Mathematical Transforms

download Mathematical Transforms

of 15

Transcript of Mathematical Transforms

  • 8/2/2019 Mathematical Transforms

    1/15

    PRODUCTS SOLUTIONS PURCHASE SUPPORT COMPAN OUR SITES SEARCH

    EA CH MA HEMA ICA 8 DOC MEN A ION

    Documentation Signals and S ste ms

    5 Mathematical Transforms

    S S . W

    - ( -Infinity Infinity , -Infinity 0 , 0 Infinity , ),

    L Z , ,

    A S S , F . T

    5.1 Transforms of Continuous SignalsThe Laplace Transform

    T L . T

    T . S S

    (T .)

    T . Y Ma hema ica

    The L aplace transform and i ts inverse.

    T L Ma hema ica LaplaceTransform . I , . O

    F , .

    In[1]:= Needs["SignalProcessing`"]

    H L .

    In[2]:= LaplaceTransform[Exp[-Abs[t]], t, s]

    Out[2]=

    A Ma hema ica . N ,LaplaceTransform

    HI I DOC MEN A ION FO AN OB OLE E P OD C .

  • 8/2/2019 Mathematical Transforms

    2/15

    H - . T ,

    In[3]:= LaplaceTransform[Exp[a t1] *DiracDelta[t1 - t2] UnitStep[{t1, t2 ],{t1, t2 , {s1, s2]

    Out[3]=

    L , .

    H .

    In[4]:= InverseLaplaceTransform[s/(1 + s^2), s, t]

    Out[4]=

    T .

    In[5]:= InverseLaplaceTransform[Exp[-a s] s / ( 1 + s^2 ),s, t]

    Out[5]=

    Options for LaplaceTransform .

    A LaplaceTransform . T TransformDirection

    .

    A - UnitStep .

    In[6]:= LaplaceTransform[Exp[-Abs[t]], t, s,TransformDirection -> LeftSided]

    Out[6]=

    T Justification . I All , Automatic , None , All

    H .

  • 8/2/2019 Mathematical Transforms

    3/15

  • 8/2/2019 Mathematical Transforms

    4/15

  • 8/2/2019 Mathematical Transforms

    5/15

    T

    N , L . T

    The Fourier transform and its inverse.

    H F .

    In[16]:= FourierTransform[Cos[t] Exp[-t] UnitStep[t],t, w]

    Out[16]=

    H .

    In[17]:= SignalPlot[%, {w, -2, 2 ]

    Out[17]=

    A LaplaceTransform , , .FourierTransform LaplaceTran

    H TransformDirection . T - (-Infinity 0 ).

    In[18]:= FourierTransform[Exp[t^2],t, w,TransformDirection -> LeftSided]

    Out[18]=

    A , .

    In[19]:= FourierTransform[ContinuousPulse[{1, 1, 1 ,{t1 + 1/2, t2 + 1/2, t3 + 1/2 ],{t1, t2, t3 ,{w1, w2, w3]

    Out 1 9 =

  • 8/2/2019 Mathematical Transforms

    6/15

    T . I ,

    T F " " ,

    In[20]:= InverseFourierTransform[1/2 (ContinuousPulse[a, w + a/2 - w0] +ContinuousPulse[a, w + a/2 + w0]),w, t]

    Out[20]=

    H . H ,

    In[21]:= InverseFourierTransform[Tan[w],w, t,SeriesTerms -> 8]

    Out[21]=

    5.2 Transforms of Discrete Signals

    The Z TransformT Z L . I

    T ( ). T

    . A , S S

    The Z transform and its inverse.

    T Ma hema ica. L

    T Z .

    In[22]:= ZTransform[((1/2)^n + (-1/3)^n) DiscreteStep[n],n, z]

    Out[22]=

    W , , .

    In[23]:= PoleZeroPlot[%]

  • 8/2/2019 Mathematical Transforms

    7/15

    Out[23]=

    Options for ZTransform .

    T Z L . TTransformDirection - , -

    , StandardFormula .SimplifyOutput

    T TransformPairs , , x[n] y[n]

    In[24]:= Normal[ZTransform[y[n] == x[n] - (1/4) y[n - 2],n, z,TransformPairs -> {y[n] :> Y[z], x[n] :> X[z]

    ]]

    Out[24]=

    T Y[z] X[z] .

    In[25]:= (Y[z]/.First[Solve[%, Y[z]]])/X[z]

    Out[25]=

    T .

    In[26]:= InverseZTransform[%, z, n]

    Out[26]=

    T .

    In[27]:= DiscreteSignalPlot[%, {n, -5, 15 ]

  • 8/2/2019 Mathematical Transforms

    8/15

    Out[27]=

    W , Z . I

    H Z . N .

    In[28]:= ZTransform[a^n1 b^n2 DiscreteStep[{n1, n2 ],{n1, n2 , {z1, z2]

    Out[28]=

    H , . N

    In[29]:= InverseZTransform[ZTransformData[Normal[%],RegionOfConvergence[{0, Abs[b] ,{Abs[a], Infinity],TransformVariables[{z1, z2 ]],{z1, z2 , {n1, n2

    ]

    Out[29]=

    Options for inverse Z transform.

    S Z , SeriesTerms . T

    , Infinity .

    H Z SeriesTerms . T .Expand

    In[30]:= Expand[InverseZTransform[BesselJ[1, z],z, n,SeriesTerms -> 8]]

    Out[30]=

    T StandardFormula Z ,

    The Discrete-Time Fourier Transform

    T - F Z , Z

    B Z , S S

  • 8/2/2019 Mathematical Transforms

    9/15

    The discrete-time Fourier transform and its inverse.

    T - F Z .

    A , - F , .

    In[31]:= DiscreteTimeFourierTransform[a^n DiscreteStep[n - 4],n, w]

    Out[31]=

    T - - F .

    In[32]:= DiscreteTimeFourierTransform[(1/6) DiscreteImpulse[n1 - 1, n2 - 1] +(1/6) DiscreteImpulse[n1 + 1, n2 - 1] +(1/6) DiscreteImpulse[n1 - 1, n2 + 1] +(1/6) DiscreteImpulse[n1 + 1, n2 + 1] +(1/3) DiscreteImpulse[n1, n2],{n1, n2 , {w1, w2]

    Out[32]=

    T , . N ,

    In[33]:= SignalPlot3D[Abs[First[%]],{w1, -Pi, Pi , {w2, -Pi, Pi]

    Out[33]=

    DiscreteTimeFourierTransform ZTransform , . S ,

    H . N TransformPairs

    In[34]:= DiscreteTimeFourierTransform[x[n + 3],n, w, TransformPairs -> {x[n] :> X[w]]

    Out[34]=

    T TransformPairs .

  • 8/2/2019 Mathematical Transforms

    10/15

    In[35]:= InverseDiscreteTimeFourierTransform[%,w, n,TransformPairs -> {X[w] :> x[n]]

    Out[35]=

    The Discrete Fourier Transform

    G , F - F

    T

    U - Ma hema ica Fourier F , S S DiscreteFourierTransform

    The discrete Fourier transform and its inverse.

    B F S S , N

    H DiscreteFourierTransform . H , .

    In[36]:= DiscreteFourierTransform[Sin[n], 10, n, k]

    Out[36]=

    A .

    In[37]:= InverseDiscreteFourierTransform[Sin[k], 10, k, n]

    Out[37]=

  • 8/2/2019 Mathematical Transforms

    11/15

    Options for DiscreteFourierTransform and InverseDiscreteFourierTransform .

    T DiscreteFourierTransform Z Z . T ,

    W Justification Automatic , . T

    In[38]:= DiscreteFourierTransform[DigitalFIRFilter[{h[0], h[1], h[2], h[3], h[4] ,n],5, n, w,Justification -> Automatic]

    Out[38]=

    Special syntax for transforming a numeric vector.

    F , F

    T ,

    .

    H .

    In[39]:= DiscreteFourierTransform[Table[2^(-n), {n, 0, 10 ]//N]

    Out[39]=

    T .

    In[40]:= InverseDiscreteFourierTransform[{1, 1, 1, 1, 0, 0, 0, 0 //N]

    Out[40]=

    5.3 Information from Transforms

    E . I ,

    Stabilit

    F L Z ,

  • 8/2/2019 Mathematical Transforms

    12/15

    Determining stability from a transform object.

    T SignalStability

    .

    H Z .

    In[41]:= ZTransform[(1/5)^n Exp[n]/20 DiscreteStep[n],n, z

    ]

    Out[41]=

    F , .

    In[42]:= SignalStability[%]

    Out[42]=

    T .

    In[43]:= SignalStability[ZTransform[

    -a^n1 b^n2 DiscreteStep[{-n1 - 1, n2 ],{n1, n2 , {z1, z2]]

    Out[43]=

    Assumptions

    S . S S

    Assumptions made b y transforms during a compu tation.

    D , TransformAssumptions $Line .

    , . O ,

    H L .

    In[44]:= LaplaceTransform[

    ExpIntegralEi[n t] UnitStep[t],t, s]

    Out[44]=

    T .

    In[45]:= TransformAssumptions[-1]

    Out[45]=

    T . N , , %% ; , -2 Out[-2] %%

    In[46]:= TransformAssumptions[%%]

    Out[46]=

    Transform Object Parts

  • 8/2/2019 Mathematical Transforms

    13/15

    T , . T

    .

    Functions for extracting parts of transform objects.

    A Ma hema ica ,Normal .

    H L .

    In[47]:= trans = LaplaceTransform[Exp[t] UnitStep[t],t, s]

    Out[47]=

    T .

    In[48]:= TransformFunction[trans]

    Out[48]=

    L Z . I

    . T Z , , ,

    T . T ,

    In[49]:= RegionOfConvergence[trans]

    Out[49]=

    N . T

    In[50]:= TransformVariables[trans]

    Out[50]=

    Data objects resulting from forward transforms.

    B , Part

    5.4 Solving Differential and Recurrence Equations

    M . F ,

    T Ma hema ica DSolve RSolve . H ,

    - .

  • 8/2/2019 Mathematical Transforms

    14/15

    The transform-based equation solvers.

    T DSolve RSolve . T

    I , ZRSolve . LaplaceDSolve C[1] , C[2] , ,

    H - , .

    In[51]:= ZRSolve[{y[n-2] + 1/2 y[n-1] + 1/4 y[n] == 0,y[1] == 1 ,y[n], n]

    Out[51]=

    H - . I .

    In[52]:= LaplaceDSolve[{y''[t] + 3/2 y'[t] + 1/2 y[t] ==Exp[a t] UnitStep[t],y[0] == 4, y'[0] == 0 ,y[t], t]

    Out[52]=

    Options for the solvin g functions.

    T ZRSolve . T TransformDirection

    T Justification . W None , ; Automatic ,

    H Justification . M All .

    In[53]:= ZRSolve[{y[n-2] + 1/2 y[n-1] + 1/4 y[n] == 0,y[0] == 1, y[1] == 0 ,

    y[n], n, Justification -> Automatic]

  • 8/2/2019 Mathematical Transforms

    15/15

    Newsletter

    Out[53]=

    2 01 2 A bo ut Wo lf ra m Wo lfra m B lo g Wo lf ra m| Al ph a Term s P ri va cy S it e M ap Co nt act