Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler,...

27

Transcript of Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler,...

Page 1: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 2: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Materials Research Center, Leoben Austria

Bohler Austria

University of Brescia, Italy

Bohler, Austria

Institute of Metals and Technology, Ljubliana, Slovania

Institute of Metals and Technology, Ljubliana, Slovania

Page 3: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Shanghai University and Zhengda Mould, China

Politecnico Torino and AQMsrl, Italy

Uddeholm Sweeden

Metallurgical Research Institute, Bucharest, Romania

Politecnico Torino and Cogne Acciai Specially, Italy

Page 4: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Portland State University, US, Intensive Technology, Kyev, Ukraine

University of Zagreb, Croatia

Aubert Duval, France

Edelstahl Witten-Krefeld, Germany

Schmeltz and Bohler-Uddeholm, Germany

TTN and Politecnico Torino

Page 5: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Ecole de Mines, France

Ecole de Mines, France

University of Ljubliana , Ljubliana, Slovania and

Politecnico Torino, Italy

University of Ljubliana , Ljubliana, Slovania and

Universidad Politecnica de Madrid, Spain

Uddeholm Tooling, Sweeden

Page 6: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Ecole de Mines, France

Ecole de Mines, France

Ecole de Mines, France

Bohler Edelstahl, Austria

Shanghai University, China

Page 7: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 8: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 9: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

EXTENDED ABSTRACT

Two years activity of a technical working group named “Comitato per la Qualità degli Acciai da Stampi per Pressocolata” (Committee for the Quality of Steels devoted to Die Casting Dies). This group is a part of the larger “Comitato Pressocolata” (Die Casting Committee) belonging to the Associazione Italiana di Metallurgia (AIM), Italian Association for Metallurgy.

The technical group started its activity on 2003 and worked to provide the die casting world end users (such as die designers & manufacturers and foundries) with a comprehensive technical specification, defining the tool steels requirements that are necessary to be achieved so as to guarantee satisfying service performance levels for the tool.

Page 10: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

The steel properties characterization is defined on the base of three quality levels which ensure increasing service performances, defined as follows: Top, Medium and Standard Quality.

The steel classification is based only on the measurable final minimum characteristics, those that have to be clearly guaranteed, and not on the specific fabrication route selected by each steel producer.

The steel quality is in particular measured through the following features:· chemical composition· hardness· microcleanliness· microstructure homogeneity· carbides distribution· impact toughness

This steel characteristics are defined both in the annealed and quenched and tempered conditions. All the aforementioned properties have to be investigated on the transverse section of the original semi-product.

Page 11: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

The standard proposes a control methodology and procedure for the impact toughness evaluation, using both V-notched (ISO-KV) and un-notched (KVW) impact specimens.

Currently the impact toughness is considered one of the most characteristic property of materials quality. The impact test is performed on quenched and tempered specimens machined directly from the annealed parent block of the die (testing treatment) and on specimens removed from the quenched and tempered die.

The specimens removal and heat treatment conditions are specified for specimens removed from the parent block prior the heat treatment and those being removed from the as-quenched and tempered die.

Starting from the Tool 06 Conference, the current version of the specification will be opened to discussion, revisions and adding on since the technological and scientific evolution of the die casting sector is in continuous progress.

Page 12: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 13: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Development of W360

Objective: Develop thermally stable tool steel W360 ISOBLOC with outstanding ductility at a working hardness of 52 – 56 HRc.

Method: ESR of optimized composition

• Higher carbon content of 0.5 % t o increase hardenability by formation of fine carbides.• Molybdenum increased to 3% obtaining thermally stable carbides for hot hardness.• Chromium decreased by a half percent to 4.5%, reducing the quantity of thermally unstable carbides without a loss in through- hardenability.• Carbide-forming element vanadium was specified at about 0.55 %. This guarantees a refined grain structure.• Lower silicon and manganese contents are responsible for a significant high toughness and ductility level.

Page 14: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 15: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 16: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 17: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

H11

W360

Page 18: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 19: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

GOAL

Identify heat treating conditions that improve performanceof die casting dies.

OBJECTIVE

• Compare between austempered and oil quenched H11, all tempered in the range of 42-44 HRC:

- Structure examination - Mechanical properties evaluation: hardness, impact strength and thermal fatigue resistance

Page 20: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Typical Austempering TTT

Page 21: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

EXPERIMENTAL

Page 22: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 23: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 24: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

Step 2 –Austempering and tempering procedure

21 cylindrical samples were cut (D=32mm and L=65mm) from the same original bar.

A1: Austempered at 310°C for 5 hours; Quadruple temper at 1000°C for 40 min

A2: Austempered at 340°C for 5 hours; Quadruple temper at 1000°C for 40 min

Q: traditionally oil quenched and tempered specimens. Triple temper at 1000°C for 40 min

For austempered and oil quenched samples the final tempered hardness was 42-43 HRC.

Page 25: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

1J=0.737562 ft-lb

Page 26: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.
Page 27: Materials Research Center, Leoben Austria Bohler Austria University of Brescia, Italy Bohler, Austria Institute of Metals and Technology, Ljubliana, Slovania.

CONCLUSIONS

• The bainite nucleation and growth are faster when the isothermal transformation temperature is as close as possible to the Ms point.

• The temper resistance of the A2 austempered and tempered structure appears to be higher than that of the oil quenched and tempered morphology.

• The impact strength produced by drastic oil quenching

is still higher (average 27J) than the austempering (average 17 or 15J). These latter values of 17 or 15J, however, are not low for the steel used considering that the annealed condition was at the lowest limit of the acceptance area.