McMaster Green Roof Proposal

34

description

2010 Report

Transcript of McMaster Green Roof Proposal

Page 1: McMaster Green Roof Proposal

 

Page 2: McMaster Green Roof Proposal

Executive  Summary    

The   Ontario   Public   Interest   Research   Group   of   McMaster   (a   student   funded/student   directed  organization  working  on  issues  of  human  rights,  the  environment,  and  social  justice)  has  been  working  on  creating  a  green  roof  plan  for  the  McMaster  Student  centre  terrace  this  year  as  part  of  an  initiative  to  promote  the  benefits  of  green  roofs  and  to  show  their  potential  for  success  on  campus.  

There   are   many   spaces   on   campus   where   green   roofs   could   be   successfully   applied   to   improve   the  appearance  of  the  area  and  to  provide  many  cost-­‐saving  and  aesthetic  benefits.    Some  of  these  benefits  include  amenity  space,  supporting  biodiversity,  lowering  energy  demands,  increasing  the  lifespan  of  the  roof's   waterproofing   membrane,   reducing   airborne   pollutants,   reducing   noise,   reducing   runoff   from  storm  water,  reducing  the  heat  island  effect,  and  providing  LEED  building  credits.      

The  McMaster  Student  Centre  was  chosen  for  this  project  because  of   its  availability,  accessibility,  high  visibility,  and  high  energy  demands.    These  factors  make  it  an  ideal  location  to  showcase  the  potential  of  green   roofs   and   to   act   as   a   demonstration   as   to   how   they  might   be   implemented   on   other   roofs   on  campus.    This  location  currently  acts  as  a  lunch  spot  for  many  staff  and  students  at  McMaster  as  well  as  being  a  place  where  some  campus  wedding  parties  go  for  refreshments  and  to  socialize.    Currently  the  space   is   sparsely   decorated   and   only   has   a   few   small   potted   plants   to   add   colour   to   the   space.     As  building   codes   permit  much   higher   occupancy   per   square  meter   and   higher   loading   than   is   currently  being  utilized  the  space  is  an  ideal  location  for  adding  larger  plants  and  green  roof  material.    The  design  being  proposed  for  this  space  complements  the  ability  for  the  space  to  hold  large  events  and  gatherings  while  also  adding  a  great  amount  of  aesthetic  and  environmental  value  to  the  terrace.  

The  design  maximizes  the  potential  of  the  terrace  by  incorporating  well  layered  plants  of  varying  heights  at  the  sides  of  the  location.    This  gives  the  feeling  of  being  within  a  relaxing  green  space  to  those  dining  

on  the  terrace  as  well  as  providing  a  visually  appealing  backdrop  for  conversations  and  photos.  Green  roofs  also   improve  air  quality,   lower  the  roof  temperature  during  summer,  and  improve  the  insulation  value  of  the  roofing  they  are  installed  on.  

The   plants   chosen   for   the   design   are  well   suited   to   enduring   hot,   dry,   and   sunny   environments  with  minimal  maintenance  and  minimal  watering  requirements.    For  periods  with  very  little  rainfall  the  green  roof  design  being  proposed  is  to  be  connected  to  a  nearby  water  line  in  the  student  centre  which  would  be  used  as  part  of  an   irrigation  system   (which  comes  standard  with  many  of   the  green   roof  packages  being  considered  for  the  design).      

Page 3: McMaster Green Roof Proposal

 

Table  of  Contents  Executive  Summary ..................................................................................................................................... 2  

Table  of  Figures ........................................................................................................................................... 4  

Definitions  and  Terms.................................................................................................................................. 5  

History  of  Green  Roofs  and  Green  Spaces  at  McMaster ............................................................................. 6  

Objectives .................................................................................................................................................... 8  

Proposed  Location ....................................................................................................................................... 9  

Proposed  Design  &  Layout......................................................................................................................... 11  

Rain  Water  Collection  &  Water  Connections ............................................................................................ 12  

Drainage  Systems ...................................................................................................................................... 14  

Green  Roof  Materials ................................................................................................................................ 15  

Plant  Types  and  Plant  Positioning  Recommended .................................................................................... 16  

Project  Costs  and  Business  Plan ................................................................................................................ 19  

Plant  Costs ............................................................................................................................................. 19  

Green  Roof  Materials ............................................................................................................................ 19  

Planters.................................................................................................................................................. 20  

Water  Rerouting .................................................................................................................................... 21  

Water  Collection.................................................................................................................................... 21  

Benefits  of  Green  Roofing ......................................................................................................................... 22  

Amenity  Space ....................................................................................................................................... 22  

Support  of  Biodiversity .......................................................................................................................... 23  

Lowered  Energy  Demands  and  Longer  Roof  Lifespan ........................................................................... 23  

Reducing  Airborne  Pollutants  and  Improving  Air  Quality...................................................................... 24  

Noise  Reduction  and  Protection............................................................................................................ 27  

Stormwater  Management ..................................................................................................................... 28  

Urban  Heat  Island  Effect........................................................................................................................ 30  

LEED  Building  Credits ............................................................................................................................. 31  

Codes  and  Standards ................................................................................................................................. 32  

Fire  Code  Requirements ........................................................................................................................ 32  

Building  Code  Requirements ................................................................................................................. 32  

Page 4: McMaster Green Roof Proposal

Building  Permit  Application ................................................................................................................... 32  

Bibliography............................................................................................................................................... 33  

 

Table  of  Figures  Figure  1  -­‐  McMaster  Univesity  Panorama,  from  the  Southwest  (Cruickshank,  2008)................................. 6  

Figure  2  -­‐  Green  roof  Implemented  in  the  Arts  Quad.................................................................................. 7  Figure  3  -­‐  Class  of  '54  Garden  at  McMaster,  located  between  Hamilton  Hall  and  the  Faculty  Club ........... 7  Figure  4  -­‐  MDCL  Roof  as  it  is  now  (viewed  from  the  4th  story  stairs)........................................................... 8  

Figure  5  -­‐  MDCL  Roof  as  it  could  be  (viewed  from  the  4th  story  stairs) ....................................................... 8  Figure  6  -­‐  McMaster  Student  Centre  as  viewed  from  the  East  parking  lot  to  show  the  terrace ................. 9  Figure  7  -­‐  Student  Centre  Terrace ............................................................................................................. 10  

Figure  8  -­‐  Proposed  green  roof  design  viewed  from  above  and  the  Southeast ........................................ 11  Figure  9  -­‐  4th  Floor  Drainage  Pipe ............................................................................................................. 12  Figure  10  -­‐  Handytank  1000L  Rain  Storage  (Green  Venture,  2010)........................................................... 12  

Figure  11  –  Enlarged  section  of  the  Student  Centre  plumbing  diagram  with  a  few  possible  water  line  locations  highlighted ................................................................................................................................. 13  Figure  13  -­‐  An  example  of  the  drains  on  the  student  centre  terrace ........................................................ 14  

Figure  12  -­‐  Architectural  drawing  of  roof  heights  for  the  student  centre  terrace  with  drainage  and  green  roof  overlay ............................................................................................................................................... 14  Figure  14  –  Vegetative  roof  assembly  (Bioroof,  2009) .............................................................................. 15  

Figure  15  -­‐  Structural  loading  capacity  diagram  for  the  terrace  (Atkinson  Engineering  Inc.,  2000).......... 16  Figure  16  -­‐  Ripe  Prickly  Pear  Cactus  (zoofari,  2008) .................................................................................. 16  Figure  17  -­‐  Firewheel  flower  (Poon,  2007) ................................................................................................ 17  

Figure  18  -­‐    New  Jersey  Tea  (Nebraska  Forest  Service,  2008) ................................................................... 17  Figure  20  -­‐  Preliminary  plant  positioning  diagram .................................................................................... 18  

Figure  19  -­‐  Indian  Grass  (DePauw  University,  2010).................................................................................. 17  Figure  22  -­‐  Mayne  20  In.  Square  Farifield  Patio  Planter  in  Clay  (Home  Depot,  2010) ............................... 20  Figure  21  -­‐  Southern  Patio  24  In.  Diamante  Black  Walnut  Finish  (Home  Depot,  2010) ............................ 20  

Figure  24  -­‐  Monarch  butterfly  perched  on  flower  and  gathering  nectar  (Monarch  Butterfly  Information,  2010).......................................................................................................................................................... 23  Figure  25  Air  Quality  Index  Graph  Created  from  Air  Quality  Ontario  Data  2010  as  of  Aug.  29 ................. 24  

Figure  26  -­‐  Parking  lots  on  campus  at  McMaster  as  shown  in  the  Campus  Master  Plan  (Urban  Strategies  Inc.,  2008) .................................................................................................................................................. 25  Figure  27  -­‐  Percentage  Breakdown  of  CO2  Emissions  by  Source  for  McMaster  University  as  of  2007  

(Zerofootprint,  2009)................................................................................................................................. 26  Figure  28  -­‐  10  Buildings  with  Highest  Total  Emissions  as  of  2007  (Zerofootprint,  2009) .......................... 26  Figure  29  -­‐  Cootes  Paradise  highlighted  on  a  map  of  McMaster's  campus  in  the  Campus  Master  Plan  

(Urban  Strategies  Inc.,  2008) ..................................................................................................................... 28  

Page 5: McMaster Green Roof Proposal

Figure  30  -­‐  A  diagram  showing  the  many  different  sources  of  runoff  and  their  path  (NC  Department  of  Environment  and  Natural  Resources,  2009).............................................................................................. 29  

Figure  31  -­‐  A  Graph  showing  the  temperature  at  different  levels  of  urbanization  in  order  to  demonstrate  the  effect  of  plants  on  temperature  reduction  (Interlock,  2009).............................................................. 30  

Definitions  and  Terms    

Extensive  Green  Roof  –  A  green  roof  typically  composed  of  smaller  plants  such  as  sedum  which  require  less  than  12in  of  soil  and  requires  very  little  maintenance  

Engineered  Media  –  A   type  of   soil   compound  used   in  green   roof  projects  due   to   requirements  of   low  

weight,   high   water   retention,   and   high   drainage   rates.     This   can   include   volcanic   ash,   peat,   perlite,  vermiculite,  and  many  other  blends  of  materials  as  needed  for  each  specific  project.  

Intensive  Green  Roof  –  A  green  roof  typically  composed  of   larger  plants  which  requires  a  depth  of  soil  over  12in  and  typically  requires  watering  and  maintenance  

LEED  -­‐  Leadership  in  Energy  and  Environmental  Design  

MUSC  -­‐  McMaster  University  Student  Centre  

OPIRG  –  Ontario  Public  Interest  Research  Group.    The membership of OPIRG Provincial is comprised of eleven autonomous, non-profit, university student-funded and directed organizations that conduct research, education, and action on social and environmental justice issues on behalf of the Ontario public.

RGB  –  Royal  Botanical  Gardens  

Semi   Intensive   Green   Roof   –   A   green   roof   with   a   soil   depth   between   12-­‐16in   that   is   suitable   for  extensive  plants  as  well  as  small  shrubs,  bushes  and  grasses  

Page 6: McMaster Green Roof Proposal

 

 

Figure  1  -­‐  McMaster  Univesity  Panorama,  from  the  Southwest  (Cruickshank,  2008)  

History  of  Green  Roofs  and  Green  Spaces  at  McMaster    

McMaster  University  has  a  proud  history  of  deep  respect  for  green  spaces  and  the  environment  in  the  

Hamilton  community.     Its   stunning   location  adjacent   to  Cootes  Paradise,  one  of   the   largest   remaining  wetland   areas   on   Lake   Ontario,  makes   it   stand   out   in   the   greater   educational   community   as   a   place  where   education   physically   meets   the   environment.     This   is   reflected   by   its   diverse   environmental  

programs,   including   the   Institute   of   Environment   and   Health,   Earth   Sciences,   and   Engineering   and  Society.     McMaster   is   also   connected   to   many   surrounding   natural   areas   by   trail   networks   that   run  through   protected   lands   owned   by   the   Royal   Botanical   Gardens   (RBG).     As   such,   it   is   crucial   that  

McMaster  maintain   its   status   as  both  a   responsible   steward  of   its   natural   surroundings   and  a  worthy  partner  of  RBG  by  continuing  its  proud  history  of  supporting  environmentally  focused  policies.  

Currently,  McMaster  has  implemented  a  sizable  green  roof  in  the  arts  quad  just  outside  of  the  student  centre  which  has  been  planted  with  tall  grasses.    Although  not  easily  noticed  as  a  green  roof  due  to  its  

location  being  at  ground  level,   it  still  provides  many  of  the  benefits  associated  with  green  roofs  to  the  basement   levels  beneath   it.    This   is  an  excellent  use  of   the   space  which  will  help   to  keep  stormwater  

runoff   under   control   during   heavier   storms   while   providing   a   beautiful   spot   for   lunches   and   breaks  between   classes.     The   green   roof   design   contained   in   this   proposal   is   made   to   advance   the

 

Page 7: McMaster Green Roof Proposal

 

Figure  2  -­‐  Green  roof  Implemented  in  the  Arts  Quad  

goals   stated   during   the   implementation   of   McMaster’s   first   green   roof   and   to   take   the   green   roof  

program  to  new  heights.      

Besides   its   green   roof,  McMaster’s   campus   also   boasts  many   gardens   and   natural   spaces   which   add  tremendously  to  the  image  of  campus.    One  particular  example  of  this  is  the  class  of  ’54  garden  located  just  behind  Hamilton  Hall:      

 

Figure  3  -­‐  Class  of  '54  Garden  at  McMaster,  located  between  Hamilton  Hall  and  the  Faculty  Club  

This  garden  has  a  broad  range  of  flowers  and  grasses  which  give  it  great  visual  depth  and  detail,  helping  

to  make  this  location  stand  out  from  its  surroundings.    This  spot  is  often  visited  during  weddings  as  a  site  to  see  and  is  an  ideal  backdrop  for  pictures.  

By  adding  green  spaces  to  its  campus,  McMaster  has  created  a  peaceful  and  natural  atmosphere  which  improves  the  image  of  campus  aesthetically,  but  also  provides  many  other  forms  of  benefits  (eg  social,  

psychological,  environmental,  and  medical)  to  be  discussed  in  later  sections.    

Potential  sites  for  designating  more  green  spaces  on  campus  are  becoming  harder  and  harder  to  come  by  as  more  development  takes  place  and  new  buildings,  parking  lots,  or  pathways  spring  up  each  year.    So,  in  considering  how  to  add  green  space  to  McMaster  in  the  future  one  of  the  best  places  to  look  is  on  

the   rooftops.     Adding   colourful   grasses,   sedum,   flowers,   and   shrubs   to   rooftop   spaces   can   change   a  dreary   and   dull   space   into   a   natural   space  which   blends   in  with  McMaster’s   green   surroundings   and  contributes  towards  the  University’s  environmental  goals.    For  example,  consider  how  a  blanket  of  small  

Page 8: McMaster Green Roof Proposal

sedum  plants   could   add   colour   and   style   to   the  Michael  Degroote  Centre   for   Learning  and  Discovery;  what   a   complement   for   the   waterfall   and   plant   life   already   contained   within   the   building!  

 

Figure  4  -­‐  MDCL  Roof  as  it  is  now  (viewed  from  the  4th  story  stairs)                        

Figure  5  -­‐  MDCL  Roof  as  it  could  be  (viewed  from  the  4th  story  stairs)  

The   potential   for   green   roofs   is   enormous   at   McMaster,   as   most   buildings   on   campus   have   only   a  minimal  slope:  such  roofs  are  ideal  for  green  roof  installation.    Given  McMaster’s  potential,  this  proposal  

is   designed   to   showcase   the  many   benefits   green   roofs   can   offer  McMaster   as   well   as   to   present   a  design  plan  for  implementing  a  green  roof  on  the  third  floor  terrace  of  the  MUSC  (McMaster  University  Student  Centre).  

 

Objectives    

The  primary  objectives  of  this  proposal  are  to:    

1)  Facilitate  the   implementation  of  a  green  roof  on  the  3rd   floor  student  centre  terrace  (as  outlined   in  the  design  section  of  this  proposal),    

2)   Demonstrate   the   many   benefits   that   green   roofs   provide,   including   improving   staff   and   student  health,  facilitating  cost  reduction  efforts,  and  improving  energy  efficiency  on  campus,  and    

3)   Promote   the  use  of   green   roof   technology   in   future   renovation   and  building  projects   at  McMaster  

University.      

This   document   will   show   compliance   of   the   design   with   all   necessary   regulatory   codes,   besides  highlighting  key  features  that  make  the  chosen   location  optimal   for   implementation.     It  will  also  show  how   green   roofs   can   help   to   realize  University   goals   as   stated   in   the  McMaster  Master   Plan   towards  

achieving  a  cleaner,  greener,  and  more  livable  campus.  

 

Page 9: McMaster Green Roof Proposal

 

Proposed  Location    

There  are  many  spaces  on  campus  where  green  roofs  could  be  successfully  implemented  to  improve  not  only   their   appearances   but   also   to   provide   many   cost-­‐saving   benefits   (as   will   be   described   in   later  

sections).    The  location  chosen  for  this  project  was  determined  based  on  comparing  different  buildings’  potential  for  the  greatest  visual  impact,  educational  impact,  and  staff/student  interaction.    

 

Figure  6  -­‐  McMaster  Student  Centre  as  viewed  from  the  East  parking  lot  to  show  the  terrace  

 The   site   chosen   for   this   project   is   the  McMaster   Student   Centre,   specifically   the   third   floor   terrace,  

because  of   its  availability,  accessibility,  high  visibility,  and  the  building’s  (currently)  high  rate  of  energy  consumption.     These   factors   make   it   an   ideal   location   to   showcase   and   physically   demonstrate   the  potential   of   green   roofs   on   campus.    We   hope   that   the   success   of   this   installation  will   inspire   other  

green  roof  implementations  at  McMaster.  

This  location  currently  acts  as  a  lunch  spot  for  many  staff  and  students  at  McMaster  as  well  as  being  a  place   where   wedding   parties,   who   have   rented   other   areas   of   the   Student   Centre,   inevitably   go   for  refreshments   and   conversation.     Currently   the   space   is   sparsely   decorated  with   only   has   a   few   small  

potted  plants.    Since  building  codes  permit  much  higher  occupancy  per  square  meter  and  higher  loading  bearing  than  is  currently  being  utilized  the  space  is  an  ideal  location  for  adding  larger  plants  and  green  roof  medium.  

Page 10: McMaster Green Roof Proposal

As  is  shown  in  the  picture  to  the  right  (Figure  7   -­‐   Student   Centre   Terrace),   the   space   is  

currently   covered   with   large   cement   tiles  which   are   evenly   spaced   throughout   the  terrace.     These   tiles   are   resting   on   top  of   a  

waterproof   layer  which   is  quite  durable  and  able   to   withstand   large   amounts   of   weight  on   top   of   it   (up   to   2.8kN/m2,   which   far  

exceeds   the  needs  of   the  green   roof  design  proposal).     This   is   beneficial   to   the   project  because   this   layer   will   not   have   to   be  

replaced  with  other  materials  and  therefore  will   substantially   lower   the   costs   of   the  project.  

Current   expectations   for   the   space,   as  

described   by   Student   Centre   Manager   Lori  Diamond,   require   the   space   to   be   able   to  accommodate  10-­‐12  tables  and  also  be  able  

to   seat   up   to   120   people   within   the  necessary   regulatory   parameters.     As   such,  one   of   the   main   constraints   facing   this  

design   is   optimizing   the   usability   of   the  space   by   tailoring   the   design   according   to  

staff/student  needs  and  welfare.  

The   location   has   no   direct   access   to   any  readily  available  water  source  so,  in  order  to  

maintain  water  levels  during  droughts  and  heat  waves,  additional  water  sources  would  have  to  be  found  

or  created  for  the  space.    This  will  be  discussed  further  in  the  section  on  “Water  Sources”.  

Figure  7  -­‐  Student  Centre  Terrace  

Page 11: McMaster Green Roof Proposal

 

Proposed  Design  &  Layout    

The  proposed  green  roof  design  incorporates  a  large  variety  of  native  flowers,  grasses,  and  shrubs  that  would  create  a  year-­‐round  green   space  on   the   terrace.    As   seen  below,   the  design  accommodates  15  

tables   and   allows   for   clear   sight   lines   of   the   proposed   gardens   from   each   of   the   doors   and  windows  along  the  side  of  the  building.      

 

 Figure  8  -­‐  Proposed  green  roof  design  viewed  from  above  and  the  Southeast  

Smaller   plants   were   chosen   for   in   front   of   the   southern   skylights     in   order   to   prevent   any   possible  

shadowing   of   the   skylight   and   to   complement   the   role   of   the   skylights   in   the   overall   design   of   the  terrace  space.      

The  curvilinear  contours  of  the  green  roof  design  employed  at  both  ends  wrap  around  the  four  adjacent  tables   on   the   terrace,   thus   creating   attractive   lunch   nooks.     Their   side   locations   provide   a   desirable  

background  atmosphere  for  meetings,  lunches,  and  conversations,  as  well  as  providing  a  cooling  effect  

Page 12: McMaster Green Roof Proposal

during  the  summer  due  to  the  reflective,  absorptive    and  evaporative  properties  of  the  plants  which  give  off  less  heat  than  the  concrete  tiles  currently  in  use.      

 

The  rectangular  gardens,  located  between  the  ends  

and  opposite  the  doors,  considerably  lower  the  cost  of   the   overall   design   by   reducing   the   quantity   of  perimeter   material   required,   while   simultaneously  

providing  a  central  location  for  educational  displays  that   describe   the   importance   of   planting   native  species.     These   displays   demonstrate   McMaster’s  

commitment   to   smart   environmental   effort   to   the  public   and   promote   future   projects   at   McMaster  and  within   the  Greater  Hamilton   Community.     The  

multiplicity   of   plants   used   in   the   design   creates  interesting  visual  rhythms  and  allows  the  viewer  to  see   multiple   types   of   plants   from   each   angle   and  

during   each   season.     From   the   vantage  points   of   the  doorways   and   terrace   the   showy   flowers  of   the  smaller  plants  can  be  seen  in  spring  and  early  fall.    These  flowering  plants  are  located  in  front  of  several  species  of  golden,   red  and  green  grasses  which   frame  the   former  with  a  natural  backdrop.    The   taller  

grasses  and  shrubs  used  at  the  edges  of  the  gardens  are  also  visible  from  the  perspectives  of  the  parking  lots   or  walking   paths   on   the   grounds   in   front   of   the   student   centre  and  provide  attractive  sightlines  from  those  perspectives  year  round.  

Rain  Water  Collection  &  Water  Connections    

Although   green   roofs   are   very   low   maintenance   and   can   typically  

survive  drought  conditions  it  is  prudent  to  have  secondary  sources  of  water   available   for   the   plants   in   times   of   extreme   drought,   intense  

heat,  and  especially  during  their  initial  planting.    A  suitable  option  for  

a  secondary  source  would  be  the  deployment  of  rain  barrels  that  hold  

rain  water  from  the  4th  floor  roof  and  store  it  until  such  time  that  it  is  needed.  

Permission   has   been   obtained   to   divert   water   from   the   4th   floor  drainage  pipe  into  rain  barrels  and  the  amount  of  rainwater  gathered  

from  this  should  be  sufficient  to  water  all  of  the  gardens.    The  highest  level  of  watering   that  could  possibly  be  needed  would  be   the  water  saturation   point   of   the   soil,   and   this   outside   figure   gives   us   an  

Figure  10  -­‐  Handytank  1000L  Rain  Storage  (Green  Venture,  2010)  

Figure  9  -­‐  4th  Floor  Drainage  Pipe  

Page 13: McMaster Green Roof Proposal

estimate   of   the   water   reserve   required   for   this   space.     For   a   20-­‐40cm   thick   growing   media   (a   fair  estimate  for  what  will  be  used  in  this  proposal)  studies  have  shown  moisture  retention  of  between  10-­‐

15cm  (Venneri,  2003).    The  water  needs  of  the  plants  species  chosen  for  this  design  are  much  less  than  the  saturation  point  and  can  be  expected  to  be  around  10%-­‐20%  of  the  water  saturation  of  the  soil.    This  would  mean  that  the  green  roof  could  need  1000L-­‐2000L  of  water  in  order  to  keep  the  plants  properly  

maintained  during  a  short  dry  period.    The  use  of  rain  barrels  allows  the  space  to  be  maintained  without  imposing   significant  water  needs   to   the   infrastructure  of   the   student   centre.     Price  estimates   for   rain  

barrels   were   obtained   from  

Green   Venture;   barrels   1000L   in  size   sell   for  $350  each.    Because  rain  barrels  are  dependent  solely  

on   rainfall,   it   is   recommended  that   a   water   connection   be  installed  on  the  terrace  in  case  of  

a   longer   dry   period,   and   also   to  sustain  the  green  roof  during  the  first  few  months  of  growth  while  

the   plants’   root   sytems   become  established.     There   are   many  points   where   the   current  

plumbing  infrastructure  could  be  modified  to  have  a  connection  to  

the  green  roof  system.    Some  of  the   nearest   water   connections  have   been   highlighted   on   the  

diagram  below.    

 

Figure   11   –   Enlarged   section   of   the  Student  Centre  plumbing  diagram  with  a   few   possible   water   line   locations  highlighted  

Page 14: McMaster Green Roof Proposal

 

Drainage  Systems  Although   a   convenient   water   source   is   not   yet   available   for   the  site,   the  drainage   system   in  place   is  well  designed  and  can  easily  accommodate  any  excess  rain  that  falls  on  the  terrace.    As  shown  

in   the  diagram   to   the   left,   the   roof  drains   to   six   central   drainage  locations  which  are  positioned  at  even   intervals   in  a  North-­‐South  alignment.      

In   considering   which   parts   of   the   roof   to   cover   with   green   roof  

gardens   it   is   easiest   and   most   cost   efficient   to   choose   locations  which  do  not  cover  any  of  the  current  drainage  locations  because  of   the   extra   cost   associated   with   purchasing   special   covers.     As  

such  the  design  was  overlaid  with  this  diagram  in  order  to  avoid  all  drainage  points.      

The   slope   provided   by   the   current   roof   structure   is   sufficient   for  proper  drainage  as  water   flows  through  the  drainage   layer  of   the  

green   roof   material;   these   will   prevent   excess   water   buildup   on  the  waterproofing  layer  of  the  green  roof.  

 

Figure  13  -­‐  An  example  of  the  drains  on  the  student  centre  terrace  

Figure  12  -­‐  Architectural  drawing  of  roof  heights  for  the  student  centre  terrace  with  drainage  and  green  roof  overlay  

Page 15: McMaster Green Roof Proposal

 

Green  Roof  Materials  The  soil  used  for  this  design  would  be  10cm  deep  for  the  majority  of  flowering  plants  and  grasses  with  raised  planters  used  to  allow  for  a  15-­‐20cm  depth  for  shrubs  and  larger  plants.    This  allows  the  use  of  

larger  plants  without  necessitating  the  large  costs  that  uniformly  higher  soil  depths  throughout  the  roof  would  require.  

 

Figure  14  –  Vegetative  roof  assembly  (Bioroof,  2009)  

The  drawing  shown  above  (Figure  14  –  Vegetative  roof  assembly  (Bioroof,  2009))  shows  the  different  

layers  present  in  a  typical  green  roof  design.    In  the  case  of  the  terrace,  the  insulating  layer  and  roof  waterproofing  layers  are  already  in  place  and  could  potentially  be  removed  in  order  to  reduce  costs,  but  it  is  recommended  that  a  secondary  waterproofing  layer  be  placed  on  top  of  the  root-­‐stopping  layer  in  

order  to  have  full  waterproofing  warranty  for  the  green  roof  and  to  eliminate  the  need  for  a  third  party  to  assess  the  waterproofing  of  the  proposed  location.      

This  diagram  also  shows  that  the  saturated  weight  of  the  green  roof  supplies  and  a  light  vegetative  layer  would  be  approximately  25lbs/ft2  (122.06kg/m2  or  1.22kN/m2)  which  is  less  than  half  the  rated  load  for  

the  terrace  in  all  locations  (2.8kN/m2)  as  long  as  no  significant  portion  of  the  weight  is  placed  on  the  metal  barrier  surrounding  the  terrace.  

Page 16: McMaster Green Roof Proposal

 

Figure  15  -­‐  Structural  loading  capacity  diagram  for  the  terrace  (Atkinson  Engineering  Inc.,  2000)  

 

Plant  Types  and  Plant  Positioning  Recommended    

In  selecting  plant  species  for  implementation  in  the  green  roof,  our  overriding  concern  was  to  make  sure  that  all  species  were  local  to  southern  Ontario.  This  concern  reflects  the  educational  objective  we  hope  to  achieve  in  bringing  this  green  roof  to  McMaster:  all  garden  areas  will  have  didactic  panels  indicating  

the   names   of   all   plants   in   the   garden,   their   role   in   sustaining   local   biodiversity,   and   their  medicinal/therapeutic   value.   In   so   doing,   we   hope   to   prove,   by   way   of   example,   that   one   need   not  sacrifice  aesthetic  appeal,  utility,  or  low  maintenance  costs,  in  the  planting  of  a  native  garden;  meeting  

this  educational  objective  would  have  the  effect  of  encouraging  anyone  who  visits  the  garden  to  plant  local  species  in  their  own.  

Roof  sites  for  gardens  present  challenging  design  constraints  for  would-­‐be  green  roof  gardeners.  A  high  degree  of   aridity,   shallow   soil   depth,   limited  area,  plant   costs   and  project-­‐budget,   as  well   as   the  high  

aesthetic  standards  of  the  public,  are  all  important  factors  that  must  be  taken  into  account  in  the  design  process  –  we  had  to  find  native  species  that  could  fit  all  of  the  above  criteria.  Fortunately,  the  Hamilton  

area   boasts  many   such   species,   due   to   the   pre-­‐settlement   prevalence   of   the  oak-­‐savannah  and  dune  biomes,   remnants   of  which   survive   to   this   day,   and   are   even   extant   adjacent   to   campus.   In   order   to  create  maximum  aesthetic   dynamism,   plants  were   selected   from   amongst   four   orders:   ground   cover,  

wildflowers,   grasses,   and   shrubs.   Species   were   selected   for   their   flowering   times,   drought   tolerance,  commercial  availability,  and  soil-­‐depth  requirements.  Here  follows  four  examples  in  more  detail,  one  for  each  of  the  plant  categories  represented  in  the  garden  design:  

Prickly  Pear  Cactus   (ground  cover):  Ground  cover   is  usually  planted  at   the  

front  of  a  garden  since  these  plants  grow  low  to  the  ground  and  will  either  

Figure  16  -­‐  Ripe  Prickly  Pear  Cactus  (zoofari,  2008)  

Page 17: McMaster Green Roof Proposal

be   shaded  out   if   planted   further   in,  or   at   the   least,  will   be  obstructed   from  vision.  While  Prickly  Pear  Cactus  is  not  technically  native  to  the  Hamilton  region,  it   is  local  to  southern  Ontario,  and  its  aesthetic  

impact  within   the   garden   is   well   worth   pushing   the   definition   of   ‘local’   a   little   –   besides,   it   is   nearly  impossible  to  verify  the  presence/absence  of  Prickly  Pear  populations  prior  to  settlement  times,  so  for  all   we   know,   populations   may   have   been   present   before   we   came   here.   Certainly,   the   green   roof  

provides   excellent   conditions   for   cacti   growth,   and   the   bright   yellow   flowers   and   fleshy   green   limbs  provide   lunch-­‐goers  with  the  mental  suggestion  of  eating   in  a  more  southerly   location:  while  at   lunch,  why   not   go   on   a   little   imaginary   vacation!   The   Prickly   Pear   is   also   edible   for   humans,   and   its   flowers  

attract  butterflies  and  hummingbirds.  

Firewheel   (wildflower):  Wildflowers   are   planted   just   behind   ground   cover  plants   since   they   are   slightly   taller   in   comparison,   but   themselves   are  slightly   shorter   than  both   shrubs  and  grasses.  Wildflowers  are   famous   for  

their   brilliant   colors   and   shapes   and   are   the   main   providers   of   aesthetic  appeal   in   the   garden.   Firewheel,   also   known   as   Indian   Blanket,   is   a  particularly  striking  plant  due  to  its  brilliant  yellow  and  red  petals.  It  grows  

in  dense  clumps  and  has  been  used   in   the  design  of  our  garden  as  a   focal  point  amongst  other,  less  showy  flowers  such  as  Jerusalem  Artichoke  and  Milkweed.  The  roots  may  be  used  in  tea  or  a  poultice.  

New   Jersey   Tea   (shrub):   In   contrast   to   wildflowers,   shrubs   have   a  

substantial   and   solid   form   in   comparison   to   their   more   delicate   and  intricate  counterparts.  Shrubs  have  mainly  been  employed  in  this  garden  as  the   opaque   backdrops   against   which   the   brilliancies   of   the   wildflowers  

stand  out,  although  this  is  not  always  the  case  since  many  species  of  shrub  can   hold   their   own,   aesthetically   speaking,   even   next   to   Firewheel   (e.g.  

Northern  Bush  Honeysuckle   in   the  spring)!  The   flowers  of   the  New  Jersey  Tea  are  as  delicate  as  any  wildflower’s,  and  possess  a  restrained  beauty  all  

their  own.  This  species  is  extremely  drought  tolerant  and  remains  green  throughout  the  growing  season  and  is  the  host  plant  of  the  rare  mottled  duskywing  butterfly.  True  to  its  name,  the  dried  leaves  of  the  

plant  make  an  excellent  tasting  tea.    

Indian   Grass   (grass):   Grasses   are   the   tallest   of   the   four   orders   of   plants  selected  for  planting  in  the  green  roof.  Since  the  soil  depth  is  too  shallow  for  trees,  grasses  are  ideal  candidates  for  the  final  and  highest  visual  layer  in  a  

lunch-­‐goer’s   sightlines.   Indian   Grass   has   been   employed   here   as   a   taller  grass   that,   in   conjunction   with   slightly   shorter   grasses   such   as   Little  

Bluestem,  creates  visually  interesting  alternating  rhythms  in  height  as  one  looks  across  the  gardens.  This  

local  species   is  frequently  used  as  an  ornamental  since  its   large  nodding  head  and  golden  yellow  color  lend  it  a  strong,  handsome  appearance.  

Figure  17  -­‐  Firewheel  flower  (Poon,  2007)  

Figure  18  -­‐    New  Jersey  Tea  (Nebraska  Forest  Service,  2008)  

Figure  19  -­‐  Indian  Grass  (DePauw  University,  2010)  

Page 18: McMaster Green Roof Proposal

 

Figure  20  -­‐  Preliminary  plant  positioning  diagram

Page 19: McMaster Green Roof Proposal

 

Project  Costs  and  Business  Plan    

The  costs  associated  with  the  implementation  of  this  design  can  be  broken  down  into  five  categories:  

plant  costs,  green  roof  materials,  planters,  water  rerouting  costs,  and  water  collection.    The  total  cost  for  the  project  is  estimated  to  be  $28,260  (before  donations  and  discounts  are  applied).    This  figure  will  be  reduced  considerably  by  discounts  and  donations,  but  provides  an  upper  estimate  for  the  project  

expenses.  

 

Plant  Costs  Plant  costs  vary  dramatically  from  plant  to  plant  and  the  number  of  plants  needed  must  be  estimated  based  on  the  average  size  of  the  plants  picked  for  the  design.    A  number  of  the  plants  chosen  for  this  

design  are  very  common  and  will  be  donated  from  members  of  the  OPIRG  community.    Other  less  common  plants  are  to  be  purchased  at  McMaster  suppliers  in  order  to  take  advantage  of  discounts.    A  first  estimate  of  the  cost  for  plants  is  based  on  data  gathered  from  Terra  greenhouses  as  an  indicator  of  

retail  prices  in  the  local  area  for  the  type  of  plants  that  are  to  be  purchased.    Local  suppliers  were  used  for  providing  estimates  because  of  OPIRG  McMaster’s  desire  to  support  local  businesses  and  keep  transportation  distances  to  a  minimum.      

Grasses  were  found  to  cost  approximately  $5  to  $10  per  square  foot  of  plant  material.    They  occupy  

approximately  15m2(161ft2)  of  space,  which  puts  the  grasses  cost  between  $800  and  $1600  at  retail  prices.    The  flowers  used  for  this  design  were  more  expensive  and  were  between  $10  and  $15  per  square  foot.    The  garden  design  uses  a  great  deal  of  flowering  plants  (50m2  or  538ft2)  but  will  have  a  

small  amount  of  space  around  each  plant  which  puts  the  retail  costs  of  this  plant  type  between  $4300  and  $5000.    The  shrubs  used  in  the  design  were  the  most  cost  efficient  plant  (planter  and  increased  need  for  growing  medium  aside)  and  were  priced  at  approximately  $5  per  square  foot.    The  total  cost  

for  the  15m2(161ft2)  of  shrubs  is  estimated  at  $800.    This  brings  the  total  cost  of  plants  in  this  design,  at  retail  pricing,  to  between  $5900  and  $7400.    This  number  will  be  significantly  reduced  (likely  by  more  than  half)  once  all  discounts  and  donations  are  obtained,  but  these  will  be  arranged  closer  to  the  plant  

date,  so  as  to  guarantee  pricing  and  availability  at  the  time.  

 

Green  Roof  Materials  The  layers  needed  for  waterproofing,  drainage,  root  protection,  soil,  and  water  retention  together  have  been  priced  by  Bioroof  as  a  potential  supplier.    The  total  cost  stated  for  these  layers  is  estimated  to  be  $270/m2  ($25/ft2)  which  results  in  the  following  costs:  

Page 20: McMaster Green Roof Proposal

 

 

Location   Area   Cost  North  Curved  Section   18m2   $4860  Terrace  Sections   30m2   $8100  South  Curved  Section   33m2   $8910  Total:   81m2   $21870    

 Planters  The  costs  of  planters  used  in  this  design  are  estimated  based  on  a  few  designs  of  planters  being  

considered  for  the  project.    The  current  design  for  the  green  roof  calls  for  approximately  10  planters  to  be  placed  within  the  gardens  in  order  to  allow  for  the  planting  of  larger  shrubs  without  needing  a  large  soil  depth  throughout  the  roof.    For  these  locations,  only  a  small  portion  of  the  top  of  the  planter  will  be  

seen  and  as  such  the  planter’s  appearance  will  not  take  away  from  the  overall  appeal  of  the  design.    A  few  different  planter  options  are  available:  

Picture  

 

 

Planter  Type  

 

Figure  22  -­‐  Mayne  20  In.  Square  Farifield  Patio  Planter  in  Clay  (Home  Depot,  2010)  

 

Price   $49.99   $129.00  Warranty   10  year  warranty   15  year  warranty    

Figure  21  -­‐  Southern  Patio  24  In.  Diamante  Black  Walnut  Finish  (Home  Depot,  2010)  

Page 21: McMaster Green Roof Proposal

OPIRG  will  be  contacting  Home  Depot  and  other  home  building  stores  about  discounts  and  donations  of  planters  at  a  later  time  so  these  costs  should  be  used  only  as  a  temporary  estimate.    The  total  amount  

needed  to  fund  all  of  the  planters  at  full  retail  price  would  be  $500.  

 

Water  Rerouting  The  cost  of  rerouting  water  lines  to  the  terrace  is  minimal  in  terms  of  parts  and  supplies  needed  but  may  require  numerous  hours  of  work  by  staff  at  McMaster.    This  is  one  aspect  of  the  project  which  will  be  asked  of  McMaster  to  supply  since  the  university  can  accomplish  this  at  any  point  throughout  the  year  

and  has  staff  on  hand  for  such  purposes.  

Water  Collection  The  cost  of  the  irrigation  system  has  been  included  in  the  price  for  the  green  roof  materials,  but  the  cost  of  rain  barrels  to  supplement  this  has  not.    The  cost  of  rain  barrels  was  stated  earlier  as  being  approximately  $350  per  1000L,  and  it  is  recommended  that  one  be  purchased  as  a  test  to  see  if  they  

work  for  the  space.    The  presence  of  the  rain  barrel  also  encourages  the  public  to  consider  rain  barrels  as  a  sustainable  alternative  to  conventional  water  sources.

Page 22: McMaster Green Roof Proposal

 

Benefits  of  Green  Roofing  

 

Amenity  Space    

The  addition  of  green  space  on  campus  does  not  have  to  take  potential  development  space  away;  green  spaces  can  be  a  functional  use  of  rooftops:    they  open  up  possibilities  for  the  space  that  typical  roofs  do  not   realize.    By  creating  a  green  space  on  rooftops,  harsh  and  bleak   landscapes  characteristic  of  most  

rooftops   on   campus   are   minimized   and   replaced   with   natural   landscapes.     On   accessible   roofs   with  railings,  this  type  of  roofing  can  make  the  space  into  an  ideal  location  for  a  break  instead  of  just  being  another   useless   heat   island.     McMaster’s   efforts   in   this   regard   could   create   positive   psychological  

benefits   for   all   those   who   use   (or   even   just   see)   the   space   (Ken   Willis,   Dr   Liesl   Osman,   and   CJC  Consulting,   2005).     Such   ideal   spaces   let   students,   staff   and   faculty   know   that  McMaster   cares   about  their  health,  welfare,  and  comfort.  

In   our   design,   the   use   of   green   spaces   complements   table   placement   by   giving   users   a  more   natural  

setting   for   their  event  and  can  provide  a   larger  degree  of  privacy;   there  are  also   ideal  podium  sites   in  front  of  each  of  the  two  rectangular  gardens  (e.g.  for  wedding  functions,  speeches,  and  presentations).      

 

Figure  23  -­‐  An  overhead  view  of  the  third  floor  terrace  green  roof  proposal  highlighting  podium  sites  for  group  events  

The   natural   setting   contributes   health   benefits   and   lowered   stress   levels;   green   spaces   are   also  attributed   with   increasing   the   productivity   of   staff   and   students   who   use   the   space   (Susan   Barton,  

2009).  

 

Page 23: McMaster Green Roof Proposal

 

Support  of  Biodiversity    

One   of   the   most   intriguing   aspects   of   green   roofs   compared   to  traditional  roofing  is  that  a  green  roof  is  alive  –  it  is  living  in  itself,  and  supports  a  wide  variety  of   life  within   it.    The   living  roof  can  provide  

both  food  and  shelter  to  a   large  number  of  birds,   insects,  and  other  animals   depending   on   the   design   and   plant   selection.     The   use   of  butterfly  grasses,  and  flowering  perennials  can  attract  a  wide  variety  

of   butterflies,   bees   and   other   insects   while   the   larger   plants   and  

shrubs  provide  sheltered  areas  for  birds.    The  proposed  green  roof  employs  a  large  number  of  both  host  and  nectar  plants  for  butterflies.    The  vibrant  colours  of  the  butterflies  complement  the  roster  of  native  

species  planted,  and  provide  an  additional  visual  treat  for  those  dining  on  the  terrace.    By  choosing  only  native  plant  species  for  use  in  the  green  roof  design,  we  eliminate  the  risk  of  introducing  invasive  alien  species  while  simultaneously  creating  a  reservoir  of  seeds  that  sustain  local  native  species.  

 

Lowered  Energy  Demands  and  Longer  Roof  Lifespan    

Given  the  rising  costs  of  energy  it  is  economically  crucial  to  find  ways  to  reduce  energy  consumption  in  order  to  maintain  costs  at  manageable  levels.    The  implementation  of  a  green  roof  has  been  shown  to  

significantly  increase  the  insulation  value  for  the  roof  and  also  to  reduce  the  wear  that  ultraviolet  light  has  on  roofing  membranes.  This  results  in  a  lower  energy  bill  due  to  lowered  heating  and  cooling  needs  and  significantly  longer  lifespan  for  roofing  (Gail  Lawlor,  2006).  

To  give  a  more  concrete  example  of  how  green  roofs  can  prevent  energy  losses  it  is  easiest  to  show  the  

insulation  value  provided  by  the  green  roof.    The  amount  of  insulation  provided  by  the  green  roof  varies  greatly  depending  on  the  type  of  soil,  membrane  and  plants  used,  but  studies  have  shown  that  a  20cm  layer   of   growing   medium   and   a   thick   layer   of   plants   can   be   approximated   as   having   a   combined  

insulating   value   of   RSI   0.14   (R20)   (Venneri,   2003).     This   is   a   significant   amount   of   insulation   and   is  comparable  to  12.7  cm  of  glass  fiber  insulation  or  9.14  cm  of  urethane  rigid  foam  (Cengel,  2007).  

Another   study   showing   the   benefits   of   green   roofs   in   the  winter   has   shown   that   a   layer   of   30cm   of  growing  medium  with  plants  can  keep  the  roofing  materials  from  going  below  0oC  even  when  outdoor  

temperatures  are  below  -­‐20oC  (Venneri,  2003).    This  effect  significantly  improves  the  lifespan  of  the  roof  since   the   roof   is  precluded   from  such  dramatic  extremes  of  expansion  and  contraction,   thus   reducing  the   chance  of   crack   formation  due   to   seasonal   exposure.     The   soil   layer   also   significantly   reduces   the  

physical  effect  of  erosive  forces  and  of  frost  and  ice  formation  during  the  winter  (Newton,  1993).  

Figure  24  -­‐  Monarch  butterfly  perched  on  flower  and  gathering  nectar  (Monarch  Butterfly  Information,  2010)  

Page 24: McMaster Green Roof Proposal

Because  the  green  roof  dramatically  increases  the  insulation  value  of  the  roof,  it  also  lowers  the  amount  of  energy  used   for  heating  or   cooling   that   the  building   requires   in   the  process  of  maintaining  desired  

temperatures.  

 

Reducing  Airborne  Pollutants  and  Improving  Air  Quality    

Air  pollution  is  a  serious  issue  at  McMaster  because  of  its  proximity  to  major  transportation  routes  (e.g.  Main  Street,  Cootes  Drive)  and  many  nearby  parking  lots  used  by  commuters  travelling  to  campus.  As  a  result,  McMaster  is  at  risk  of  smog  buildup  during  spring,  summer,  and  fall.    This  can  have  serious  effects  

on  the  air  quality   in  the  area  and  can  lead  to  health  complications   in  those  with  respiratory  problems.    As   is  shown   in  the  graph  below,  McMaster   (approximated  by  the  west  Hamilton  study)  has  air  quality  issues  nearly  16%  of  the  year.    This  has  resulted  in  smog  warnings  in  the  past  and  this  will  likely  continue  

in  the  next  few  years  as  traffic  is  unlikely  to  change  substantially  in  this  area.  

 

 

Figure  25  Air  Quality  Index  Graph  Created  from  Air  Quality  Ontario  Data  2010  as  of  Aug.  29  

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

50  

1   9   17  

25  

33  

41  

49  

57  

65  

73  

81  

89  

97  

105  

113  

121  

129  

137  

145  

153  

161  

169  

177  

185  

193  

201  

209  

217  

225  

233  

241  

249  

Air  Qua

lity  Inde

x  

Day  

Air  Quality  Index  for  Western  Hamilton  2010  

Page 25: McMaster Green Roof Proposal

This  can  be  summarized  as  follows:  

6.35%  Very  Good  Air  Quality  77.97%  Good  Air  Quality  15.68%  Moderate  Air  Quality  –  This  can  result  in  breathing  difficulty  for  those  with  asthma  and  other  breathing  conditions      

Specific  areas  of  McMaster  also  face  air  quality  concerns  due  to  their  proximity  to  large  parking  lots  and  high   levels  of  traffic.    The  risk  of  compromised  air  quality  on  campus  due  to  adjacent  parking   lots  and  traffic  is  expected  to  increase  as  more  parking  is  opened  up  in  accordance  with  the  latest  version  of  the  

McMaster  Master  Plan  (Urban  Strategies  Inc.,  2008).    Having  green  roofs  near  these  locations  would  be  a  great  benefit  to  air  quality  on  campus  due  to  their  capacity  to  absorb  pollution  caused  by  vehicles.    The  proposed  green  roof  site  detailed  earlier  in  this  document  (i.e.  the  third  floor  student  centre  terrace)  is  

an   excellent   location   for   reducing   air   pollution   originating   in   the   parking   lot   on   the   east   side   of   the  student  centre.  

 

 

Figure  26  -­‐  Parking  lots  on  campus  at  McMaster  as  shown  in  the  Campus  Master  Plan  (Urban  Strategies  Inc.,  2008)  

Page 26: McMaster Green Roof Proposal

 

Aside  from  direct  effects  on  air  quality,  the  reduction  in  heating  and  cooling  demands  discussed  earlier  also  results  in  a  significant  reduction  of  greenhouse  gases  produced.    As  shown  in  the  graph  below,  the  

most   significant   source   of   pollution   at  McMaster   is   due   to   heating   and   cooling   needs   of   buildings   on  campus.     By   reducing   the   amount  of   energy  needed   to  maintain  proper   temperatures   the   amount  of  pollution  produced  will  decrease  as  well.  

 

Figure  27  -­‐  Percentage  Breakdown  of  CO2  Emissions  by  Source  for  McMaster  University  as  of  2007  (Zerofootprint,  2009)  

This  can  be  shown  in  more  detail  for  individual  buildings  on  campus  in  the  following  chart.  It  lists  the  top  10  emission  generating  buildings  on  campus  are  listed  as  follows:  

 

Figure  28  -­‐  10  Buildings  with  Highest  Total  Emissions  as  of  2007  (Zerofootprint,  2009)  

As  shown  in  the  chart  above,  a  large  portion  of  the  emissions  each  building  produces  is  a  direct  a  result  

of  regulative  heating  and  cooling  processes  used  throughout  the  year.    The  specific  location  chosen  for  this  proposal,  the  McMaster  University  Student  Centre,  is  one  of  the  bigger  buildings  on  this  list  and  has  a  substantial  amount  of  room  for  improvement  in  regards  to  the  amount  of  pollution  generated  (1235  

tons).    Other  locations  mentioned  in  the  chart  above  should  be  considered  for  future  implementation  of  green  roofing  on  campus,  but  are  outside  the  scope  of  this  proposal.    This  chart  (Figure  28  -­‐  10  Buildings  with  Highest  Total  Emissions  as  of  2007  (Zerofootprint,  2009))  was  created  as  part  of  the  Zerofootprint™  

program  which  McMaster  has  been  using   for   several  years  as  part  of   its   commitment   to   reducing   the  environmental  foot  print  of  buildings  and  services  associated  with  McMaster  University.    By  using  green  

Page 27: McMaster Green Roof Proposal

roofs   to   reduce   the  pollution   caused  by  buildings   on   campus,  McMaster  would  be  well   on   its  way   to  achieving   a   “zero   footprint”   And   would   further   advance   its   image   as   a   responsible   neighbor   to   the  

surrounding  natural  and  urban  (Westdale  and  Dundas)  communities.  

Noise  Reduction  and  Protection    

McMaster  is  world  renowned  for  its  dedication  to  excellence  in  education,  providing  top  notch  facilities  for  lectures,  laboratories,  and  libraries.    Many  of  these  spaces  have  been  carefully  engineered  to  reduce  external  noise  while  facilitating  acoustics;  this  has  the  net  effect  of  allowing  students  to  better  hear  the  

lecturer   in   classrooms.    Due   to   the   importance  of   carefully   controlling  noise   levels   inside  buildings  on  campus,  the  excellent  sound  insulation  benefits  of  green  roofs  should  be  noted.    The  growing  medium  of  typical  green  roofs  can  be  designed  to  block   low  frequencies  of   sound,  and  the  plants   themselves  are  

capable  of  blocking  higher   frequencies.     Studies   testing   the  effect  of   the  growing  medium  alone  have  been  shown  to  reduce  sound  levels  by  40db  (Kuhn,  2009).  

Page 28: McMaster Green Roof Proposal

 

Stormwater  Management    

Adding   greenroofs   to   building   tops   is   an   effective  means   of   retaining   water   during   periods   of   heavy  rainfall.   This   prevents   flooding,   the   overtaxing   of   aging   combined   sewer   systems,   and   the   runoff   of  chemicals  and  waste  into  the  water  supply.    This  is  an  extremely  important  issue  for  McMaster  due  to  its  

location   in   the  middle  of   ecologically   sensitive   lands   and  a   vulnerable  watershed,   not   to  mention   the  value  such  measures  have  for  preventing  the  potential  economic  and  aesthetic  nightmares  that  flooding  causes.    

The  Campus  Master  Plan  has  stressed  that  “The  University  will  work  to  manage  stormwater  on  campus,  through   measures   designed   to   reduce   runoff   from   building   roofs,   streets   and   paved   areas,   and   to  improve   the   quality   of   the   stormwater   runoff,   “     as   well   as   requiring   “all   new   building   projects   and  renovations   to  meet   the  University’s   Sustainable  Building  policy   and   to   include  measures   to   conserve  resources  in  both  construction  and  ongoing  maintenance,  using  native  species  and  naturalized  planting  in   landscape   projects   adjacent   to   natural   areas,   and   employing   measures   to   reduce   waste,   and  stormwater  runoff.”  (Urban  Strategies  Inc.,  2008)  McMaster   is   located  beside  Cootes  Paradise  –  one  of  the   largest  remaining  wetlands  on  Lake  Ontario.    These   wetlands   are   very  

sensitive   to   oil,   heavy  metals,   road   salt,   waste  and   other   debris   which  

can   be   swept   from   the  streets,   parking   lots,   and  overtaxed   sewer   systems  

directly   into   the  watershed  during  storms.    

One   of   the   best   ways   to  prevent  runoff  is  to  lower  the  amount  of  impervious  

surface   area   on   campus  so  that  water   is  absorbed  where   it   falls   instead   of  

flowing   along   the   dirty  surfaces   into   our   lakes,  rivers,  and  sewers.    By  deploying  green  roofs  on  McMaster’s  buildings,  the  amount  of  runoff  the  sewer  

systems  have  to  handle  can  be  decreased  significantly,  thereby  alleviating  the  risk  to  the  ecosystem  and  unprotected  riverbanks.  

The   economic   value   of   reduced   risk   of   flooding   and   lowered   sewer   needs   is   typically   difficult   to  calculate,   but   at   least   some  of   this   value   is   evident   in   the   costs   associated  with   the   refurbishment  of  

aging   sewer   systems.     The   city   of   Hamilton   recently   published   the   results   of   a   study   done   by   an  

Figure  29  -­‐  Cootes  Paradise  highlighted  on  a  map  of  McMaster's  campus  in  the  Campus  Master  Plan  (Urban  Strategies  Inc.,  2008)  

Page 29: McMaster Green Roof Proposal

independent  research  group  hired  for  this  very  purpose  (i.e.  to  find  the  most  appropriate  way  to  pay  for  the   replacement   of   aging   sewer   systems)   this   spring   and   is   currently   debating   the   implementation  of  

their  recommendations.    The  final  recommendations  were  as  follows:  

“Charges   for   non-­‐residential   properties   would   be   assessed  based   on   actual  measured   impervious   area   on   a   parcel   by  parcel  basis,  at  a  rate  of  $18.40  per  month  per  SFU  (i.e.,  per  301  m2  of  impervious  area).”  (AECOM,  2010)  The   implementation   of   the   proposed   project   would   save  

McMaster  approximately  $60  per  year  for  this  reason  alone  (if  the  recommendations  are  followed).  Though  admittedly,  

this   seems   small,   over   the   course   of   the   20+   years   this  project   is   designed   to   last   it   would   mean   a   savings   well  exceeding   $1000   (based   on   a   converted   area   of  

approximately  84m2).    

One   of   the   less   talked   about   benefits   of  minimizing   runoff  for  a  property  through  green  roofs  is  the  potential  to  reduce  the  chance  (and  magnitude)  of  flooding  and  water  issues  on  

it.    By  reducing  the  amount  of  water  which  is  to  be  absorbed  by  the  ground  around  the  building,  the  earth  there  is  able  to  take   a   larger   amount   of   rainfall   before   it   becomes   fully  

saturated   and   starts   to   pool   water.     This   has   posed  problems  on  campus   in  several  areas   in  the  past  and  could  be  reduced  through  the  use  of  this  type  of  technique.    

In  order  to  better  explain  the  magnitude  of  effect  that  green  

roofs  can  have  in  reducing  the  amount  of  water  flowing  off  of   the   roof   and   preventing   these   stormwater   problems,  studies   were   found   to   quantify   their   effect.     It   has   been  

shown   in   studies   that   the   addition   of   a   20-­‐40cm   layer   of  engineered   soil   can   retain   between   70-­‐100%  of   rain  water  that   falls  onto   it  during  normally  occurring  summer  storms  

and  between  40-­‐50%  of  rain  during  winter  storms  when  the  substrate   is   frozen   (Stephen   W.   Peck,   1999).     For   a   large  roofed  surface  this  can  result  in  a  very  significant  amount  of  

water   being   used   to   beautify   the   roof   (by   watering   the  plants  on  the  green  roof)  instead  of  causing  problems  to  the  urban  and  natural  environment.  

Figure  30  -­‐  A  diagram  showing  the  many  different  sources  of  runoff  and  their  path  (NC  Department  of  Environment  and  Natural  Resources,  2009)  

Page 30: McMaster Green Roof Proposal

 

 

 

Urban  Heat  Island  Effect    

This   is   one   of   the   most   prevalent   reasons   for  the   implementation  of  green  roofs   in  an  urban  

area.     The   heat   island   effect   can   raise   the  temperature   of   an   urban   area   by   up   to   10oC  (Gail   Lawlor,   2006)   which   causes   a   dramatic  

increase  in  ground  level  ozone  formation  and  is  one   of   the   leading   factors   causing   respiratory  illness  in  urban  areas  (Cheung).    The  added  heat  

also   strains   air   conditioning   systems,   and   thus  increases   the   amount   of   energy   used   for  maintaining   proper   temperatures   during   the  

summer.    One  of  the  most  effective  ways  of  combating  the  urban  heat  island  effect  is  by  using  plants  to  reduce  the  temperature  gain.    Plants  are  able  to  do  this  because  during  photosynthesis,  plants  transpire,  which  releases  water  to  be  evaporated  and  cools  down  the  plant  and  its  surroundings.    A  report  in  New  

York  which  outlined  the  best  practices  for  reducing  the  heat   island  effect  concluded  that  “a  combined  strategy,  which  maximizes  the  amount  of  vegetation  in  New  York  by  planting  trees  along  streets  and  in  

open  spaces  and  building  green  roofs  offers  more  potential  cooling  than  any  one     individual  strategy.”  (Peck,  2008)  

This  makes  green  roofs  an  ideal  means  of  reducing  summer  temperatures  on  the  terrace  of  the  student  centre,  thus  creating  a  much  more  comfortable  environment  for  lunches,  dinners,  and  socializing  during  

hot  weather.      

Additionally,   research   has   shown   that   during   summer   months,   each   reduction   of   1oC   would   save  approximately  4%  off  the  average  demand  for  electricity  (Peck,  2008).    The  reduction   in  cooling  needs  can   dramatically   lower   cooling   costs   (which   are   significant   for   large   buildings)   and,   as   corollary,   also  

potentially   save   a   great   deal   of  money   during   the   development   of   a   new   building   on   campus   or   the  refurbishment   of   an   older   building,   because   cooling   systems   can   be   reduced   in   size   according   to   the  offsetting  effect  of  the  green  roof.  

 

Figure  31  -­‐  A  Graph  showing  the  temperature  at  different  levels  of  urbanization  in  order  to  demonstrate  the  effect  of  plants  on  temperature  reduction  (Interlock,  2009)  

Page 31: McMaster Green Roof Proposal

 

LEED  Building  Credits    

McMaster  University  has  a  meaningful  history  of  green  building  policies  on  campus:  The  university  has  followed  the  LEED  (Leadership  in  Energy  and  Environmental  Design)  building  system  (since  2005)  during  construction  and  renovations  of  university  buildings.    It  has  strived  to  obtain  a  LEED  silver  rating  on  all  of  

its   new   building   projects   and   to   improve   the   environmental   rating   of   buildings   it   renovates.    Incorporating  green  roofs  into  building  and  renovation  efforts  can  dramatically  increase  the  number  of  LEED   points   available   and   help  McMaster   to   achieve   the   high   levels   of   environmental   stewardship   it  

wants.     Here   are   the   points  which   can   be   awarded   to   buildings   for   their   use   of   green   roofs   (Canada  Green  Building  Council,  2008):  

Stormwater  Management:  Rate  and  Quantity  (Sustainable  Sites  Credit  #  6.1)  If  a  roof  has  less  than  50%  impervious   surface   (if   50%  or  more   of   the   roof   has   green   roofing)   then   it   can   qualify   for   1   credit   for  

managing  stormwater  runoff  as  long  as  the  green  roof  is  substantial  enough  to  reduce  discharge  by  25%  or  more  or  reduces  the  runoff  more  than  the  pre-­‐development  runoff.  

Heat   Island  Effect:  Roof  (Sustainable  Sites  Credit  #7.2)   If  a  roof  has  over  50%  of   its  surface  covered  by  green  roof  material  it  can  significantly  reduce  the  temperature  of  the  rooftop  and  qualifies  the  building  for  1  credit  in  heat  island  effect  reduction.  

Water  Efficient  Landscaping:  (Water  Efficiency  Credit  #3)  By  using  drought  resistant  plants  as  part  of  the  green  roof  design  you  can  earn  up  to  5  points  towards  LEED  certification.    The  initial  point   is  given  for  achieving   50%   water   needs   reduction   and   an   additional   point   is   given   for   every   12.5%   water   needs  reduction  achieved  in  the  green  roof  plant  choices.    

Optimize  Energy  Performance:  (Energy  and  Atmosphere  Credit  #1)  The  ability  for  green  roofs  to   lower  the   roof   temperature   during   the   summer   and   provide   insulation   during   the   winter   can   significantly  reduce  energy  needs  for  the  building  it  is  used  on.    This  credit  is  based  upon  the  total  energy  reduced  for  the  entire  building,   and  as   such   the  use  of   green   roofs   greatly   increases   the   ability   of   the  building   to  meet  these  goals.    Depending  on  the  amount  of  energy  reduced  the  energy  savings  can  result  in  earning  between  1  and  18  points.  

Innovation  in  Design:  (Credit  #1.1,  1.2,  1.3,  or  1.4)  Green  roofs  provide  many  benefits  to  the  building’s  

environmental   standing  which  may   not   all   be   encapsulated   by   the   previous   points.     Because   of   this,  there  is  an  additional  point  which  can  be  awarded  to  the  building  for  green  roofs  as  an  innovative  design  feature   of   the   building.

Page 32: McMaster Green Roof Proposal

 

Codes  and  Standards  All  of  these  sections  are  to  be  completed  following  discussions  and  revisions  as  requested  by  the  McMaster  building  specialists.  

Fire  Code  Requirements  The  design  meets  fire  code  requirements.    Current  requirements  for  the  space  with  120  people  have  

been  met  within  code  in  the  case  of  adopting  the  full-­‐scale  design  outlined  in  the  proposal.  

Building  Code  Requirements  Currently  being  worked  on  by  employees  of  McMaster.  

Building  Permit  Application  As  it  is  a  modification  of  existing  roofing  materials  a  building  permit  and  the  approval  of  a  structural  engineer  are  required  for  the  project.    An  application  is  currently  being  processed  and  is  planned  to  be  done  shortly.  

 

 

Page 33: McMaster Green Roof Proposal

 

Bibliography  AECOM.  (2010).  Hamilton  Stormwater  Rate  Feasibility  Study.  Hamilton:  City  of  Hamilton.  

Atkinson  Engineering  Inc.  (2000,  Jan  10).  51S106  -­‐  High  Roof  Framing  Plans.  Hamilton,  Ontario,  Canada.  

Bioroof.  (2009).  Vegetative  roof  parapet  detail  .  Retrieved  June  28,  2010,  from  Bioroof:  

http://www.bioroof.com/systems/systemdetails/eco_details/ECOSYST-­‐VRA.pdf  

Canada  Green  Building  Council.  (2008,  November).  LEED  2009  for  Existing  Buildings.  Retrieved  July  4,  2010,  from  Canada  Green  Building  Council:  http://www.usgbc.org/ShowFile.aspx?DocumentID=7245  

Cengel,  Y.  A.  (2007).  Heat  and  Mass  Transfer  A  Practical  Approach  Third  Edition.  New  York,  NY:  McGraw-­‐Hill.  

Cheung,  I.  (n.d.).  EXTREME  HEAT,  GROUND  LEVEL  OZONE  CONCENTRATION,  AND  THE  URBAN.  Retrieved  

July  4,  2010,  from  Clean  Air  Partnership:  http://www.cleanairpartnership.org/pdf/finalpaper_cheung.pdf  

Cruickshank,  P.  (2008,  June  13).  McMaster  Univesity  Panorama,  from  the  Southwest.  Retrieved  June  2,  2010,  from  Peter  Cruickshank's  Photostream:  

http://www.flickr.com/photos/petercruickshank/2575695559/  

DePauw  University.  (2010).  Indian  Grass.  Greencastle,  Illinois,  United  States.  

Fenwick,  P.  (2005,  March  19).  Sunroot  flowers.  

Gail  Lawlor,  B.  A.  (2006).  Green  Roofs  A  Resource  Manual  for  Munincipal  Policy  Makers.  Canada  Mortgage  and  Housing  Corperation.  

Green  Venture.  (2010).  Handytank  1000L  Slimline  Water  Saving  System.  Retrieved  June  7,  2010,  from  Green  Venture:  http://www.greenventure.ca/handytank-­‐1000l-­‐slimline-­‐water-­‐saving-­‐system  

Hilty,  J.  (2010,  June  18).  

Home  Depot.  (2010).  Mayne  20in  Square  Fairfield  Patio  Planter  in  Clay.  Retrieved  June  30,  2010,  from  

Home  Depot:  http://www.homedepot.ca/webapp/wcs/stores/servlet/CatalogSearchResultView?D=978089&Ntt=978089&catalogId=10051&langId=-­‐

15&storeId=10051&Dx=mode+matchallpartial&Ntx=mode+matchall&N=0&Ntk=P_PartNumber  

Home  Depot.  (2010).  Sothern  Patio  24  In.  Diamante  Black  Walnut  Finish.  Retrieved  June  30,  2010,  from  Home  Depot:  

http://www.homedepot.ca/webapp/wcs/stores/servlet/CatalogSearchResultView?D=909649&Ntt=9096

Page 34: McMaster Green Roof Proposal

49&catalogId=10051&langId=-­‐15&storeId=10051&Dx=mode+matchallpartial&Ntx=mode+matchall&N=0&Ntk=P_PartNumber  

Interlock.  (2009,  February  23).  Green  Roofing  -­‐  Alberta's  Best  Roof.  Retrieved  July  4,  2010,  from  Interlock  

Lifetime  Roofing  Systems:  http://www.albertasbestroof.com/green-­‐roof  

Ken  Willis,  Dr  Liesl  Osman,  and  CJC  Consulting.  (2005,  October).  Economic  Benefits  of  Accessible  Greenspaces  for  Physical  and  Mental  Health:  Scoping  Study.  Retrieved  July  5,  2010,  from  http://www.forestry.gov.uk/pdf/fchealth10-­‐2final.pdf/$file/fchealth10-­‐2final.pdf  

Kuhn,  S.  P.  (2009).  Design  Guidelines  for  Green  Roofs.  Toronto:  CMHC.  

Monarch  Butterfly  Information.  (2010).  Monarch  Butterfly  Migration.  Retrieved  July  5,  2010,  from  

Monarch  Butterflies  Information  and  Monarch  Butterfly  Facts:  http://monarch-­‐butterfly.info/Migration.html  

NC  Department  of  Environment  and  Natural  Resources.  (2009,  November  2).  Retrieved  July  4,  2010,  from  Durham  County  Government:  http://www.co.durham.nc.us/departments/swcd/Stormwater.html  

Nebraska  Forest  Service.  (2008).  New  Jersey  Tea.  Lincoln,  Nebraska,  United  States.  

Newton,  J.  J.  (1993).  Building  Green:  A  Guide  to  Using  Plants  on  Roofs  Walls  and  Pavements.  London:  

The  London  Ecology  Unit.  

Peck,  S.  W.  (2008).  Award  Winning  Green  Roof  Designs.  Atglen,  PA:  Schiffer  Publishing  Ltd.  

Poon,  W.-­‐C.  (2007,  May  28).  Firewheel  or  Indian  Blanket  with  a  Spider  at  the  back.  Austin,  Texas,  USA.  

Stephen  W.  Peck,  C.  C.  (1999).  Greenbacks  from  Greenroofs:  Forging  a  New  Industry  in  Canada.  Toronto:  Canada  Mortgage  and  Housing  Corporation.  

Susan  Barton,  R.  P.  (2009,  January  31).  Human  Benefits  of  Green  Spaces.  Retrieved  July  5,  2010,  from  Cooperative  Extension  -­‐  University  of  Deleware  College  of  Agriculture  and  Natural  Resources:  

http://ag.udel.edu/udbg/sl/humanwellness/Human_Benefits.pdf  

Urban  Strategies  Inc.  (2008).  McMaster  Master  Plan  2002  -­‐  Updated  Nov.  2008.  Hamilton:  MMM  Group.  

Venneri,  R.  (2003).  Green  Practices  and  Technologies  for  Sustainable  Communities.  Hamilton:  McMaster  University.  

Zerofootprint.  (2009).  2007  Greenhouse  Gas  Emissions  Inventory.  Hamilton:  McMaster  University.  

zoofari.  (2008,  May  27).  Prickly  Pear  5half.  United  States.