volume:

    Surface:

    Heat Conduction Equation:

    Cartesian:

    Cylindrical:

    Spherical:

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    3/22

    2

    One-Dimensional Walls

    Fin Equations:

    kA/hPmmdx

    d where02

    2

    2

    which has the general solution mxmx eCeC 21 .

    Fin Efficiency:

    Fin Effectiveness:

    Overall Surface Efficiency:

    ftf

    t

    t

    max

    t

    o A

    NA

    hA

    q

    q

    q

    11

    0

    whereunfinnedft

    ANAA .

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    4/22

    3

    Lumped Capacitance Method:

    ,

    , , ,

    Other Equations (Thermal Properties):

    Solids:

    Free electrons:

    Gases:

    Joule heating: RIEg2

    Interfaces:

    Heat wave speed:

    Two semi-infinite solids touch:

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    5/22

    4

    CONVECTION HEAT TRANSFER

    All symbols have their usual meaning.

    ConstantsGravitational acceleration: g = 9.81 m/s2

    Specific gas constant for air: R= 287 J/kgK

    Definitions

    Kinematic viscosity, /

    Thermal diffusivity, / pck

    Volumetric thermal expansion coefficient,TT p

    11

    for an ideal gas.

    General

    Dimensionless Groups

    uc

    h

    PrRe

    NuSt

    PrGrRa

    LTTgGr

    k/hLNu

    /Pr

    /VL/VLRe

    p

    x

    x

    xx

    LL

    sL

    L

    L

    Number,Stanton

    Number,Rayleigh

    Number,Grashof

    Number,Nusselt

    Number,Prandtl

    Number,Reynolds

    2

    3

    Tcm

    y

    u

    VAm

    RTpv

    TThq

    p

    c

    s

    sectionaghflux throuenergyThermal

    stress,Shear

    rate,flowMass

    :lawgasIdeal

    Cooling,ofLawsNewton'

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    6/22

    5

    2D Continuity Equation:

    2D x-Momentum Equation:

    2D Energy Equation:

    where viscous dissipation,

    2D Boundary Layer Equations:

    x-Momentum Equation:

    Energy Equation:

    Integral Momentum Equation:

    Integral Energy Equation:

    Forced Convection Over External Surfaces

    Generally,nm

    PrReCNu

    Forced Convection Over a Flat Plate:

    For constant , .

    Mean heat transfer coefficient,11

    0

    L

    x

    A

    x dxhL

    dAhA

    h

    0

    y

    v

    x

    u

    Xy

    u

    x

    u

    x

    p

    y

    u

    vx

    u

    u

    2

    2

    2

    2

    qy

    T

    x

    Tk

    y

    Tv

    x

    Tucp

    2

    2

    2

    2

    222

    2y

    v

    x

    u

    x

    v

    y

    u

    2

    2

    y

    u

    y

    uv

    x

    uu

    2

    2

    y

    T

    y

    Tv

    x

    Tu

    00

    )(

    yy

    udyuuu

    dx

    d

    0

    0

    yy

    TdyTTu

    dx

    d t

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    7/22

    6

    Uniform Surface Temperature (Isothermal):

    For laminar flow (5Re 5 10

    x ):

    ;5 3121 PrRex tx ;

    For turbulent flow (5

    Re 5 10x ):

    Pr02960;05920;370 31

    51 5451

    xxxx,fxturb Re.NuRe.CRex.

    For mixed boundary layer conditions ( 5105LRe ):

    Uniform Surface Heat Flux (Isoflux):

    For laminar flow (5Re 5 10

    x ):

    For turbulent flow (5Re 5 10x ):

    31

    Pr03080 54xx Re.Nu

    For Unheated Starting Length,xo, with laminar flow for both isothermal and isofluxconditions:

    Forced Convection Across Long Cylinders:

    where Cand mare given byReD C m

    0.4-4 0.989 0.330

    4-40 0.911 0.385

    40-4000 0.683 0.466

    4000-40,000 0.193 0.618

    40,000-400,000 0.027 0.805

    31213121 6640;3320 PrRe.kLhNuPrRe.Nu LLxx

    )8710370(;1742074080151 3

    1

    .LLLLL,f Re.Prk

    LhNuReRe.C

    31

    21

    4530 PrRe.Nu xx

    21

    21

    3281;66402

    2

    xL,fxx,s

    x,f Re.CRe./u

    C

    31430

    1

    x/xNuNu oxxx o

    31PrReCk

    DhNu mDD

    3

    12

    1

    6800

    111

    000 PrRek.

    Lqdx

    Nuk

    xq

    Ldx

    h

    q

    LdxTT

    LTT

    L

    sL

    x

    sL

    x

    sL

    ss

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    8/22

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    9/22

    8

    (a)Aligned tube rows (b) Staggered tube rows

    For : where C2for various is given in the table

    below:

    20220 LL NDND NuCNu

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    10/22

    9

    Forced Convection in Tubes and Ducts

    Friction factor,

    PerimeterWettedAreasectional-Cross4Diameter,Hydraulic hD

    For thermally fully-developed condition:

    Laminar Flow (ReD2300):

    Fully developed velocity profile:

    where mean fluid velocity,

    Friction factor, f= 64/ReD

    Nuand ffor Fully-Developed Laminar Flow in Tubes of Various Cross-Sections

    dx

    dpr

    r

    mum

    8

    20

    2

    0

    2

    0

    2

    12)(

    r

    r

    u

    ru

    m

    2

    or2

    2

    2

    m

    m

    u

    D

    Lfp

    /u

    Ddx/dpf

    0)()(

    )()(

    xTxT

    x,rTxT

    x ms

    s

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    11/22

    10

    Turbulent Flow (ReD> 2300):

    For smooth tubes and ducts, the Dittus-Boelter equation:

    with n= 0.4 for heating of fluid, and n= 0.3 for cooling of fluid

    Friction factor for smooth tubes: 26417900 .Reln.f D

    Friction factor for rough tubes of roughness e: 290745733251 .DRe/.D./eln.f

    Reynolds-Colburn Analogy

    For flow over a flat plate:

    For flow in a tube or duct:

    FREE CONVECTION

    Generally,

    flow.entfor turbul31andflow,laminarfor41with mmRaCPrGrCNu mLm

    LL

    Laminar Free Convection on an Isothermal Vertical Plate:

    Boundary layer momentum equation:

    Integral Momentum Equation for Free Convection BL:

    Boundary layer thickness,

    Critical Ra= 109.

    Free Convection from an Isothermal Sphere

    n

    DD PrRe.Nu hh540230

    2;2 3232 /CPr.St/CPr.St L,fLx,fx

    832 /fPr.St

    2

    2

    y

    uTTg

    y

    uv

    x

    uu

    00

    2dyTTg

    y

    udyu

    dx

    d

    s

    414121 9520933 xGrPr.Prx.

    541 101for4302 D/

    DD GrPrGr.k

    DhNu

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    12/22

    11

    Free Convection from Isothermal Planes and Cylinders

    Free Convection from a Vertical Plate with Constant Surface Heat Flux

    where

    mLm

    LL RaCPrGrCNu

    Geometry GrL Pr C mCharacteristic

    Length

    Vertical plane and cylinder104109 0.59 1/4

    Height10 10 0.10 1/3

    Horizontal cylinder

    10-1010-2 0.68 0.058

    Diameter

    10- 10 1.02 0.148

    102104 0.85 0.188

    104109 0.53 1/4

    1091012 0.13 1/3

    Hot surface facing up or

    cold surface facing down

    104107 0.54 1/4Area/Perimeter

    1071011 0.15 1/3

    Hot surface facing down or

    cold surface facing up1051011 0.27 1/4 Area/Perimeter

    161341

    11551

    10102for170:Turbulent

    1010for600:Laminar

    Pr*GrPr*Gr.Nu

    Pr*GrPr*.Gr.k

    xhNu

    xxx

    xxx

    x

    2

    4

    k

    xqg.NuGr*Gr sxxx

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    13/22

    12

    RADIATION HEAT TRANSFER

    Solid angle: 2/ rAn , ddsind

    Radiation:where

    -4-28

    KWm10675

    .

    surssursr

    sursr

    "

    rad

    TTTTh

    TThq

    22

    Spectral directional Intensity:

    Diffuse emitter:

    Blackbody: 4)( TTEb

    Spectral black body emissive power

    ).)T/Cexp(

    C)T,(E b, m(W/m

    1

    2

    2

    5

    1

    m.K104391and/mmW.107423where 42248

    1 .C.C

    Weins displacement law: m.K2898max T

    Emissivity of real surfaces:

    4)()()( TTETTE b

    Absorptivity of surface:

    GGabs

    Semitransparent medium: 1

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    14/22

    13

    Black Body Radiation Functions

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    15/22

    14

    View factors:

    32

    133122132

    AA

    FAFAF ,

    Radiation exchange between black-body surfaces:

    Radiation network approach:

    resistancespatial1re whe1

    resistancesurface1where1

    121

    121

    2112

    FA/FA/

    JJq

    A/A/

    JEq b

    Radiation Exchange Network for a Two-Surface Enclosure

    22

    2

    21111

    1

    4

    2

    4

    112

    111AFAA

    TTq

    ,

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    16/22

    15

    View factor for aligned parallel rectangles

    View factor for coaxial parallel disks

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    17/22

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    18/22

    17

    Correction Factor Charts

    lmTUAFq

    Correction Factor for Heat Exchanger with One Shell

    Passand Two (or Multiples of Two)Tube Passes.

    Correction Factor for Heat Exchanger with Two Shell

    PassesandFour (or Multiples of Four)Tube Passes.

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    19/22

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    20/22

    19

    -NTU Charts for Heat Exchangers

    Effectiveness of parallel flow heat exchangers Effectiveness of counterflow heat exchangers

    Effectiveness of Heat Exchangers with One Shell

    Passand Two (or Multiples of Two)Tube Passes.

    Effectiveness of Heat Exchangers with Two Shell

    PassesandFour (or Multiples of Four)Tube Passes.

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    21/22

    20

    Effectiveness of Single-Pass Cross-Flow HeatExchangers withBoth Fluids Unmixed.

    Effectiveness of Single-Pass Cross-Flow HeatExchangers with One Fluid Mixed, and the

    Other Unmixed.

  • 8/10/2019 ME3122 Handbook of Heat Transfer Equations 2014 Final

    22/22

    21

    Heat Exchanger Effectiveness Relations

    Heat Exchanger NTU Relations

    Use the above two equations with