Matrix Econometrics I

download Matrix Econometrics I

of 3

Transcript of Matrix Econometrics I

  • 7/29/2019 Matrix Econometrics I

    1/3

    1 Useful mathematics, notation and definitions

    Fact 1.1. If we multiply a column vectorx by a matrix Amxn , this defines afunction: Amn : R

    n ! Rm

    Notation 1. A = [a(1)...a(n)], ai 2 Rm refers to columns 1 through n of matrix

    A.

    Notation 2. A =

    264

    a1...

    am1

    375, ai 2 Rn refers to the rows of A.

    Definition 1.1. C(A) = ha(1),...,a(n)i refers to the space spanned by thecolumns of A.

    Proposition 1.1. D = AB and B is nonsingular =) rank(D) = rank(A)

    Proposition 1.2. Let Amn, then, Rank(A) {m, n}Proposition 1.3. D = AB =) Rank(D) min{Rank(A), Rank(B)}

    Proposition 1.4. Let Amn =) rank(A) = rank(AA0) = rank(A0A).

    1.1 Some Vector Calculus

    For S() = min

    (Y-X)(Y-x) where Yn1, Xnk and k1

    Fact 1.2. Derivative w.r.t. a column vector

    @S()

    @=

    0BB@

    @S()@1

    ...@S()

    @k

    1CCA

    Fact 1.3. Derivative w.r.t. a row vector

    @S()

    @0=

    @S()@1

    , . . . ,@S()@k

    Fact 1.4. Let() : Rk ! Rm, then () =

    0BBB@

    1()2()

    ...

    m()

    1CCCA is a vector valued

    mapping, then

    @()@0

    =0BB@

    @1()@ 0

    ...@m()@ 0

    1CCA

    where each element is a row vector as in fact 1.3 and@()@ 0

    is a m k matrix1.

    1This symbol 0 means transpose.

    1

  • 7/29/2019 Matrix Econometrics I

    2/3

    Fact 1.5. Let () : Rk

    ! Rm

    , () =

    0BBB@

    1()2()

    ...

    m()

    1CCCA , be a vector valued

    mapping, then

    @ 0()

    @=

    @1()

    @, . . . ,

    @m()

    @

    where each element is a column vector as in fact 1.2 and@0()@

    is an k mmatrix.

    Fact 1.6. Lety = Ax where A does not depend on x, then @y@x0

    = A where @y@x0

    is an m n matrix.

    Fact 1.7. Lety = Ax where A does not depend on x, then

    @y

    @x = A0

    where

    @y

    @xis an nm matrix.

    Proposition 1.5. Suppose y = Ax (), where =

    0B@

    1...

    r

    1CA, then if A does

    not depend on ,@y()

    @0=

    @y

    @x0@x

    @0= A

    @x ()

    @0

    the resulting matrix is m r.

    Note 1. A@x0()@0

    is not well defined, to see this :

    @x0

    @0=

    0BBB@

    @x1

    @1

    @x2

    @1

    @x3

    @1 @xn@1

    @x1@2

    @x2@2

    @x3@2

    @xn@2

    ......

    ......

    ...@x1@r

    @x2@r

    @x3@r

    @xn@r

    1CCCArn

    , but Amn!

    Fact 1.8. y = x0Bx = (x0Bx)0 = x0B0x = y0, since y is a scalar.

    Proposition 1.6. If Fact 1.8 holds =) we can always find a decompositionA of B s.t A is symmetric matrix.

    Proof. Let A = 12 (B + B0) be a symmetric matrix, then:

    y =1

    2(x0Bx + x0B0x)) =

    1

    2[x0 (B + B0) x] =

    1

    2(2x0Ax) = y0

    Proposition 1.7. y = x0Ax =) @y@x

    = 2x0A = 2Ax

    2

  • 7/29/2019 Matrix Econometrics I

    3/3

    X

    0

    y-X=e

    x1

    x2

    y

    Figure 1: Geometry of Least Squares.

    1.2 Geometry of Least Squares

    y = x11 + ... + xkk implies that y lives in the linear space generated byhx1,...,xki R

    n , however when we add ", we account for all aspects of y thatdo no live in hx1,...,xki.

    Definition 1.2. We call P a projection matrix if:

    1. P : Rn ! Rn.

    2. P =P0

    3. P2 = P

    Fact 1.9. In our particular caseP = X(X0X)1X

    3