Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

25
Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Transcript of Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Page 1: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Math 11

9-11-134-3

The Multiplication Rulefor P(A and B)

Page 2: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Warm up • Pre-Employment Drug Screening Results

Positive test results

Negative test results

Subject uses drugs.

44 6

Subject does not use drugs.

90 860

• If one of the test results is randomly selected find the probability that the subject had a positive test result or a negative test result.

• If one of the test results is randomly selected find the probability that the subject had a positive test result or does not use drugs.

• If one of the test results is randomly selected find the probability that the subject had a negative test result or does not use drugs.

• If one of the test results is randomly selected find the probability that the subject had a negative test result or does use drugs.

Page 3: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Chapter 4Probability

4-1 Review and Preview

4-2 Basic Concepts of Probability

4-3 Addition Rule

4-4 Multiplication Rule: Basics

4-5 Multiplication Rule: Complements and Conditional Probability

4-6 Counting

4-7 Probabilities Through Simulations

4-8 Bayes Theorem

Page 4: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Multiple Choice

• 1.True or False smoking is one of the leading causes of cancer.

• 2. The Pearson correlation coefficient is named after

• A. Karl Marx• B. Carl Friedrich Gauss• C. Karl Pearson• D. Carly Simon• E. Mario Triola

If a student guesses randomly on both of these multiple choice questions, what is the

probability of getting both correct?

Page 5: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Tree Diagrams

This figure summarizes the possible outcomes for a true/false question followed by a multiple choice question.

Note that there are 10 possible combinations.

Page 6: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Tree Diagrams

A tree diagram is a picture of the possible outcomes of a procedure, shown as line segments emanating from one starting point. These diagrams are sometimes helpful in determining the number of possible outcomes in a sample space, if the number of possibilities is not too large.

Page 7: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

P(A and B)

• P(A and B) means the probability that event A occurs in a first trial and event B occurs in a second trial.

• It is the probability of both A and B occurring.

• Remember A occurs FIRST and B occurs SECOND.

Page 8: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Example If 2 of the 50 subjects are randomly selected find the probability that the first person tested positive and the second person tested negative.

Positive Test Results:

44

Negative Test Results:

6

Total Results:

50

Here A is a positive test result and B is a negative one. This problem is looking for P(A and B).

Page 9: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

The Multiplication Rule

The multiplication rule is used for finding P(A and B).

To find P(A and B) we multiply the probability of the first event occurring by the probability of the second event occurring ASSUMING THE FIRST HAS ALREADY OCCURRED.

( and ) ( ) ( | ) P A B P A P B A

Page 10: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Example

• Find the probability of drawing a king and then drawing an ace. Assume the first card is replaced after being drawn.

• Find the probability of drawing a king and then drawing an ace. Assume the first card is NOT replaced after being drawn.

Page 11: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Dependent vs. Independent

• A) Since the first card was replaced the probability of B occurring was NOT affected by the occurrence of A. These events are independent. P(A and B) = P(A)P(B)

• A) Since the first card was NOT replaced the probability of B occurring WAS affected by the occurrence of A. These events are dependent. P(A and B) = P(A)P(B|A)

Page 12: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Dependent vs. Independent

For independent events

( and ) ( ) ( | ) P A B P A P B A

= P(A)P(B)

since the occurrence of A does not affect the occurrence of B.

Page 13: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Dependent and Independent

Two events A and B are independent if the occurrence of one does not affect the probability of the occurrence of the other.

(Several events are similarly independent if the occurrence of any does not affect the probabilities of the occurrence of the others.)

If A and B are not independent, they are said to be dependent.

Page 14: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Dependent Events

Two events are dependent if the occurrence of one of them affects the probability of the occurrence of the other, but this does not necessarily mean that one of the events is a cause of the other.

Page 15: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Sampling with replacementSampling without replacement

• A) was an example of sampling with replacement. The card was replaced.

• B) was an example of sampling without replacement. The card was not replaced.

Which is sampling with replacement?a)Find the probability of drawing a king and then drawing an ace. Assume the first card is replaced after being drawn.b)Find the probability of drawing a king and then drawing an ace. Assume the first card is NOT replaced after being drawn.

Page 16: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Example• 50 balls are inside of a tumbler.15 are blue, 7

are red, 13, are green, 11 are yellow, and 4 are black.

• A) If I use sampling with replacement, find P(red and green and yellow).

• B) If I use sampling without replacement, find P(red and green and yellow).

Page 17: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Multiplication Rule for Several Events

In general, the probability of any sequence of events is simply the product of their corresponding probabilities assuming the previous events have occurred.

Page 18: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Treating Dependent Events as Independent

Some calculations are cumbersome, but they can be made manageable by using the common practice of treating events as independent when small samples are drawn from large populations. In such cases, it is rare to select the same item twice.

Page 19: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

The 5% Guideline for Cumbersome Calculations

If a sample size is no more than 5% of the size of the population, treat the selections as being independent (even if the selections are made without replacement, so they are technically dependent).

Page 20: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

ExampleSuppose 50 drug test results are given from people who use drugs:

If 2 of the 50 subjects are randomly selected without replacement, find the probability that the first person tested positive and the second person tested negative.

Positive Test Results:

44

Negative Test Results:

6

Total Results: 50

Page 21: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Example – continued If 2 of the 50 subjects are randomly selected without replacement, find the probability that the first person tested positive and the second person tested negative.

44positive test result for first person

506

negative test result for second person49

44 61st selection is positive and 2nd is negative 0.108

50 49

P

P

P

Positive Test Results:

44

Negative Test Results:

6

Total Results:

50

Page 22: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

ExampleWhen two different people are randomly

selected from those in your class, find the indicated probability by assuming birthdays occur on the same day of the week with equal frequencies.

a.Probability that two people are born on the same day of the week.

b.Probability that two people are both born on Monday.

Page 23: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Example – continued a. Probability that two people are born on the same day of

the week.

Because no particular day is specified, the first person can be born on any day. The probability that the second person is born on the same day is 1/7, so the probability both are born on the same day is 1/7.

b. Probability that two people are both born on Monday.

The probability the first person is born on Monday is 1/7, and the same goes for the second person. The

probability they are both born on Monday is: .

1 1 1

7 7 49

Page 24: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Summary of Fundamentals In the addition rule, the word “or” in P(A or B)

suggests addition. Add P(A) and P(B), being careful to add in such a way that every outcome is counted only once.

In the multiplication rule, the word “and” in P(A and B) suggests multiplication. Multiply P(A) and P(B), but be sure that the probability of event B takes into account the previous occurrence of event A.

Page 25: Math 11 9-11-13 4-3 The Multiplication Rule for P(A and B)

Applying the Multiplication Rule