Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D...

17
Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev Max-Planck Institut für Plasmaphysik, EURATOM Association Stellarator Theory Division

Transcript of Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D...

Page 1: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Different numerical approaches to 3D transport modelling of

fusion devices

Alexander Kalentyev

Max-Planck Institut für Plasmaphysik, EURATOM Association

Stellarator Theory Division

Page 2: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Introduction

3D effects:

•In tokamaks near divertor plates

•stellarators are intrinsically 3D

Ergodicity:

•Perturbation coils in tokamaks (TEXTOR-DED, DIII-D)

•In stellarators ergodic region always present

Page 3: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Transport equations

Page 4: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Finite volume approach (BoRiS)

plasma core (non-ergodic)

ergodic region

island (non-ergodic)

Divertors

Generalized Newton solver

Special application - W7-X using Boozer coordinates for 7 separate domains

Page 5: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Flexibility of BoRiS

Solution of the Navier-Stokes equationsfor a flow in a square cavity

Predicted streamlines Influence of the under-relaxation parameters on convergence rate

Convergence regionPeric et al. 1988

Page 6: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Scrape Off Layer

Plasma core

Wall

Parallel direction

Rad

ial d

irec

tio

n

Ergodic region

|| flr D

Enhancement of radial transport due to contribution from

parallel transport

Rechester Rosenbluth, Physical Review Letters, 1978

Electron temperature

r

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Transport in an ergodic region

Page 7: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Kolmogorov length LK is a measure of field line ergodicity

0

1log

SLK

10

S

exponential divergence

Typical value in W7-X : LK = 10 – 30 m

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Kolmogorov length

Page 8: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

central cut

backward cut

forward cut

x1

x2

x3

333231

232221

131211

ggg

ggg

ggg

g ij

One coordinate aligned with the magnetic field to minimize numerical diffusion

Area is conserved

Use a full metric tensor

Local system shorter than Kolmogorov length to handle ergodicity

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Local magnetic coordinates

Page 9: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Interface problem

1) Optimized mesh (finite-difference scheme)

/10 1

,100 ,2 ,

24

||||

||

smmm

NRNLL

numerics

Problem: numerical diffusion induced

by interpolation on the interface

Page 10: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Monte-Carlo 1st Order Algorithm

smnumerical /10 28

Random process random step

Realization

Diffusion Convection

Monte-Carlo combined with Interpolated Cell Mapping

High accuracy transformation of the perpendicular coordinates of a particle(mapping between cuts) needed!

Page 11: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Finite Difference Approach

Fieldline tracing

Triangulation

Metric coefficients

333231

232221

131211

ggg

ggg

ggg

g ij

Transport code

GridNeighborhoods

Temperature solution

Magnetic field

Linearization matrix

Mesh optimization

Page 12: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

“Semi-implicit” scheme

RTA

nnn RTA

RTA

RTA

222

111

Implicit scheme

„Semi-implicit“ scheme

Memory usage: 7 times less

Solver: 50 times faster

Page 13: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Results

Page 14: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Conclusion and Future Work

Conclusion

•Comparisons between three different codes for a W7-X geometry were done.

Future Work

•To complete the physics (including all transport equations).

•To compare results in more realistic cases (including target plates, finite beta).

Page 15: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.
Page 16: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Conduction-convection

Convection-conduction equation for a „fluid quantity“ f:

fSfhhDDfDfVhVt

f||||

B/Bh,hhDDgDD

fSfVx

fDg

xgt

f

ji||

ijij

ij

iji

ere wh

1

or

0 21 hh x1 =constx 2=const x3

B

reference cut

„Magnetic“ coordinate system:

- contribution from D|| in D33 only

Metric tensor: determined by field line tracing

Page 17: Max-Planck-Institut für Plasmaphysik, EURATOM Association Different numerical approaches to 3D transport modelling of fusion devices Alexander Kalentyev.

Max-Planck-Institut für Plasmaphysik, EURATOM Association

Monte-Carlo 1st Order Algorithm

Fokker-Planck Eq. for pseudoscalar density of test particles,

Random process

Requirement

Realization

diffusion, convection sink, source

random step

independent random numbers

physics: diffusion and convection of the “fluid quantity”

Higher order schemes in 3D get much too complex

Interpretation as probabilistic approximationof Green functions possible

gfN