Materials development for IFE systems - IAEA NA · Materials development for IFE systems Dr. Raquel...

65
Materials development for IFE systems Dr. Raquel González Arrabal [email protected] Instituto de fusión nuclear

Transcript of Materials development for IFE systems - IAEA NA · Materials development for IFE systems Dr. Raquel...

Materials development

for IFE systems

Dr. Raquel González Arrabal

[email protected]

Instituto de fusión nuclear

Raquel González Arrabal IAEA 18-20 March 2015

Outlook

• Motivation

• Plasma Facing Materials.

– New approach: nanostructured W

• Final optics

– Thermomechanical effects

– Atomistic effects:

• Defect production

• Effect on macroscopic properties

• Conclusions

Raquel González Arrabal IAEA 18-20 March 2015

Sketch of HiPER power plant

D. Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Motivation

One of the main bottle neck for fusion to become a

reality is the lack of materials able to withstand

the harsh radiation environment:

•Thermal loads

•Atomistic damage

Raquel González Arrabal IAEA 18-20 March 2015

Radiation on PFM

Time

(s)

Deposit

ed

energy

(MJm-2)

Power

(MWm-

2)

Heat flux

paramet

er

(MJm-2s-

1/2)

Particl

e

energ

y

(eV)

Partic

le

flux

(m-2s-

1)

Diverto

r

steady

state

1000 - 15 - 1-30 <1024

ELM’s

VDEs

0.2×10-3

0.3

1

60

5×103

2×102

70 1-30

1-30

<1024

<1024

Direct

target

α-

particl

es

200×10-

9

0.03 1.5×105 70 2.1×106

avg.

<1025

• Major hazards: the intense thermal loads (X-rays) and ions (He, H-

isotopes)

• Neutrons do not suppose a serious threat for PFM

Raquel González Arrabal IAEA 18-20 March 2015

Radiation on PFM

Raquel González Arrabal IAEA 18-20 March 2015

Exfoliation of metal

following high dose

irradiation [M. Rubel, trans.

On fus. Sci. and tech. 53 (2008)

459] He plasma induced nanostructure in W [S. Takamura et al. Plasma

and Fusion Res., 1, (2006) 051]

Raquel González Arrabal IAEA 18-20 March 2015

Renk et al. FST 61 (2012)

Pulsed He irradiation

Severe cracking at low dose

(1015 cm-2)

• This imposes a limit to the use of W, as low as 1015 He·cm-2 in IFE (tens of minutes of

operation).

It is necessary to develop appropriate materials

↔ to understand the microscopic mechanisms

Raquel González Arrabal IAEA 18-20 March 2015

PFM: state of the art research

Nowadays some strategies to overcome W limitations are being investigated:

1. Engineered 3D surfaces

• Reduce the thermal loads arriving to the PFM by increasing the surface

area while keeping the thermal conductivity high.

Pulsed He

irradiation

After1600 pulses no sign of voids,

bubbles or blisters are observed

W needles[T. J. Renk, et al. Fus. Sci.and Tech. 61 (2012)]

W foams[D. L. Youchison et al. Fus. Eng. and

Des. 82 (2007) 1854]

Raquel González Arrabal IAEA 18-20 March 2015

PFM: state of the art research

• Nanostructured materials: two approaches

ODS_W based materials

[T. Karabacak et al. J. Appl. Phys 94 (2003) 7723]La2O3 [M. A. Yar et al.

JNM 408 (2011) 129]

Nanostructured columnar materials

Raquel González Arrabal IAEA 18-20 March 2015

Nanostructured W

SEM image of W nanocolumns deposited on

Si.• Films deposited by sputtering

• Work was devoted to optimize

the deposition procedure to

achieve nanocolumnar

samples with low stress.

N. Gordillo et al., Appl. Surf. Sci. 316 (2014) 1–8

Raquel González Arrabal IAEA 18-20 March 2015

Nanostructured W

N. Gordillo et al., Appl. Surf. Sci. 316 (2014) 1–8

Raquel González Arrabal IAEA 18-20 March 2015

Coating morphology and microstructure

30 35 40 45 50 55 60 65 70 75 80 85 90

Si (110)

α-W(220)

α-W(211)

α-W(200)

Inte

nsity (

a.u

.)2Θ

α-W(110)

Polycrystalline → (110) preferentially oriented

Nanostructured W

N. Gordillo et al., Appl. Surf. Sci. 316 (2014) 1–8

Raquel González Arrabal IAEA 18-20 March 2015

Radiation-induced damage

nanoestructured materials

• How GBs affect radiation-induced defect

configuration?

• How GBs affect light species behavior?

Raquel González Arrabal IAEA 18-20 March 2015

How GBs affect radiation-induced

defect configuration?

G. Ackland, Science 327, 1587 (2010)

Raquel González Arrabal IAEA 18-20 March 2015

SEM image of W nanocolumns deposited on Si.

Aims:

•Investigate the effect of sample morphology → NW and CGW

•Investigate the effect of implantations conditions:

• Single implantation: HYDROGEN

• Sequential implantation: CARBON and HYDROGEN

• Implantations temperature: RT, 400ºC

•Implantation energies were selected to mimic as much as possible IFE

conditions

•The implantation dose was selected to be 5x1016 cm-2

Hydrogen behaviour

Raquel González Arrabal IAEA 18-20 March 2015

Fig. 2

NW-CHA400

300 nm

NW-pristine (a)

NW-C-H (c)

200 nm

NW-H (b)

NW-CH

200 nm

Nanocolumns under

irradiation

Nanocolumns are stable

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

Microstructure

30 40 50 60 70 80 90

α-W(220)

α-W(211)

α-W(200)

α-W(110)

CGW-Pristine

CGW-H

CGW-C-H

CGW-CH

CGW-C-H400

I (a

u)

2θ (º)30 35 40 45 50 55 60 65 70 75 80 85 90

α-W(220)

α-W(211)

α-W(200)

NW-C-H

NW-CH

NW-C-HA400

NW-Pristine

NW-H

I (a

u)

2θ (º)

α-W(110)

• No significant change in the state stress of the films→ Compressive

• No secondary phases in implanted samples.

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

H behaviour: single implantation

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0 CGW-H

[H

] x10

-21 (

at/

cm

3)

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0

[H

] x10

-21 (

at/cm

3)

NW-H

0

2

4

6

8

10

12

14

16

18

20

va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

0

1

2

3

4

5

6

H Vacancies

x100

0

2

4

6

8

10

12

14

16

18

20

Va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

0

1

2

3

4

5

6

H Vacancies

x100

surface surface

SRIM

calculations

RNRA

experimental

H1(N15,αγ)C12

NW CGW

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

H behaviour: sequential

implantation (C+H)

0

2

4

6

8

10

12

14

16

18

20

va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0 CGW-H

CGW-C-H

[H

] x1

0-2

1 (

at/cm

3)

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0

[H

] x1

0-2

1 (

at/cm

3)

NW-H

NW-C-H

0

2

4

6

8

10

12

14

16

18

20

va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

surface surface

SRIM

calculations

RNRA

experimental

H1(N15,αγ)C12

NW CGW

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

H behaviour: simultaneous

implantation (C+H)

0

2

4

6

8

10

12

14

16

18

20

Va

ca

ncie

s x

10

-23 (

cm

-3)

Ion r

an

ge

x 1

0*2

0 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0 CGW-C-H

CGW-CH

[H

] x1

0-2

1 (

at/cm

3)

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0

[H

] x1

0-2

1 (

at/cm

3)

NW-C-H

NW-CH

0

2

4

6

8

10

12

14

16

18

20

Va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

surface surface

SRIM

calculations

RNRA

experimental

H1(N15,αγ)C12

NW CGW

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

H behaviour: H implantation

400ºC

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0 CGW-H

CGW-C-HA400

[H

] x10

-21 (

at/cm

3)

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0

[H

] x1

0-2

1 (

at/cm

3)

NW-H

NW-C-HA400

0

2

4

6

8

10

12

14

16

18

20

Vacan

cie

s x

10

-23 (

cm

-3)

Ion

ra

ng

e x

10

-20 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

0

2

4

6

8

10

12

14

16

18

20

Va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

surface surface

SRIM

calculations

RNRA

experimental

H1(N15,αγ)C12

NW CGW

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

H behaviour

0

2

4

6

8

10

12

14

16

18

20

Va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

ng

e x

10

-20 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0 CGW-H

CGW-C-H

CGW-CH

CGW-C-HA400

[H

] x10

-21 (

at/cm

3)

0 200 400 600 800 1000 1200

0,0

0,5

1,0

1,5

2,0

2,5

3,0

[H] (a

t.%

)

Depth (nm)

0,0

0,4

0,8

1,2

1,6

2,0

[H

] x1

0-2

1 (

at/cm

3)

NW-H

NW-C-H

NW-CH

NW-C-HA400

0

2

4

6

8

10

12

14

16

18

20

Va

ca

ncie

s x

10

-23 (

cm

-3)

Ion

ra

nge

x 1

0-2

0 (

at/cm

3)

H Ion Range

C Ion Range

0

1

2

3

4

5

6

H Vacancies

C Vacancies

x100

surface surface

SRIM

calculations

RNRA

experimental

H1(N15,αγ)C12

NW CGW

R. Gonzalez-Arrabal et al. JNM 453 (2014) 287–295

Raquel González Arrabal IAEA 18-20 March 2015

• W(112)/W(110)

semicoherente

interface.

• Vacancies and H locate

preferentially at the

GBs.

• Lower migration

energies than in the

bulk.

H behaviour: DFT

C. Pascual-Gonzalez et al. to be published

Raquel González Arrabal IAEA 18-20 March 2015

• GBs are trapping sites for

hydrogen.

• The hydrogen diffusivity

for NW lower than for

CGW and dependent on

the H concetration.

• H2 do not form

H behaviour: MD

P. Piaggi et al. JNM 458 (2015) 233–239

Raquel González Arrabal IAEA 18-20 March 2015

Code MMonCa (open source)

www.materials.imdea.org/MMonCa

Martin-Bragado et al. Computer Physics Communications 184 (2013) 2703

Physics in the parametrization

Rivera et al. NIMB 303 (2013) 81

Valles et al. JNM 457 (2015) 80

Object Migration

V Yes

Vn Yes

I Yes

In Yes

He Yes

Hen Yes

HenVm No

HenIm No

He behaviour: OKMC

Raquel González Arrabal IAEA 18-20 March 2015

Boundary conditions

NanocrystalPolycrystal

V I He

Y X

Z

He

100 nm

200 n

m

Y X

Z

He

100 nm

20

0 n

m

G. Valles et al. JNM 457 (2015) 80-87

Raquel González Arrabal IAEA 18-20 March 2015

X

V

I

He

Y

Z

X

V

I

He

Y

Z

0 s 1 s 2 s 149 s 150 s

0 s 1 s 2 s 149 s 150 s

Continuous irradiation

Pulsed irradiation

Irradiation mode

G. Valles et al. JNM 457 (2015) 80-87

Raquel González Arrabal IAEA 18-20 March 2015

He (10 keV) retention in bulk

tungsten

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re

tain

ed H

e fra

ctio

n

Number of pulses

Polycrystal

Nanocrystal

0 1x1014

2x1014

3x1014

1100 K

Pulsed

Continuous

Continuous

Dose (cm-2)

Pulsed

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re

tain

ed H

e fra

ctio

n

Number of pulses

Polycrystal

Nanocrystal

0 1x1014

2x1014

3x1014

300 K

Pulsed

Continuous

Continuous

Dose (cm-2)

Pulsed

G. Valles et al. JNM 457 (2015) 80-87

Raquel González Arrabal IAEA 18-20 March 2015

Conclusions

• Nanostructure morphology is preserved after implantation.

• H and He behavior in NW is dominated by GBs.

• Synergetic effects have a large influence on the H retention in

CGW samples but do not in NW samples .

• NW seems to be very promising to work under radiation

environments. Further work to characterize the material behavior

under more realistic conditions

Raquel González Arrabal IAEA 18-20 March 2015

Sketch of HiPER power plant

D. Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

3Final optics• Ions

• Neutrons (full ion mitigation)

• Partial ion mitigation (swift heavy ions)

• Multi-scale modeling

Raquel González Arrabal IAEA 18-20 March 2015

HiPER 4a HiPER 4b (Power plant)

EXPERIMENTAL PROTOTYPE DEMO

Description Bunch mode Relaxed operation

Pre-commercialpower plant

Operation Bunches of 100 shots, max. 5 DT

explosions

Continuous (24/7)

Continuous (24/7)

Yield (MJ) <20 >20 >100

Rep. rate (Hz)

1-10 1-10 10-20

Power (GWt)

- <0.5 1-3

T cycle No Yes Yes

Blanket No Yes Yes

• Direct targets for shock ignition

• Evacuated dry wall chamber

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Radiation fluxes

•HiPER:

•Direct drive

•Dry wall

• 71% neutrons

• 28% ions

• 1% X-Rays

Final lenses: Direct particles stemming from the target explosion and

indirect ones (scattered neutrons and γ -rays from the (n,γ) reactions)

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Radiation

The energy density deposited by ions in HiPER prototype and demo is so

high that it would drive to temperature enhancements higher than the Silica

melting point→ For the lenses to work ions must be somehow mitigated

HiPER

<E>(MeV)

Pulse width(ns)

Pen-depth(mm)

ED in exp.(J/cm3)

ED prot-(J/cm3)

ED demo(J/cm3)

Burnt products

(4He)2.1 400 6.4 492.0 3788.48 1230.03

Debris ions (D)

0.15 2200 1.4 2549.08 19627.93 6372.7

X-rays 0.007 0.17 few103 33.91 261.11 84.78

Neutrons 12.4 60 - 0.018 0.142 0.046

Indirect gammas

- »60 - 0.007 0.051 0.017

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Thermomechanical response calculations

•The finite element solver CODE ASTER is used

•Lenses are considered to have a cylindrical geometry.

•To achieve a detailed estimation of the temperature gradients and local

stresses, the mesh is refined with small elements of 100 nm.

•For temperature calculation, the lens surfaces are considered to emit

radiation and the surrounding temperature is supposed to be constant.Considerations:

•X-rays (even when very penetrating up to the

cm range) deposit almost all their energy in

the first few microns (<10 µm) near inner

surface.

•Neutrons and gammas homogeneously

deliver their energy along practically the

whole lens volume.Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Steady-state operation

•When working in continuous mode, the average lens

temperature increases if the energy deposited during each pulse

is higher than that radiated by the lenses surface.

•Steady-state is reached when the deposited energy and the

radiated during one pulse are equal.

•HiPER prototype: 32.000 pulses

•HiPER demo: 25.000 pulses (~40 min- after the first shot)

•LIFE2: 18.000 pulses

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Steady-state operations (50 MJ)

Prototype: only neutrons, gammas

and X-rays

• Stresses lower than yield strength (48

MPa) → silica lenses can withstand

the radiation-induced mechanical

stresses.

• Thermal loads mainly due to X-rays

but too low to induce fatigue failure.

• In DEMO (>100 MJ) temperature limit

exceeded. Lens must be situated

further way!!!! (d>8m)

Garoz et al. Nucl. Fusion 53 (2013) 013010

Final lenses

Raquel González Arrabal IAEA 18-20 March 2015

• Power plant start up

• Focal length changes 4 cm from cold

to hot regimes.

• Pre-heating needed.

• The temperature profile induces

aberrations.

Garoz et al. Nucl. Fusion 53 (2013) 013010

Final lenses

Raquel González Arrabal IAEA 18-20 March 2015

Absorption at 3ω wavelength

(350nm):

Marshall et al. J. Non-Crystalline Solids. 212, 59 (1997)

ODC

245 nm

E’

213 nm

Neutron

Flux

γ-rays

DoseThermal

annealing

Atomistic damage: Color center formation

Radiation-induced defects can substantially modify the lens optical

properties. In particular the lens absorption.

Raquel González Arrabal IAEA 18-20 March 2015

109

1010

1011

1012

1013

1014

1015

0 1 2 3 4 5

Def

ect c

once

ntra

tion

(cm

-3)

Pulses

ODC

E’

10 Hz1 Hz

0.1 Hz

Color center evolution based on

Marshall´s model

g-dose is too low to promote

effective ODC-E´conversion

)(λLNσ=α(λ) ii

i

i∑2

2

1

1)

)(∆

λ)(λ+

=(λL

i

i

i

λ

with

,

with

Saturation in intensity value after

1000 pulses→ limits the lens

absorption

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Optical absorption

Remember: the lens optical transparency in the 350 nm region should be

as high as possible to minimize laser power loses.( )( )dλα=A −− exp1

5% is a kind of upper limit to efficiently achieve ignition

•The optical absorption at steady state operation for HiPER prototype and

is bellow 5%.

•At low temperatures A is quite high.

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

,

… again, during start up the lenses become

dark unless preheated

Garoz et al. Nucl. Fusion 53 (2013) 013010

Optical absorption

Raquel González Arrabal IAEA 18-20 March 2015

To operate under pre-commercial

power plant conditions (150 MJ

@ 10 Hz):

Smooth temperature only

possible by means of a heat

transfer fluid.

A.R. Páramo et al. Nucl. Fusion

54 (2014) 123019

Raquel González Arrabal IAEA 18-20 March 2015

• Ions must be mitigated

• To anneal out color centers high temperature is needed

• To avoid aberrations and start-up problems, a temperature control

system based on fluid flow is needed

• Pre-commercial conditions require to position the lenses at large

distance (16 m conservative)

Raquel González Arrabal IAEA 18-20 March 2015

Distance from the target centre (m)

Ion mitigation (not trivial)

B. Rus

Raquel González Arrabal IAEA 18-20 March 2015

LASNEX

J. Perkins

100

101

102

103

104

105

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

Au debris

12C debris

4He debris

3He debris

H debris

T debris

D debris

4He BP

3He BP

H BP

T BP

D BP

n BP

gamma BP

Ion e

nerg

y d

istr

ibution (

ions/k

eV

)

Energy (keV)

Low yield (154 MJ) direct drive

• Neutrons ~70%, Ions ~30%, X-rays ~1%

Raquel González Arrabal IAEA 18-20 March 2015

Partial mitigation of ions might be not enough

• Electronic sputtering

• Nano-crater

• Nano-track

• Severe modification of properties

• Defect formation

Raquel González Arrabal IAEA 18-20 March 2015

Swift ion-

induced

electronic

sputtering

might

erode the

lenses

A. Rivera et al. in preparation

Raquel González Arrabal IAEA 18-20 March 2015

Ion tracks

nano-tracks

Raquel González Arrabal IAEA 18-20 March 2015

In situ reflectance

Raquel González Arrabal IAEA 18-20 March 2015

In situ reflectance

5-6 mm

Ion beam ≈ 6x6 mm2Sample at ≈15º

2 mirrors

inside chamber

( ) ( )ti θn=θn sinsin 21

RTrR −== 1,2

Snell’s law

Fresnel

coefficients

Reflectance

Refractive

index

θi θi

1

2

θt

21

21

nn

nnrrr ps

+

−===

Olivares et al. in preparation

Raquel González Arrabal IAEA 18-20 March 2015Olivares et al. in preparation

Reflectance measurements

Raquel González Arrabal IAEA 18-20 March 2015

Reflectance measurements

400 500 600 700 800 900

0,035

0,040

0,045

0,050

1e14

2e14

3e14

1e13

Re

flecta

nce

Wavelength (nm)

Quartz - Br 5 MeV

at/cm2

0

3e13

silica

400 500 600 700 800 900

0,034

0,036

0,038

0,040

1 e14

2 e13

1e13

3e12

1e12

virgin

Re

fle

cta

nce

Wavelength (nm)

silica - Br 5 MeV at/cm2

Olivares et al. in preparation

Raquel González Arrabal IAEA 18-20 March 2015

• Ion irradiation strongly

affects the material

• Density change

• Refractive index

• Defects

• Network structure

• Electronic sputtering

(surface)

Rivera et al. under consideration PRL

Raquel González Arrabal IAEA 18-20 March 2015

0 5 10 15 20 25 300

2

4

6

8

10

Br-reflectance (< 0.1 MeV/amu)

Br-reflectance (0.1-0.5 MeV/amu)

F-reflectance (0.3 MeV/amu)

SAXS (0.1-1.0 MeV/amu) [*]

FTIR (4-6 MeV/amu) [*]

SAXS (5-11 MeV/amu) [*]

Tra

ck r

adiu

s,

R (

nm

)

Electronic stopping power, Se (keV/nm)

MD (a = 3.5 nm)

MD (a = 4.0 nm)

MD (a = 4.5 nm)

MD (a = 5.0 nm)

θi θi

1

2

θt

Vacuum

Sample

Raquel González Arrabal IAEA 18-20 March 2015

• The tracks can have detrimental effects on lenses

• Right now, assessing this point

• On the other hand, we can control the optical properties of

the materials with the induced nano-tracks

www.denim.upm.es

Raquel González Arrabal IAEA 18-20 March 2015

Steady-state operation

•We have to keep on working hard to:

•Develop more radiation resistant materials

•Understand the underlying mechanism in the

radiation-induced damage.

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015 www.denim.upm.es

Materials group at the IFN

Prof. José Manuel Perlado

Dra. Emma del Río

Dra. Raquel Gonzalez-Arrabal

Dr. Carlo Guerrero

Dra. Nuria Gordillo

Dr. Antonio Rivera

Dr. Ovidio Peña

David Cereceda

Miguel Panizo

Jose Antonio santiago

Gonzalo Valles

Alejandro Prada

Miguel Panizo-Laiz

Raquel González Arrabal IAEA 18-20 March 2015

He and vacancies

He by itself acts as nucleation site for vacancies in bulk

tungsten (in both polycrystal and nanocrystal)

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Polycrystal

Nanocrystal

Number of pulses

Re

tein

ed

He

fra

ctio

n

0.0 5.0x1014

1.0x1015

1.5x1015

Dose (cm-2)

Helium

0 20 40 60 80 100 120 140

0.00

0.04

0.08

0.12

0.16

0.20

Polycrystal

Nanocrystal

Polycrystal (no He)

Nanocrystal (no He)

Re

ma

inin

g v

aca

ncy fra

ctio

n

Number of pulses

0.0 5.0x1014

1.0x1015

1.5x1015

Dose (cm-2)

Vacancies

Raquel González Arrabal IAEA 18-20 March 2015

Radiation fluxes: HiPER

•The neutron flux and neutron and g-ray doses absorbed by the silica

lenses in HiPER are accurately calculated as a function of time with

MCNPX.

•The reactor geometry is designed with CATIA and converted with MCAM

into a valid geometrical input for MCNPX. Mean free path for calculation

are obtained from the ENDF-VII data base

•Final lenses are simultaneously subjected to neutron and gamma

radiation pulses.

Garoz et al. Nucl. Fusion 53 (2013) 013010

Raquel González Arrabal IAEA 18-20 March 2015

Coating morphology

•Sharp and flat coating/substrate interface → good adhesion

•Delamination was observed in none of the coatings after the scotch tape

test.

Raquel González Arrabal IAEA 18-20 March 2015

• Simulation box of 1300 x 50 x 50 nm3

• 10keV He irradiation

• Dose: 1013 cm-2 per pulse

• Simulations: polycrystal and nanocrystal

He (10 keV) irradiation

• 1 J·cm-2 pulses during 500 ns

• 1 s between consecutive pulses

• Base temperature of 773 K

V

I

He

Z

He

Y X

50 nm

13

00

nm

0.0 5.0x10-6

1.0x10-5

900

1200

1500 During He pulse

After He pulse

Te

mp

era

ture

(K

)

Time (s)

Tungsten temperature evolution

Renk et al. Fusion Science and Technology (2011)

Raquel González Arrabal IAEA 18-20 March 2015

Hot cylinder

Radius 3-5 nmThermal evolution

Radius 14.3 nm

Thermal bath, 300 K

Rescaled every 5 fs

Box with or without PBC, 30×30×14 nm3 ~8.5e5 atoms

Feuston-Garofalini potential

Code MDCASK 256-512 processors @CESVIMA (UPM)

Raquel González Arrabal IAEA 18-20 March 2015

005 ps

010 ps

100 ps

Rivera et al. under consideration PRL