Math 104 UC Berkeley Spring 2016 HW 4

download Math 104 UC Berkeley Spring 2016 HW 4

of 1

Transcript of Math 104 UC Berkeley Spring 2016 HW 4

  • 8/18/2019 Math 104 UC Berkeley Spring 2016 HW 4

    1/1

    HOMEWORK 13 (DUE APRIL 28TH)

    1) Ross 26.8

    2) Find an explicit formula for 

    n=0 n3xn for |x| <  1.

    3) Ross 13.1

    4) Ross 13.10

    5) We define a map  f   : (S, d) →  (S , d) between 2 metric spaces to be  continuous at  x  ∈  S  if for every sequence {xn} ⊂  S  that converges to x, the sequence {f (xn)} ⊂S  is convergent to  f (x).

    a) Given a metric space (S,d) and a fixed point   x0   ∈   S,   define   f   : (S, d)   →

    (R, dstd) to bef (x) :=  d(x, x0).

    Show that  d  is a continuous map.b) Given a metric space (S,d) and a fixed bounded subset  A   ⊂   S , define   f   :

    (S,d) →  (R, dstd)f (x) := inf y∈Ad(x, y).

    Show that  f   is continuous.

    6) Let  C 0([a, b]) denote the space of continuous functions f   : [a, b] → R. Define

    d(f, g) = sup[a,b]|f  − g|.

    a) Show that  d  is a metric in  C 0([a, b]).b) Is this metric space complete, i.e. any Cauchy sequence in C 0([a, b]) converges

    to an element in  C 0([a, b]).?c) Define  F   : C 0([a, b]) → R  to be

    F (f ) =

       ba

    f.

    Show that  F  is a continuous map.

    1