Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology...

47

Transcript of Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology...

Page 1: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic
Page 2: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 2

Materials & Properties: Mechanical Behaviour C. Garion, CERN TE/VSC

CERN Microcosm exhibition

A dream of engineerโ€ฆ

Page 3: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 3

Materials & Properties: Mechanical Behaviour C. Garion, CERN TE/VSC

โ€ฆ the hard reality!!!

Page 4: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 4

1. Material modelling a. Basic notions of material behaviours and strength b. Stress/strain in continuum mechanics c. Linear elasticity d. Plasticity

i. Yield surface ii. Hardening

e. Continuum damage mechanics f. Failure mechanics

2. Structural mechanical analysis a. Vacuum chamber

i. Loads on a chamber ii. Equilibrium equations iii. Stress on tube iv. Instability (buckling)

b. Vacuum system as mechanical system i. Support โ€“ unbalanced force ii. Stability (column buckling)

3. Selection criteria of materials a. Figures of merit of materials b. Some material properties c. Some comparisons based on FoM

4. Conclusion

Plan

Page 5: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 5

1. Material modelling a. Basic notions of material behaviours and strength b. Stress/strain in continuum mechanics c. Linear elasticity d. Plasticity

i. Yield surface ii. Hardening

e. Continuum damage mechanics f. Failure mechanics

2. Structural mechanical analysis a. Vacuum chamber

i. Loads on a chamber ii. Equilibrium equations iii. Stress on tube iv. Instability (buckling)

b. Vacuum system as mechanical system i. Support โ€“ unbalanced force ii. Stability (column buckling)

3. Selection criteria of materials a. Figures of merit of materials b. Some material properties c. Some comparisons based on FoM

4. Conclusion

Plan

Page 6: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 6

Basic Notions of Material Strength

ฯƒeng

ฮตeng

E

ฯƒy

ฯƒm

Nominal or engineering stress:

๐œŽ๐œŽ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ =๐น๐น๐‘†๐‘†0

Nominal strain: ๐œ€๐œ€๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ = ฮ”๐ฟ๐ฟ๐ฟ๐ฟ0

= ๐ฟ๐ฟโˆ’๐ฟ๐ฟ0๐ฟ๐ฟ0

Initial section: S0

Force F Initial length: L0

L = L0 + โˆ†

Stress = Force/Section

ฯƒ[MPa] = F[N]/S[mm2]

Strain = Displacement/length

ฮต = โˆ†[mm]/L[mm]

Basic mechanical properties from tensile tests

E: Young modulus (linear elastic behavior)

ฯƒy (Rp): Yield strength

ฯƒm (Rm): Tensile strength

Poisson coefficient: ๐œˆ๐œˆ = โˆ’๐œ€๐œ€๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘’๐‘’๐‘ก๐‘ก๐œ€๐œ€๐‘ก๐‘ก๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘ก๐‘ก๐‘Ž๐‘Ž

Page 7: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 7

๐œ€๐œ€

Elastic brittle behaviour

Basic Material Behaviours

Elastic plastic behaviour

Elastic plastic damageable behaviour Elastic viscoplastic behaviour

Page 8: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 8

๐œ€๐œ€ = ๐‘™๐‘™๐‘™๐‘™ 1 + ๐œ€๐œ€๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’

๐œŽ๐œŽ =๐น๐น๐‘†๐‘†โ‰… ๐œŽ๐œŽ๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ โˆ™ 1 + ๐œ€๐œ€๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’

True Strain/Stress vs Engineering Strain/Stress

Engineering stress-strain curve

๐‘‘๐‘‘๐œ€๐œ€ =๐‘‘๐‘‘๐‘™๐‘™๐‘™๐‘™

True stress-strain curve

Page 9: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 9

The stress tensor is symmetric: ๐œŽ๐œŽ = ๐œŽ๐œŽ๐‘‡๐‘‡

dS=dSยทn dF

๐‘‡๐‘‡(๐‘€๐‘€,๐‘™๐‘™) = lim๐‘‘๐‘‘๐‘‘๐‘‘โ†’0

๐‘‘๐‘‘๐น๐น๐‘‘๐‘‘๐‘†๐‘†

๐‘‡๐‘‡(๐‘€๐‘€,๐‘™๐‘™) = ๐œŽ๐œŽ ๐‘€๐‘€ โˆ™ ๐‘™๐‘™

Normal stress: ๐œŽ๐œŽ๐‘’๐‘’ = ๐‘™๐‘™ โˆ™ ๐œŽ๐œŽ ๐‘€๐‘€ โˆ™ ๐‘™๐‘™

Shear stress: ๐œ๐œ = ๐œŽ๐œŽ ๐‘€๐‘€ โˆ™ ๐‘™๐‘™ โˆ’ ๐œŽ๐œŽ๐‘’๐‘’ โˆ™ ๐‘™๐‘™

๐œŽ๐œŽ๐‘’๐‘’>0: tensile; ๐œŽ๐œŽ๐‘’๐‘’<0: compression

โˆƒ ๐‘๐‘1,๐‘๐‘2,๐‘๐‘3 ,๐œŽ๐œŽ =๐œŽ๐œŽ๐ผ๐ผ 0 00 ๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ 00 0 ๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ ๐‘๐‘1,๐‘๐‘2,๐‘๐‘3

๐œŽ๐œŽ = ๐œŽ๐œŽโ„Ž๐ผ๐ผ + ๐œŽ๐œŽ๐ท๐ท with ๐œŽ๐œŽโ„Ž = 13๐‘ก๐‘ก๐‘ก๐‘ก ๐œŽ๐œŽ the hydrostatic stress, and ๐œŽ๐œŽ๐ท๐ท the deviatoric stress tensor.

Stress in Continuum Mechanics

Stress vector Stress tensor

M

Page 10: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 10

ฮฉ0

ฮฉ1 M0

๐‘‘๐‘‘๐‘€๐‘€0 M

๐‘‘๐‘‘๐‘€๐‘€

O

ฮฆ ๐‘€๐‘€ = ฮฆ ๐‘€๐‘€0

๐‘‘๐‘‘๐‘€๐‘€ =๐œ•๐œ•ฮฆ ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0โˆ™ ๐‘‘๐‘‘๐‘€๐‘€0 = ๐น๐น ๐‘€๐‘€0 โˆ™ ๐‘‘๐‘‘๐‘€๐‘€0

Green Lagrange deformation: ๐ธ๐ธ ๐‘€๐‘€0 =12โˆ™ ๐น๐น๐‘‡๐‘‡ ๐‘€๐‘€0 โˆ™ ๐น๐น ๐‘€๐‘€0 โˆ’ ๐ผ๐ผ

For small perturbations ๐‘ข๐‘ข โ‰ช ๐‘€๐‘€0 :

Considering the displacements: (๐‘€๐‘€ = ๐‘€๐‘€0 + ๐‘ข๐‘ข ๐‘€๐‘€0 )

๐ธ๐ธ ๐‘€๐‘€0 =12โˆ™๐œ•๐œ•๐‘ข๐‘ข ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0+

๐œ•๐œ•๐‘ข๐‘ข ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0

๐‘‡๐‘‡

+๐œ•๐œ•๐‘ข๐‘ข ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0

๐‘‡๐‘‡

โˆ™๐œ•๐œ•๐‘ข๐‘ข ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0

๐œ€๐œ€ ๐‘ข๐‘ข =12โˆ™๐œ•๐œ•๐‘ข๐‘ข ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0+

๐œ•๐œ•๐‘ข๐‘ข ๐‘€๐‘€0

๐œ•๐œ•๐‘€๐‘€0

๐‘‡๐‘‡

Strain in Continuum Mechanics

Energy variation: ๐‘‘๐‘‘๐”ผ๐”ผ = โˆซ ๐œŽ๐œŽ:๐‘‘๐‘‘๐œ€๐œ€ฮฉ

๐น๐น is the deformation gradient.

Page 11: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 11

How atoms interact? How material behaves?

Page 12: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 12

Linear Elasticity

Repulsion

Attraction

U0

The interatomic potential is the sum of 2 contributions:

It presents a minimum, corresponding to the free equilibrium of the atoms. U0 is the bonding energy.

The interactomic force is defined by ๐น๐น = ๐‘‘๐‘‘๐‘‘๐‘‘

๐‘‘๐‘‘๐‘ก๐‘ก and can be written: ๐น๐น = ๐‘˜๐‘˜ โˆ™ ๐‘ก๐‘ก

This can be generalized in the form (Hookeโ€™s law): ๐œŽ๐œŽ = ๐ถ๐ถ: ๐œ€๐œ€๐‘’๐‘’ with ๐ถ๐ถ the stiffness tensor.

Page 13: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 13

๐œŽ๐œŽ = ๐ถ๐ถ: ๐œ€๐œ€๐‘’๐‘’ ๐œ€๐œ€๐‘’๐‘’ = ๐‘†๐‘†:๐œŽ๐œŽ with ๐‘†๐‘† the compliance tensor

๐œŽ๐œŽ = ๐œ†๐œ† โˆ™ ๐‘ก๐‘ก๐‘ก๐‘ก ๐œ€๐œ€๐‘’๐‘’ ๐ผ๐ผ + 2๐œ‡๐œ‡๐œ€๐œ€๐‘’๐‘’ ๐œ€๐œ€๐‘’๐‘’ =1 + ๐œˆ๐œˆ๐ธ๐ธ

๐œŽ๐œŽ โˆ’๐œˆ๐œˆ๐ธ๐ธ๐‘ก๐‘ก๐‘ก๐‘ก ๐œŽ๐œŽ ๐ผ๐ผ

๐œ†๐œ† = ๐œˆ๐œˆ๐ธ๐ธ

1 + ๐œˆ๐œˆ 1 โˆ’ 2๐œˆ๐œˆ ๐œ‡๐œ‡ =๐ธ๐ธ

2 1 + ๐œˆ๐œˆ

๐ธ๐ธ = ๐œ‡๐œ‡3๐œ†๐œ† + 2๐œ‡๐œ‡๐œ†๐œ† + ๐œ‡๐œ‡ ๐œˆ๐œˆ =

๐œ†๐œ†2 ๐œ†๐œ† + ๐œ‡๐œ‡

๐‘˜๐‘˜ = ๐œ†๐œ† +2๐œ‡๐œ‡3 =

๐ธ๐ธ3 1 โˆ’ 2๐œˆ๐œˆ

Linear Isotropic Elasticity

In the worst case, ๐ถ๐ถ has 21 independent parameters!

For homogeneous isotropic material, they can be reduced to two independent parameters !

๐œ†๐œ† and ๐œ‡๐œ‡ are the Lamรฉ coefficients. ๐œ‡๐œ‡, sometimes denoted G, is the shear modulus.

Aluminium Copper Stainless steel Titanium

E [GPa] 70 130 195 110

๐œˆ๐œˆ 0.34 0.34 0.3 0.32

Elastic parameters at room temperature of materials commonly used for UHV applications

Bond type Typical range Young modulus [GPa]

Covalent 1000

Ionic 50

Metallic 30-400

Van der Waals 2

Page 14: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 14

Thermal Linear Isotropic Elasticity

๐œŽ๐œŽ = ๐ถ๐ถ: ๐œ€๐œ€๐‘’๐‘’ = ๐ถ๐ถ: ๐œ€๐œ€ โˆ’ ๐œ€๐œ€๐‘ก๐‘กโ„Ž

๐œ€๐œ€๐‘ก๐‘กโ„Ž = ๐›ผ๐›ผ โˆ™ ๐‘‡๐‘‡ โˆ’ ๐‘‡๐‘‡๐‘ก๐‘ก๐‘’๐‘’๐‘Ÿ๐‘Ÿ โˆ™ ๐ผ๐ผ

๐‘‘๐‘‘๐œ€๐œ€๐‘ก๐‘กโ„Ž = ๐›ผ๐›ผ ๐‘‡๐‘‡ โˆ™ ๐‘‘๐‘‘๐‘‡๐‘‡ โˆ™ ๐ผ๐ผ

Aluminium Copper Stainless steel Titanium

๐›ผ๐›ผ [10-6 ยทK-1] 22 17 16 8.9

In simplified 1D, ๐œŽ๐œŽ = ๐ธ๐ธ โˆ™ ๐œ€๐œ€ โˆ’ ๐œ€๐œ€๐‘ก๐‘กโ„Ž = ๐ธ๐ธ โˆ™ ๐œ€๐œ€ โˆ’ ๐›ผ๐›ผ โˆ™ โˆ†๐‘‡๐‘‡

๐œ€๐œ€๐‘ก๐‘กโ„Ž is the thermal strain tensor.

ฮฑ is the coefficient of thermal expansion (CTE).

Page 15: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

C. Garion 15

Material in free state

Elasticity Brittle failure

ฯƒ

E ฮต

ฯƒ

E ฮต

Page 16: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 16

Strength of Brittle Material

Example on glassy carbon:

Material is very sensitive to stress concentration and therefore the material strength strongly dependent of the initial defects. The strength of the material is represented by the Weibullโ€™s law, defining the survival probability:

๐‘ƒ๐‘ƒ๐‘‘๐‘‘ฮฉ = ๐‘’๐‘’๐‘’๐‘’๐‘๐‘ โˆ’1๐‘‰๐‘‰0

๐œŽ๐œŽ๐‘’๐‘’๐‘’๐‘’๐œŽ๐œŽ0

๐‘š๐‘š

๐‘‘๐‘‘ฮฉฮฉ

Average strength

[MPa]

Standard deviation

[MPa]

Weibull shape parameter

Weibull scale parameter

[MPa] Flexure 206 37 5.6-6.3 375-416

Compression 1012 73 13.5-14.6 1587-1644

4 points bending test on rods

Damage mechanism: Cleavage, intergranular fracture

Fracture surface of heavy tungsten alloy at 77K

๐œŽ๐œŽ๐‘’๐‘’๐‘’๐‘’ = max ๐œŽ๐œŽ๐ผ๐ผ ,๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ ,๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ๐ผ๐ผ , 0

m: shape parameter

Surv

ival

pro

babi

lity

๐œŽ๐œŽ ๐œŽ๐œŽ0

Page 17: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

C. Garion 17

Material in free state

Elasticity Plasticity

ฯƒ

E ฮต

ฯƒ

E ฮต

Page 18: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 18

Material with plasticity: irreversible plastic deformation before rupture

Plasticity

Mechanism:

The plastic deformation is associated to the dislocation motions (slip under shear stress).

ฯ„

ฯ„

ฯ„

ฯ„

ฯ„

ฯ„

ฯ„

ฯ„

Page 19: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 19

๐œ€๐œ€ = ๐œ€๐œ€๐‘’๐‘’ + ๐œ€๐œ€๐‘๐‘

Plasticity

Rp0.2: 0,2 % proof strength

Rp1: 1 % proof strength

๐œŽ๐œŽ < ๐œŽ๐œŽ๐‘ฆ๐‘ฆ (๐œŽ๐œŽ โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ < 0) : Elasticity

ฯƒ

E

Rp0.2

ฮต

๐œ€๐œ€๐‘’๐‘’ ๐œ€๐œ€๐‘๐‘ 0.2 %

1 %

Rp1

ฯƒy

In practice, we consider usually that ๐œŽ๐œŽ๐‘ฆ๐‘ฆ= Rp0.2

Page 20: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 20

Plasticity โ€“ Yield Surface

Yield surfaces are defined by:

Isotropic criteria:

โ€ข Tresca the maximum shear stress, as a function of the principal stresses, is given by: ๐œ๐œ๐‘š๐‘š๐‘ก๐‘ก๐‘Ž๐‘Ž = ๐‘€๐‘€๐‘€๐‘€๐‘’๐‘’ ๐œŽ๐œŽ๐‘Ž๐‘Ž โˆ’ ๐œŽ๐œŽ๐‘—๐‘— Trescaโ€™s yield surface: ๐‘“๐‘“ ๐œŽ๐œŽ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ = ๐‘€๐‘€๐‘€๐‘€๐‘’๐‘’ ๐œŽ๐œŽ๐‘Ž๐‘Ž โˆ’ ๐œŽ๐œŽ๐‘—๐‘— โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

Initial Trescaโ€™s criteria: ๐‘€๐‘€๐‘€๐‘€๐‘’๐‘’ ๐œŽ๐œŽ๐‘Ž๐‘Ž โˆ’ ๐œŽ๐œŽ๐‘—๐‘— โˆ’ ๐‘…๐‘…๐‘๐‘ = 0

โ€ข Von Mises

Based on the distortional elastic energy โˆ ๐‘ก๐‘ก๐‘ก๐‘ก ๐œŽ๐œŽ๐ท๐ท โˆ™ ๐œŽ๐œŽ๐ท๐ท = ๐œŽ๐œŽ๐ท๐ท:๐œŽ๐œŽ๐ท๐ท

๐‘“๐‘“ ๐œŽ๐œŽ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ =32 ๐œŽ๐œŽ๐ท๐ท:๐œŽ๐œŽ๐ท๐ท โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

In principal stress space: 1

2๐œŽ๐œŽ1 โˆ’ ๐œŽ๐œŽ2 2 + ๐œŽ๐œŽ1 โˆ’ ๐œŽ๐œŽ3 2 + ๐œŽ๐œŽ2 โˆ’ ๐œŽ๐œŽ3 2 โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

In stress space: 12

๐œŽ๐œŽ11 โˆ’ ๐œŽ๐œŽ22 2 + ๐œŽ๐œŽ11 โˆ’ ๐œŽ๐œŽ33 2 + ๐œŽ๐œŽ22 โˆ’ ๐œŽ๐œŽ33 2 + 6 ๐œŽ๐œŽ122 + ๐œŽ๐œŽ132 + ๐œŽ๐œŽ232 โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

โ€ข ๐‘“๐‘“ ๐œŽ๐œŽ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ, โ€ฆ < 0 : elasticity

โ€ข ๐‘“๐‘“ ๐œŽ๐œŽ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ, โ€ฆ = 0 : plasticity

Page 21: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 21

Plasticity โ€“ Yield Surface

Comparison of the Trescaโ€™s and Von Misesโ€™s yield surface for plane stress state:

๐œŽ๐œŽ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ Tresca Von Mises

๐œŽ๐œŽ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐œ๐œ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ Tresca Von Mises

Experimental validity on aluminium alloys

๐œŽ๐œŽ =๐œŽ๐œŽ๐ผ๐ผ 0 00 ๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ 00 0 0

๐œŽ๐œŽ =๐œŽ๐œŽ๐ผ๐ผ ๐œ๐œ 0๐œ๐œ 0 00 0 0

Page 22: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 22

Plasticity - Hardening

Plastic strain tensor: ๐œ€๐œ€๐‘๐‘ = ๐œ€๐œ€ โˆ’ ๐œ€๐œ€๐‘’๐‘’

Accumulated plastic strain, p : ๐‘‘๐‘‘๐‘๐‘ =23๐‘‘๐‘‘๐œ€๐œ€

๐‘๐‘:๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘ > 0

๐œŽ๐œŽ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ ฯƒฮ™

ฮต

Elastic Plastic perfect Kinematic hardening Isotropic hardening

Plastic strain are induced by dislocation motions no volumic change tr ๐œ€๐œ€๐‘๐‘ = 0

Page 23: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 23

Plasticity โ€“ Kinematic Hardening

๐‘“๐‘“ ๐œŽ๐œŽ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ,๐‘‹๐‘‹ =32 ๐œŽ๐œŽ๐ท๐ท โˆ’ ๐‘‹๐‘‹ : ๐œŽ๐œŽ๐ท๐ท โˆ’ ๐‘‹๐‘‹ โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐œŽ๐œŽ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘ = ๐‘‘๐‘‘๐œ†๐œ†๐œ•๐œ•๐‘“๐‘“๐œ•๐œ•๐œŽ๐œŽ = ๐‘‘๐‘‘๐œ†๐œ†

32

๐œŽ๐œŽ๐ท๐ท โˆ’ ๐‘‹๐‘‹

32 ๐œŽ๐œŽ๐ท๐ท โˆ’ ๐‘‹๐‘‹ : ๐œŽ๐œŽ๐ท๐ท โˆ’ ๐‘‹๐‘‹

Normality rule:

๐‘‘๐‘‘๐‘‹๐‘‹ =23๐ป๐ป๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘

As a first estimation, the hardening modulus H is estimated by: ๐ป๐ป~๐œŽ๐œŽ๐‘ข๐‘ข โˆ’ ๐‘…๐‘…๐‘๐‘0.2

๐œ€๐œ€๐‘ข๐‘ข

Consistency equation: ๐‘‘๐‘‘๐‘“๐‘“ = 0

Page 24: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 24

๐‘“๐‘“ ๐œŽ๐œŽ,๐œŽ๐œŽ๐‘ฆ๐‘ฆ ,๐‘…๐‘… =32๐œŽ๐œŽ๐ท๐ท:๐œŽ๐œŽ๐ท๐ท โˆ’ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ โˆ’ ๐‘…๐‘…

๐‘‘๐‘‘๐œ€๐œ€๐‘๐‘ = ๐‘‘๐‘‘๐œ†๐œ†๐œ•๐œ•๐‘“๐‘“๐œ•๐œ•๐œŽ๐œŽ = ๐‘‘๐‘‘๐œ†๐œ†

32

๐œŽ๐œŽ๐ท๐ท

32 ๐œŽ๐œŽ๐ท๐ท:๐œŽ๐œŽ๐ท๐ท

Normality rule:

๐‘‘๐‘‘๐‘…๐‘… = ๐‘”๐‘” โˆ™ ๐‘‘๐‘‘๐‘๐‘

The isotropic hardening is non linear and reaches a saturation level. Isotropic and kinematic hardening can be mixed.

๐œŽ๐œŽ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

๐œŽ๐œŽ๐ผ๐ผ๐ผ๐ผ ๐œŽ๐œŽ๐‘ฆ๐‘ฆ

Consistency equation: ๐‘‘๐‘‘๐‘“๐‘“ = 0

Plasticity โ€“ Isotropic Hardening

Page 25: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 25

Continuum Damage Mechanics Material representative element

Damaged state: microvoids and/or microcracks (dislocation stack, decohesion or cleavage of precipitates or inclusions,โ€ฆ)

D

Microdefect size << Element size << Structure size

Continuum damaged element

The degradation is characterized by a damage variable D (a scalar for isotropic damage)

Effective stress and damage variable

n dS

๐‘‘๐‘‘๐น๐น = ๐œŽ๐œŽ ๐‘™๐‘™๐‘‘๐‘‘๐‘†๐‘†

Micro << Meso << Macro scale

๐‘‘๐‘‘๐น๐น n

dS

๐‘‘๐‘‘๐น๐น

dSd: Surface of defects

๐‘‘๐‘‘๐น๐น = ๐œŽ๐œŽโ€ฒ๐‘™๐‘™ ๐‘‘๐‘‘๐‘†๐‘† โˆ’ ๐‘‘๐‘‘๐‘†๐‘†๐‘‘๐‘‘

The damage parameter is defined by ๐ท๐ท = ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘

๐œŽ๐œŽโ€ฒ: effective stress tensor ๐œŽ๐œŽโ€ฒ =๐œŽ๐œŽ

1 โˆ’ ๐ท๐ท

D=0 : Virgin structure; D=1: crack initiation

Page 26: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 26

Continuum Damage Mechanics

๐œŽ๐œŽ = ๐ถ๐ถ 1 โˆ’ ๐ท๐ท : ๐œ€๐œ€๐‘’๐‘’ Strain equivalence principle:

๐ธ๐ธโ€ฒ = ๐ธ๐ธ โˆ™ 1 โˆ’ ๐ท๐ท

Page 27: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 27

Continuum Damage Mechanics

Damage evolution

For ductile material: ๐‘‘๐‘‘๐ท๐ท = ๐‘Œ๐‘Œ๐‘‘๐‘‘๐‘‘๐‘‘๐‘๐‘

Y: Strain energy density release rate ๐‘Œ๐‘Œ =๐œ•๐œ•๐œ•๐œ•๐œ•๐œ•๐ท๐ท =

12 ๐œ€๐œ€

๐‘’๐‘’:๐ถ๐ถ: ๐œ€๐œ€๐‘’๐‘’

๐‘Œ๐‘Œ = 12๐ธ๐ธ

๐œŽ๐œŽ๐‘‰๐‘‰๐‘‰๐‘‰2

1 โˆ’ ๐ท๐ท 223

1 + ๐œˆ๐œˆ + 3 1 โˆ’ 2๐œˆ๐œˆ๐œŽ๐œŽโ„Ž๐œŽ๐œŽ๐‘‰๐‘‰๐‘‰๐‘‰

2

Effective Von Mises stress Triaxiality ratio

This relation can be generalized to:

ฮ”๐œ€๐œ€ = ฮ”๐œ€๐œ€๐‘’๐‘’ + ฮ”๐œ€๐œ€๐‘๐‘ =๐ถ๐ถ2๐ธ๐ธ ๐‘๐‘๐‘Ÿ๐‘Ÿ

โˆ’1 ๐›พ๐›พ2โ„ + ๐ถ๐ถ1๐‘๐‘๐‘Ÿ๐‘Ÿโˆ’1 ๐›พ๐›พ1โ„

Leading to the Manson-Coffin law used in Low cycle fatigue:

๐‘๐‘๐‘Ÿ๐‘Ÿ ฮ”๐œ€๐œ€๐‘๐‘ ๐›ฝ๐›ฝ = ๐ถ๐ถ๐ถ๐ถ๐‘ก๐‘ก

Universal slope equation:

ฮ”๐œ€๐œ€ = 3.5๐œŽ๐œŽ๐‘š๐‘š๐ธ๐ธ ๐‘๐‘๐‘Ÿ๐‘Ÿโˆ’0.12 + ๐ท๐ท๐‘ข๐‘ข0.6๐‘๐‘๐‘Ÿ๐‘Ÿโˆ’0.6

Typical curve for stainless steel

Page 28: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 28

Fracture Mechanics ๐œŽ๐œŽโˆž

Crack

For elastic material, the stress singularity reads:

a

K: Stress intensity factor

r: Distance from the crack tip

Mode I: Opening Mode II: In plane shear Mode III: Out-of-plane shear

Solicitation modes:

๐œŽ๐œŽ โˆ๐พ๐พ ๐œŽ๐œŽโˆž,๐‘€๐‘€

2๐œ‹๐œ‹๐‘ก๐‘ก

(after J. Lemaitre, J.L. Chaboche, Mรฉcanique des matรฉriaux solides, Dunod)

Page 29: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 29

Fracture Mechanics

For elastic material, the stress singularity reads:

K is in the form ๐พ๐พ = ๐‘“๐‘“ โˆ™ ๐œŽ๐œŽโˆž ๐œ‹๐œ‹๐‘€๐‘€ .

In a more global approach [Griffith], the energy release rate is defined as: ๐บ๐บ = โˆ’๐œ•๐œ•๐œ•๐œ•๐œ•๐‘ก๐‘ก

Criterion: ๐บ๐บ โ‰ฅ ๐บ๐บ๐‘๐‘ โˆถ crack propagation

For elastic material, ๐บ๐บ = ๐พ๐พ2

๐ธ๐ธ

๐œŽ๐œŽโˆž ๐œŽ๐œŽโˆž

๐›ผ๐›ผ

๐พ๐พ๐ผ๐ผ = ๐œŽ๐œŽโˆž ๐œ‹๐œ‹๐‘€๐‘€ cos2 ๐›ผ๐›ผ ๐พ๐พ๐ผ๐ผ๐ผ๐ผ = ๐œŽ๐œŽโˆž ๐œ‹๐œ‹๐‘€๐‘€ cos๐›ผ๐›ผ sin๐›ผ๐›ผ ๐พ๐พ๐ผ๐ผ = 1.122 โˆ™ ๐œŽ๐œŽโˆž ๐œ‹๐œ‹๐‘€๐‘€

๐œŽ๐œŽ โˆ๐พ๐พ ๐œŽ๐œŽโˆž,๐‘€๐‘€

2๐œ‹๐œ‹๐‘ก๐‘ก

a

Page 30: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 30

Fracture Mechanics Fatigue crack propagation:

https://metallurgyandmaterials.files.wordpress.com/2015/12/liberty-ship-failure.jpg?w=640

Material may exhibit ductile to brittle transition

Toug

hnes

s

Temperature

FCC, HCP materials

BCC materials

Mc Kelvey, 1999

Parisโ€™ law, used for stable crack propagation:

More general law:

๐พ๐พ๐ผ๐ผ๐‘๐‘, ๐พ๐พ๐‘ก๐‘กโ„Ž: fracture parameters

๐‘…๐‘… =๐พ๐พ๐‘š๐‘š๐‘Ž๐‘Ž๐‘’๐‘’๐พ๐พ๐‘š๐‘š๐‘ก๐‘ก๐‘Ž๐‘Ž

๐‘š๐‘š: average load parameter; usually 0.5

๐‘‘๐‘‘๐‘€๐‘€๐‘‘๐‘‘๐‘๐‘

= ๐ถ๐ถ๐พ๐พ๐‘š๐‘š๐‘ก๐‘ก๐‘Ž๐‘Ž

1 โˆ’ ๐‘…๐‘…1 โˆ’๐‘š๐‘š๐‘…๐‘… โˆ’ ๐พ๐พ๐‘ก๐‘กโ„Ž

๐พ๐พ๐ผ๐ผ๐‘๐‘ โˆ’ ๐พ๐พ๐‘š๐‘š๐‘ก๐‘ก๐‘Ž๐‘Ž

๐‘’๐‘’

๐‘‘๐‘‘๐‘€๐‘€๐‘‘๐‘‘๐‘๐‘

= ๐ถ๐ถ1โˆ†๐พ๐พ๐‘’๐‘’1

๐พ๐พ๐ผ๐ผ๐‘๐‘ = 110 ๐‘€๐‘€๐‘ƒ๐‘ƒ๐‘€๐‘€ โˆ™ ๐‘š๐‘š ๐พ๐พ๐‘ก๐‘กโ„Ž = 5๐‘€๐‘€๐‘ƒ๐‘ƒ๐‘€๐‘€ โˆ™ ๐‘š๐‘š ๐‘™๐‘™ = 2.8 ๐ถ๐ถ = 2. 10โˆ’6 ๐‘š๐‘š/๐‘๐‘๐‘๐‘๐‘๐‘๐‘™๐‘™๐‘’๐‘’

๐‘™๐‘™1 = 4.6 ๐ถ๐ถ1 = 3. 10โˆ’14 ๐‘š๐‘š/๐‘๐‘๐‘๐‘๐‘๐‘๐‘™๐‘™๐‘’๐‘’

Extrapolated curves for 316

Page 31: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 31

1. Material modelling a. Basic notions of material behaviours and strength b. Stress/strain in continuum mechanics c. Linear elasticity d. Plasticity

i. Yield surface ii. Hardening

e. Continuum damage mechanics f. Failure mechanics

2. Structural mechanical analysis a. Vacuum chamber

i. Loads on a chamber ii. Equilibrium equations iii. Stress on tube iv. Instability (buckling)

b. Vacuum system as mechanical system i. Support โ€“ unbalanced force ii. Stability (column buckling)

3. Selection criteria of materials a. Figures of merit of materials b. Some material properties c. Some comparisons based on FoM

4. Conclusion

Plan

Page 32: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 32

Loads on a Vacuum Chamber

1. Vacuum/pressure

At the interface

0. Gravity: specific force: ๐‘“๐‘“๐‘ฃ๐‘ฃ = ฯ๐‘”๐‘”

n dS

๐‘‘๐‘‘๐น๐น = ๐œŽ๐œŽ ๐‘™๐‘™๐‘‘๐‘‘๐‘†๐‘† = โˆ’๐‘๐‘๐‘™๐‘™๐‘‘๐‘‘๐‘†๐‘†

Rk #1: if p is uniform: โˆฏ๐‘๐‘๐‘™๐‘™๐‘‘๐‘‘๐‘†๐‘† = 0

โˆฌ ๐‘๐‘๐‘™๐‘™๐‘‘๐‘‘๐‘†๐‘†๐’ฎ๐’ฎ๐‘๐‘= โˆ’โˆฌ ๐‘๐‘๐‘™๐‘™๐‘‘๐‘‘๐‘†๐‘† = โˆ’๐‘๐‘โˆ‘ ๐’ฎ๐’ฎ๐‘œ๐‘œ๐‘Ž๐‘Ž๐‘™๐‘™๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐’ฎ๐’ฎ๐‘œ๐‘œ

p ฯƒฮธ

ฯƒz Rk #2 : For a simple tube (radius R, thickness t):

๐’ฎ๐’ฎ๐‘๐‘ ๐’ฎ๐’ฎ๐‘œ๐‘œ1 ๐’ฎ๐’ฎ๐‘œ๐‘œ2

๐œŽ๐œŽ๐œƒ๐œƒ๐œƒ๐œƒ =๐‘๐‘๐‘…๐‘…๐‘ก๐‘ก

๐œŽ๐œŽ๐‘ง๐‘ง๐‘ง๐‘ง =๐‘๐‘๐‘…๐‘…2๐‘ก๐‘ก

Hoop stress:

Longitudinal stress (for a close tube):

๐œŽ๐œŽ ๐‘™๐‘™ = โˆ’๐‘๐‘๐‘™๐‘™

Page 33: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 33

Loads on a Vacuum Chamber 2. Electro magnetic forces

Foucaultโ€™s currents are governed by Maxwellโ€™s equation:

B(x,y,t)

rot E=-โˆ‚ฮ’/โˆ‚t

Ez(x,y,t) ~ Bโ€™

Ohmโ€™s law

Maxwellโ€™s equation

B: magnetic field

E: electric field

j: current density

ฯ: electrical resistivity

B(x,y,t)

jz Laplaceโ€™s law

fv=jโˆงB B(x,y,t)

jz

f fv ~ Bโ€™B

In a long structure, subjected to the magnetic field B:

j = E/ฯ

jz = Ez/ฯ

Page 34: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 34

For a given magnetic configuration, force intensity ~ t/ฯ

(t/ฯ)st.st. / (t/ฯ)Cu ~ (1/5E-7)/(0.1/1E-9) ~ 0.02

Lorentzโ€™ force are driven by copper

For a (colaminated) copper/stainless steel beam screen at cryogenic temperature:

In a copper tube, 0.1 mm thick, radius of 25 mm, subjected to a magnetic field of 10 T with a decay of 100 T/s:

F ~ 125 N/mm (~ 13 t/m)

F I ~ 12.5 kA

B

Orders of magnitude for cryogenic applications (beam screen)

Page 35: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 35

Equilibrium equations in static conditions:

Mechanical Problem Formulation:

๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ ๐œŽ๐œŽ + ๐‘“๐‘“๐‘ฃ๐‘ฃ = 0 in ฮฉ ฮฉ

๐œŽ๐œŽ ๐‘™๐‘™ = ๐น๐น๐‘ก๐‘ก on ๐’ฎ๐’ฎ๐‘Ÿ๐‘Ÿ

๐’ฎ๐’ฎ๐‘Ÿ๐‘Ÿ

Kinematic:

Constitutive model: โ€ข Constitutive law: ๐œŽ๐œŽ = ๐ถ๐ถ: ๐œ€๐œ€๐‘’๐‘’ with ๐œ€๐œ€๐‘’๐‘’ = ๐œ€๐œ€ โˆ’ ๐œ€๐œ€๐‘ก๐‘กโ„Ž โˆ’ ๐œ€๐œ€๐‘๐‘ โˆ’ โ€ฆ

โ€ข Plasticity or other

๐’ฎ๐’ฎ๐‘‘๐‘‘

boundary conditions: ๐‘ข๐‘ข = ๐‘ข๐‘ข๐‘Ž๐‘Ž๐‘š๐‘š๐‘๐‘๐‘œ๐‘œ๐‘ก๐‘ก๐‘’๐‘’๐‘‘๐‘‘ on ๐’ฎ๐’ฎ๐‘‘๐‘‘

๐œ€๐œ€ ๐‘ข๐‘ข = 12โˆ™ ๐‘”๐‘”๐‘ก๐‘ก๐‘€๐‘€๐‘‘๐‘‘ ๐‘ข๐‘ข + ๐‘”๐‘”๐‘ก๐‘ก๐‘€๐‘€๐‘‘๐‘‘๐‘‡๐‘‡ ๐‘ข๐‘ข in ฮฉ

Mechanical solution: ๐‘ข๐‘ข , ๐œŽ๐œŽ

Page 36: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 36

Design Criteria

Material criterion: โ€ข Maximum stress, โ€ข Elastic regime, โ€ข fatigue, โ€ฆ

Structural criterion: โ€ข Maximum deformation, โ€ข Stability

โˆ†

P

Pth

With imperfections

Tube under external pressure

Page 37: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 37

I. For an infinite elastic tube subjected to external pressure: Safety factor of 3 is usually applied.

Design rule for stainless steel:

Structural Stability

II. For beam subjected to axial force:

F

Boundary conditions Lr

๐ฟ๐ฟ๐‘ก๐‘ก = ๐ฟ๐ฟ

๐ฟ๐ฟ๐‘ก๐‘ก = 2 โˆ™ ๐ฟ๐ฟ

๐ฟ๐ฟ๐‘ก๐‘ก = 0.5 โˆ™ ๐ฟ๐ฟ

๐ฟ๐ฟ๐‘ก๐‘ก = 2 โˆ™ ๐ฟ๐ฟ

L

L

L

L

๐‘ƒ๐‘ƒ๐‘๐‘๐‘ก๐‘ก =๐ธ๐ธ

4 โˆ™ 1 โˆ’ ๐œˆ๐œˆ2๐‘ก๐‘ก๐‘…๐‘…

3

Eulerโ€™s critical load:

I: Area moment of inertia

~ฯ€d3t/8 for a tube

wh3/12 for a rectangular cross section

y(x)

Equilibrium equation: ๐‘€๐‘€ = โˆ’๐น๐น๐‘๐‘

Bending equation: ๐‘€๐‘€ = ๐ธ๐ธ๐ผ๐ผ๐‘๐‘โ€ฒโ€ฒ

Differential equation: ๐ธ๐ธ๐ผ๐ผ๐‘๐‘โ€ฒโ€ฒ + ๐น๐น๐‘๐‘ = 0

Solution depends on boundary conditions.

๐น๐น๐‘๐‘๐‘ก๐‘ก =๐œ‹๐œ‹๐ฟ๐ฟ๐‘ก๐‘ก

2

๐ธ๐ธ๐ผ๐ผ

๐‘ก๐‘ก โ‰ฅ๐ท๐ท

100

Page 38: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 38

Mechanical System - Supports

Kinematic (longitudinally):

1 fixed support Sliding supports

Only 1 longitudinally-fixed support has to be used.

Static: Distributed forces (tube weight, bake out jacket): q (N/mm)

ฮด0

L

Beam pipe simply supported at its extremities

Deflection: ๐›ฟ๐›ฟ0 =5๐‘ž๐‘ž๐ฟ๐ฟ4

384๐ธ๐ธ๐ผ๐ผ

Deflection:

Beam pipe deflection can be minimized by supporting at Gaussian points:

ฮด

L

~0.22L ~0.22L

๐›ฟ๐›ฟ =๐›ฟ๐›ฟ050

Page 39: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 39

Static : Pressure thrust force

So1

So2

๐น๐นโ†’๐‘ก๐‘ก๐‘ข๐‘ข๐‘๐‘๐‘๐‘๐‘œ๐‘œ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = ๐‘๐‘๐’ฎ๐’ฎ๐‘œ๐‘œ๐‘Ž๐‘Ž๐‘™๐‘™๐‘Ž๐‘Ž๐‘Ž๐‘Ž

P = 0.1 MPa

Be careful to the moment and support anchoring

Mechanical System - Supports

Page 40: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 40

This phenomenon can occur for a line under internal pressure (not necessary with a bellows).

Deformed tube with internal pressure

The resultant of the pressure forces tend to increase the initial defect instability

Global stability: the bellows and adjacent lines are unstable

Mechanical System โ€“ Global stability

Page 41: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 41

Deformed tube with internal pressure

y(x)

dx

p

Equilibrium equation (for a tube slice): ๐‘€๐‘€โ€ฒโ€ฒ โˆ’ ๐‘“๐‘“ = 0

Bending equation: ๐‘€๐‘€ = ๐ธ๐ธ๐ผ๐ผ๐‘๐‘โ€ฒโ€ฒ Differential equation: ๐ธ๐ธ๐ผ๐ผ๐‘๐‘(4) + ๐‘๐‘๐‘†๐‘†๐‘๐‘โ€ฒโ€ฒ = 0

Solutions depends on boundary conditions

1

Mode I

Mode II

0cr

cr

PP

crL 1L

โ†’

Buckling pressure can read, in a general formulation (similar to Eulerโ€™s formula):

Bending stiffness

Reduced length (depends on boundary conditions)

Radius

Mechanical System โ€“ Global stability

๐‘ƒ๐‘ƒ๐‘๐‘๐‘ก๐‘ก =๐œ‹๐œ‹2๐ถ๐ถ๐‘๐‘๐ฟ๐ฟ๐‘ก๐‘ก2๐‘…๐‘…๐‘š๐‘š2

๐‘‘๐‘‘๐น๐น = โˆ’๐‘๐‘๐‘†๐‘†๐‘๐‘โ€ฒโ€ฒ๐‘‘๐‘‘๐‘’๐‘’

๐‘“๐‘“ =๐‘‘๐‘‘๐น๐น๐‘‘๐‘‘๐‘’๐‘’

Page 42: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 42

1. Material modelling a. Basic notions of material behaviours and strength b. Stress/strain in continuum mechanics c. Linear elasticity d. Plasticity

i. Yield surface ii. Hardening

e. Continuum damage mechanics f. Failure mechanics

2. Structural mechanical analysis a. Vacuum chamber

i. Loads on a chamber ii. Equilibrium equations iii. Stress on tube iv. Instability (buckling)

b. Vacuum system as mechanical system i. Support โ€“ unbalanced force ii. Stability (column buckling)

3. Selection criteria of materials a. Figures of merit of materials b. Some material properties c. Some comparisons based on FoM

4. Conclusion

Plan

Page 43: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 43

A few Selection Criteria

Figures of merit:

๐‘‹๐‘‹0. ๐œŒ๐œŒ.๐ถ๐ถ.๐‘‡๐‘‡๐‘Ÿ๐‘Ÿ

๐‘‹๐‘‹0.๐œŒ๐œŒ.๐ถ๐ถ.๐œŽ๐œŽ๐‘ฆ๐‘ฆ๐ธ๐ธ.๐›ผ๐›ผ

๐‘‹๐‘‹0. ฮป.๐‘‡๐‘‡๐‘Ÿ๐‘Ÿ

๐‘‹๐‘‹0๐ธ๐ธ13

โ€ข Temperature rise in transient regime:

โ€ข Thermal fatigue:

โ€ข Temperature rise in steady state:

โ€ข Mechanical Stability for transparent vacuum chamber:

Several figures of merit, characterizing the material, can be used depending on the final application.

๐œŒ๐œŒ๐ธ๐ธ1 3 โ€ข Mechanical Stability for vacuum chamber subjected to fast magnetic field variation:

For beam-material interaction induced heating:

Page 44: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 44

Beryllium Aluminium Titanium G5 316L Copper Inconel

Density gโˆ™cmโˆ’3 1.85 2.8 4.4 8 9 8.2 Heat capacity Jโˆ™Kโˆ’1โˆ™Kgโˆ’1 1830 870 560 500 385 435 Thermal conductivity Wโˆ™Kโˆ’1โˆ™mโˆ’1 200 217 16.7 26 400 11.4

Coefficient of thermal expansion 10โˆ’6โˆ™Kโˆ’1 12 22 8.9 16 17 13

Radiation length cm 35 9 3.7 1.8 1.47 1.7

Melting temperature K 1560 930 1820 1650 1360 1530

Yield strength MPa 345 275 830 300 200 1100 Young modulus GPa 230 73 115 195 115 208

Electrical resistivity 10โˆ’9โˆ™ฮฉโˆ™m 36 28 1700 750 17 1250

Some Material Properties

Indicative values at room temperature

Page 45: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 45

Some Material Properties

Some properties depend strongly on temperature or grade or delivery state (annealed, hard,โ€ฆ).

Properties of copper and copper alloys at cryogenic temperatures, Simon et al.

Yield strength of aluminium alloys as a function of temperature

Just two examples:

Page 46: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 46

Few Figures of Merit

For each application, the correct material.

Page 47: Materials & Properties: Mechanical Behaviour...Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7 th June 2017 4 1. Material modelling a. Basic

Vacuum, Surfaces & Coatings Group Technology Department C. Garion, CAS Vacuum, Lund, 7th June 2017 47

Conclusion

Most of the time, the mechanical design of a vacuum system is not really complex. The choice and the knowledge the materials are important to get a robust and reliable mechanical system at the right price.