Mathematical Physics II-Function of Complex

download Mathematical Physics II-Function of Complex

of 40

Transcript of Mathematical Physics II-Function of Complex

  • 8/17/2019 Mathematical Physics II-Function of Complex

    1/40

    Mathematical Physics II

    R. Arif WibowoPhysics Department,

    Faculty Of Sciences an !echnolo"y Airlan""a #ni$ersity%&&'

  • 8/17/2019 Mathematical Physics II-Function of Complex

    2/40

    Functions of A (omple) *ariable

  • 8/17/2019 Mathematical Physics II-Function of Complex

    3/40

    (omple) +umber Re$iew-

    •  A comple) number has two parts, i.e. a

    real an an ima"inary part.

    • et a comple) number z, which be written

    as / 0 x 1 iy  0 r eiθ . !he real part is x  an

    the ima"inary one is y .

    • !he plottin" of the number is showe by

    fi"ure 2 below.

  • 8/17/2019 Mathematical Physics II-Function of Complex

    4/40

    z  0 x  1 iy 

     x 

    3

    4

    θ 

    Fi". 2. Plottin" comple) number in the comple) plane

  • 8/17/2019 Mathematical Physics II-Function of Complex

    5/40

    Drill

    • Fin the real an ima"inary part, con5u"ate, ans6uare absolute of the followin" numbers

    2352

    ii+−

    523

    37

    i

    i

    ii2653

    ++

    52

    332

    i

    i

    2253

    ii

    −−

    i

    i

    +

    2

    37

    23π ie

    a- b- c-

    - e- f-

    "-

  • 8/17/2019 Mathematical Physics II-Function of Complex

    6/40

    Function of z 

    • (onsier a simple function of z 

    f /- 0 z % 0  x+iy -% 0 x % 7 y % 1 % xyi  

    = u x,y - 1 i v  x,y -

    • Where : u x,y - 0 x % 7 y %

    •  An v  x,y - 0 % xy 

    f /- 0 f  x+iy - = u x,y - 1 iv  x,y -

  • 8/17/2019 Mathematical Physics II-Function of Complex

    7/40

    Problems

    • Fin the real an ima"inary parts of the

    followin" functions

    2

    2

    +−

    iz 

    i z 

    2. /8

    %. e/

    8. .

    9. ln /

    5. √z6. . z 

  • 8/17/2019 Mathematical Physics II-Function of Complex

    8/40

    !a:e ;ome Problems

    • Fin the real an ima"inary parts of the

    followin" functions

    i z  z +2

    3 z    z ln

     z cosh

    ∗ z  z 2

     z 

    ( ) ( )   3121 2 +−++   z i z i

    3ln z iz e

    • (areful< cos z  an sin z  are not u an v 

    2-

    %-

    8-

    9-

    =-

    >-

    ?-

    @-

    '-

  • 8/17/2019 Mathematical Physics II-Function of Complex

    9/40

     Analytic Function

    • Definition< A function f(x) is analytic or re"ular orholomorphic  ormonogenic) in a re"ion of

    the comple) plane if ithas a uni6ue- eri$ati$eat e$ery point of there"ion. !he statementf z - is analytic at a point

    z  0 aB means that f z - hasa eri$ati$e at e$ery pointinsie some small circleabout z 0 a.

    ( ) z 

     f  

    dz 

    df   z  f  

     z    ∆∆

    ==′→∆

    lim0

    ( ) ( ) z  f   z  z  f   f     −∆+=∆

     yi x z    ∆+∆=∆

    en"an

  • 8/17/2019 Mathematical Physics II-Function of Complex

    10/40

    !heorem I

    • If f z - 0 u x,y - 1 iv  x,y -

    is analytic in a re"ion,

    then in that re"ion   y

    v

     x

    u

    ∂∂

    =∂∂

     y

    u

     x

    v

    ∂∂

    −=∂∂

    !hese e6uation are calle the(auchy7Riemann conition

  • 8/17/2019 Mathematical Physics II-Function of Complex

    11/40

    Problems

    • #se the (auchy7Riemann conition to fin out

    whether these functions are analytic

    22

    +−

    iz i z 

    2. /8

    %. e/

    8. .

    4. √z=. ln /

    >. . z 

  • 8/17/2019 Mathematical Physics II-Function of Complex

    12/40

    !a:e ;ome Problems

    • #se the (auchy7Riemann conition to fin out

    whether these functions are analytic

    i z  z +2

     z    z ln

     z cosh

    ∗ z  z 2

     z 

    ( ) ( )   3121 2 +−++   z i z i

     z lniz e• (areful< cos z  an sin z  are not u an v 

    2-

    %-

    8-

    9-

    =-

    >-

    ?-

    @-

    '-

  • 8/17/2019 Mathematical Physics II-Function of Complex

    13/40

    !heorem II

    If u x,y - an v  x,y - an theirpartial eri$ati$es with respectto x  an y  are continuous ansatisfy the (auchy7Riemannconitions in a re"ion, then f z -is analytic at all point insie

    the re"ion not necessarily onthe bounary-.

     x

    vi

     x

    u

     z 

     f  

    ∂∂+

    ∂∂=

    ∂∂

    !hus fC/ has the same $alue when calculate for approach alon" any strai"ht line.

    !he theorem states that it also has the same $alue for approach alon" any cur$e.

    Some efinitions< A re"ular point of f/- is a point at which f/- is analytic.

     A sin"ular point or sin"ularity of f/- is a point at which f/- is not analytic, It is

    calle an isolate sin"ular point if f/- is analytic e$erywhere else insie some

    small circle about the sin"ular point .

  • 8/17/2019 Mathematical Physics II-Function of Complex

    14/40

    Drill

    • #sin" the efinition of e/ by its power

    series show that C/-e/- 0 e/

    • #sin" the efinition of sin / an cos / fin

    their eri$ati$es.

    • Fin C/-cot /-, if / ≠ nπ

  • 8/17/2019 Mathematical Physics II-Function of Complex

    15/40

    !heorem III  If f/- is analytic in a re"ion R in fi"ure-, then it has

    eri$ati$es of all orers at points insie the re"ion ancan be e)pene in a !aylor series about any point /o insie the re"ion. !he power series con$er"es insie thecircle about z o that e)tens to the nearest sin"ular point( in fi"ure-.

    Sin"ular pointz o

    C  A function φ),y-which satisfies

    aplaces e6uation

    is calle aharmonic function.

    ( )   0,2

    2

    2

    22 =

    ∂∂

    +∂∂

    =∇ y x

     y x  φ φ 

    φ !he aplaces e6uation is<

  • 8/17/2019 Mathematical Physics II-Function of Complex

    16/40

    !his theorem also e)plains a fact about power

    series

    ( ) 64211

    1 z  z  z 

     z 

     z  f     −+−=+

    =

    When / 0 E i, then f/- an its eri$ati$es becomeinfinite that is, f/- is not analytic in any re"ion

    containin" / 0 E i.

  • 8/17/2019 Mathematical Physics II-Function of Complex

    17/40

    !a:e home problems

    Show that the following  functions are harmonic

    1. x  1 y 

    %. 8 x %y  G y 8

    8. (osh y  cos )

    . e x 

     cos y !. e "y  sin x 

    >. ln x % 1 y %-

    ( ) 221   y x

     y

    +−

    22  y x

     x

    +7

    8

  • 8/17/2019 Mathematical Physics II-Function of Complex

    18/40

    #se theorem III to fin the circle of con$er"ence of

    each series of the followin" functions

    • ln 2 G /-

    • cos /

    tanh /• 2 G /- G2

    • ei/

  • 8/17/2019 Mathematical Physics II-Function of Complex

    19/40

    !heorem I*

    Part I.

    If f/- 0 u 1 i$ is analytic in a re"ion, then u an $ satisfy

    aplaces e6uation in the re"ion that is, u an $ are

    harmonic functions-.

    Part II.

     Any function u or $- satisfyin" aplaces e6uation in a simply7

    connecte re"ion, is the real or ima"inary part of an

    analytic function f/-.

  • 8/17/2019 Mathematical Physics II-Function of Complex

    20/40

    Drill• 2-HPro$e !heorem I*, Part I.

    • %-HFin the (auchy7Riemann e6uation in

    a polar coorinates

    • #sin" results in problem %- an the

    metho of problem 2-, show that u an $

    satisfy aplaces e6uation in polar

    coorinates if f/-0u1i$ is analytic.

    • #sin" polar coorinates fin out whetherthe followin" function satisfy the (auchy7

    Riemann e6uations. a- ln /, b- /n c- I/I

  • 8/17/2019 Mathematical Physics II-Function of Complex

    21/40

    (ontour Inte"rals

    et ( be a simple close cur$e with a continuously turnin" tan"ents e)cept

    possibly at a finite number of points that is, we allow a finite number of

    corners, but otherwise the cur$e must be smoothB-. If f(z) is analytic on aninsie C , then

    !heorem *(auchys !heorem

    ( ) 0Caround

    =

    ∫   dz  z  f  

    (#hi$ i$ a line in%egral a$ in vec%or analy$i$& i% i$ calle' a con%our in%egral in %he

    %heory of complex variale$)

  • 8/17/2019 Mathematical Physics II-Function of Complex

    22/40

    !heorem *I

    (auchys Inte"ral Formula

    If f/- is analytic on insie a simple close cur$e (, the $alue of f/- at a point / 0 a

    insie ( is "i$en by the followin" contour inte"ral alon" (<

    ( )  ( )∫   −=   dz a z 

     z  f  

    ia f  

    π 2

    1

    (#hi$ i$ Cauchy$ *n%egral ormula. o%e carefully %ha% %he poin% a i$ in$i'e C& if a

    wa$ ou%$i'e C, %hen φ (z) woul' e analy%ic everywhere in$i'e C an' %he

    in%egral woul' e zero y Cauchy$ #heorem.)

  • 8/17/2019 Mathematical Physics II-Function of Complex

    23/40

    (auchys Inte"ral Formula

     In eneral

    Jy ifferentiatin" we ha$e,

    ( )  ( )

    ( )∫  −=′   dw z ww f  

    i z  f  

    22

    1

    π 

    Jy ifferentiatin" n times, we obtain

    ( )  ( )

    ( )∫    +

    =   dw z w

    w f  

    i

    n z  f  

    n

    n

    1

    )(

    2

    !

    π 

    ( )  ( )

    ∫    −=   dw z ww f  

    i z  f  

    π 2

    1

  • 8/17/2019 Mathematical Physics II-Function of Complex

    24/40

    Drill

    2. K$aluate the followin" line inte"ral in the

    comple) plane by irect inte"ration

    a- alon" a strai"ht line parallel to the 3 a)is

    b- alon" the inicate path.

    ∫ +i

     zdz 

    1

    1

    ∫ C 

    dz  z 2

    & 272

    (

    %. #se (auchys theorem or inte"ral formula to e$aluate theinte"ral

    ∫   −C    z 

     zdz 

    π 2

    sin Where a- ( in the circle I/I 0 2 b- ( in the circle I/I 0 %

  • 8/17/2019 Mathematical Physics II-Function of Complex

    25/40

    !a:e ;ome Problems

    2. K$aluate the followin" line inte"ral in the

    comple) plane by irect inte"ration

    a-

    i- alon" the line y 0 x   ii- alon" the inicate line

    b- alon" the inicate path

    ( )∫    −C 

    dz  z  z 2

    ∫ C 

    dz  z 2

    21i

    21i

    272

    721i

  • 8/17/2019 Mathematical Physics II-Function of Complex

    26/40

    A#RK+! SKRIKS

    !heorem *II

    aurents !heoremet C 2 an C % be two circles whose center at z o. et f z - be analytic in the re"ion R  

    between the circles. !hen f z - can be e)pane in a series of the form of

    aurent Series

    !he B series is calle the principle par%  of the aurent series

    convergen%  in R.

    ( ) ( ) ( )( )

      ......2

    0

    2

    0

    12

    02010   +−+

    −++−+−+=

     z  z 

    b

     z  z 

    b z  z a z  z aa z  f  

  • 8/17/2019 Mathematical Physics II-Function of Complex

    27/40

    Definition

    • If all the s are /ero, fz - is analytic at z  0 z &, an

    we call /& a regular  poin% .

    • If n ≠ &, but all the s after n are /ero, fz - issai to ha$e a pole of or'er n at z  0 z &. If n 0 2 we

    say that fz - has a simple pole.

    • If there are an infinite number of s ifferent from

    /ero, fz - has essensial singularity  at z  0 z &.

    • Coefficien% b1 of 2Cz  G z &- is calle the residu  of

    fz - at z  0 z &.

  • 8/17/2019 Mathematical Physics II-Function of Complex

    28/40

    e)ample

    ( ) ( )11

    332 +−

    + z  z  z 

     z 

    ;as a pole of orer % at / 0 &, a pole of orer 8 at / 0 2,

    an a simple pole at / 0 72

  • 8/17/2019 Mathematical Physics II-Function of Complex

    29/40

    e)ample

    +++==∑=

     z  z  z  z n

     z 

     z 

    e n

    n

     z 

    !2

    111

    !   2330

    3

    ;as a pole of orer 8 at / 0 &, an resiu of e/C/8 is 2C%L

  • 8/17/2019 Mathematical Physics II-Function of Complex

    30/40

    Drill

    2. For each of the followin" functions, say

    whether the inicate point is regular , an

    e$$en%ial $ingulari%y , or a pole, an if a

    pole of what orer it is

    a- Sin /-C/, / 0 &

    b- cos /-C/8

    , / 0 &c- /8 G 2-C/ G 2-8, / 0 2

  • 8/17/2019 Mathematical Physics II-Function of Complex

    31/40

    !;K RKSID#K !;KORKM

  • 8/17/2019 Mathematical Physics II-Function of Complex

    32/40

  • 8/17/2019 Mathematical Physics II-Function of Complex

    33/40

    Methos of Finin" Resiues

    1. Laurent Series

    2. Simple Pole

    3. Multiple Poles

  • 8/17/2019 Mathematical Physics II-Function of Complex

    34/40

    A. Laurent Series

    • K)ample1

    )(−

    = z e z  f   z 

    Solution

    Fin Resiue R2- at / 0 2

    ( )   ( )     

       +−+−+

    −=

    −=

    ...2111

    11.)(

    21

     z  z  z e

     z ee z  f   z 

    ...

    1

    ++

    =   e z 

    e

    !hus the resiue is coefficient of 2C/72-   R2- 0 e

  • 8/17/2019 Mathematical Physics II-Function of Complex

    35/40

    J. Simple Pole

    • K)ample( ) ( ) z  z 

     z  z  f  −+

    =512

    )(

    Solution

    Fin Resiue R7 - an R=-

    Multiplyin" f/- by / G /&- ( ) ( ) ( ) z 

     z 

     z  z 

     z  z  z  f   z 

    −=

    −+   

       += 

      

       +

    525122

    1)(

    2

    1

    K$aluate the result at / 0 & R7 - 0 72C%%

  • 8/17/2019 Mathematical Physics II-Function of Complex

    36/40

    (. Multiple Poles

    • K)ample( ) 3sin)(π −

    = z 

     z  z  z  f  

    Solution

    Fin Resiue f/- at / 0

    Multiply f/- by / G /&-m 

    m is inte"er "reater than or e6ual to the orer n of the pole-

    Differentiate the result m G 2 times,

    an e$aluate the resultin" at / 0 /&

    i$ie by m72-L,

    ( )   z  z  z  f   z    sin)(3 =−π 

     z  z  z  z  z dz 

    d sincos2sin

    2

    2

    −=

     z  z    z  sincos2

    1sincos2

      −=−   π π    z 

  • 8/17/2019 Mathematical Physics II-Function of Complex

    37/40

    !a:e ;ome Problems

    Fin the resiues of the followin" functions at theinicate points. !ry to select the easiest metho.

    ( ) ( ) z  z    −+ 2231

    at z  0 7%C8 an z  0 %

    3

    2

    1   z 

    e  iz 

    π  

    at z  0 e%πiC8 

    5cosh4

    2

    − z e   z 

    at z  0 ln%

    A li ti f R i !h

  • 8/17/2019 Mathematical Physics II-Function of Complex

    38/40

    ( ) ( ) .inside of residuesof sum2   C  z  f  idz  z  f  C 

    ⋅=∫    π  ∫ 

    =

    =  π     θ  2

    0 5

    d  I 

    Evaluation of Definite Integrals b !se of "#e $esi%ue "#eorem

    "#e $esi%ue "#eorem

    ere t#e integral aroun% C  is in 'ounter'lo'(&ise

    E)ample 1* +in% ∫    +=  π 

    θ θ 

    2

    0 cos45d  I 

     Application of Resiue !heorem

    et< z = eiθ    θ θ d iedz    i=

      ,1dz iz d    −−=θ  22

    cos1−− +

    =+

    =  z  z ee   ii   θ θ 

    θ 

    ( ) ( )∫ ∫ ∫    ++−=++−=   

      

       ++−=

    − π π π  2

    0

    2

    0 2

    2

    0 1

    1

    212225

    245

      z  z dz i

     z  z dz i

     z  z dz iz  I 

  • 8/17/2019 Mathematical Physics II-Function of Complex

    39/40

    !a:e ;ome Problems

    +in%

    ∫ ∞

    ∞− +=

    21   x

    dx I 

    ∫ ∞

    +=

    0   21

    cos

     x

    dx x I 

    ∫ ∞

    ∞−=

     x

    dx x I 

      sin

    ,1-

    ,2-

    ,3-

  • 8/17/2019 Mathematical Physics II-Function of Complex

    40/40

    Nisi7Nisi ui/

    • Menentu:an Ja"ian Real u x ,y -Q an ba"ian Ima5iner

    v  x ,y -Q Fun"si Nomple:s

    • Menentu:an apa:ah suatu fun"si :omple:s yan"

    iberi:an termasu: fun"si analiti:

    • Menentu:an apa:ah suatu fun"si :omple:s yan"

    iberi:an termasu: fun"si harmoni:

    • Menentu:an Resiu suatu fun"si :omple:s

    • Menentu:an inte"ral "aris suatu fun"si :omple:s

    • Menentu:an nilai inte"ral tertentu fun"si :omple:s

    melalui !eorema Resiu