Masters thesis final version - Chalmers Publication Library...

129
variationva Inventory reduction: an analysis on finished goods inventory focused on “Released To Warehouse” lead time Master of Science Thesis in the Master degree program Supply Chain Management DANIEL FORNANDER PHILIP LINDBERG Department of Technology Management and Economics Division of Logistics and Transportation CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden, 2013 Report No. E2013:077

Transcript of Masters thesis final version - Chalmers Publication Library...

Page 1: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

variationva                                  

Inventory   reduction:   an   analysis   on   finished   goods  inventory  focused  on  “Released  To  Warehouse”  lead-­‐time    Master  of  Science  Thesis  in  the  Master  degree  program  Supply  Chain  Management            DANIEL  FORNANDER  PHILIP  LINDBERG              Department  of  Technology  Management  and  Economics  Division  of  Logistics  and  Transportation  CHALMERS  UNIVERSITY  OF  TECHNOLOGY  Gothenburg,  Sweden,  2013  Report  No.  E2013:077        

Page 2: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

   

Page 3: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

Report  No.  E2013:077  

Inventory  reduction:  an  analysis  on  finished  goods  inventory  focused  on  “Released  To  Warehouse”  lead-­‐time  

DANIEL  FORNANDER  PHILIP  LINDBERG  

Department  of  Technology  Management  and  Economics  

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2013

Page 4: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

 

Inventory   reduction:   an   analysis   on   finished   goods  inventory  focused  on  “Released  To  Warehouse”  lead-­‐time    DANIEL  FORNANDER  PHILIP  LINDBERG      ©  Daniel  Fornander  and  Philip  Lindberg,  2013.      Department  of  Technology  Management  and  Economics  Division  of  Logistics  and  Transportation    CHALMERS  UNIVERSITY  OF  TECHNOLOGY    SE-­‐412  96  Göteborg  Sweden    Telephone  +46  (0)31-­‐772  1000      Report  No.  E2013:077    Department  of  Technology  Management  and  Economics  Chalmers  University  of  Technology  SE-­‐412  96  Gothenburg  Sweden  Telephone  +  46  (0)31-­‐772  1000              Printed  by  Chalmers  Reproservice  Gothenburg,  Sweden  2013

Page 5: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  I    

Abstract This  Master’s   thesis   is   a  part   of   the  SKF   cost   savings-­‐program  Finished  Product   Stock  Optimization,   and  more   specifically   to   reduce   the   level   of   finished   products   with   the  status   “Released   to   Warehouse”.   Through   a   pre-­‐study   of   the   targeted   warehouses   in  Tongeren,  Schweinfurt  and  Gothenburg,  the  biggest  improvement  potential  was  found  in  the  inbound  flow  in  Gothenburg.  Through  this,  the  focus-­‐area  became  the  warehouse  in  Gothenburg,  while   Tongeren   and   Schweinfurt   acted   as   inspiration   on   how  warehouse  operations  should  be  designed,  and  became  subjects  for  a  benchmark  study.      The   inbound   flow   in  Gothenburg  was  analyzed  by  applying   the   two  concepts   “Process  design”  and  “Capacity  matching”,  which  had  a  direct  impact  on  the  RTW  lead-­‐time.  Four  internal   factors   for  warehouse  performance  were   used   to   dissect   the   inbound   flow   in  detail   and   to   investigate   how   the   warehouse   operations   correlated   with   the   two  concepts   “Process   design”   and   “Capacity  matching”.   The   empirical   data   indicated   that  the   processes   in   the   inbound   flow   experienced   high   variations   in   performance   as   a  result   from   continuously   being   neglected   in   favor   of   the   outbound   flow.   This   was  confirmed   in   the   analysis,  where   three   factors   having   a   direct   negative   impact   on   the  RTW  lead-­‐time  was   found:   the   lack  of   information-­‐transparency  about  arriving   trucks,  the   coordination  between  processes  within   the  warehouse   and  how   the   standards   for  how  to  handle  goods  in  the  buffer  were  designed.    In  order  to  improve,  management  must  start  to  measure  the  inbound  flow  and  increase  information  transparency  between  personnel.  The  information  is  available,  but  the  right  people   are   not   informed,   which   impedes   coordination   and   planning,   leading   to   poor  performance.    Key   words:   Lead-­‐time   reduction,   process   design,   capacity   matching,   warehouse  performance,  flow  efficiency  

Page 6: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  II    

Authors remark This   report  was   conducted   in   close   collaboration  with   SKF.  Without   the   commitment  from  SKF  and  its  subsidiaries,  it  would  have  been  impossible  to  execute  the  thesis.  The  project  was  initiated  in  January  2013  and  finished  in  June  the  same  year.    We   would   like   to   show   a   special   gratitude   to   key   personnel   involved   in   the   project,  which  provided  us  with   invaluable   input  and   information  about  how  the  thesis  should  be  written.    

• Christoph   Remmert   (Program  Manager,   Group   Business   Transformation   Office,  SKF)   –   our   supervisor   at   SKF,  whom  guided  us   through   the   thesis   on   a  weekly  basis.  Without  your   commitment  and   support,  we  would  not  have  been  able   to  make  the  suggested  improvements  nor  finalize  the  report  

• Mats   Johansson  (Professor   in  Logistics  at  Chalmers  University  of  Technology)  –  our   supervisor   at   Chalmers,   providing   us   with   invaluable   input   about   how   to  design  the  thesis  and  made  sure  that  we  always  focused  on  the  right  things  

• Zoran  Jankulovski  (Six  Sigma  Black  Belt,  SKF  Logistics  Services  Sweden)  –  for  the  many   meetings   we   had,   discussing   how   to   interpret   the   empirical   results   and  information   about   earlier   improvement   projects   executed   in   the   Gothenburg  warehouse  

• Jens   Törnquist   (Director,   Group   Business   Tranformation   Office,   SKF)   –   For  providing   us   with   the   opportunity   to   conduct   our   thesis   at   SKF   in   Sweden,  Germany  and  Belgium,  as  well  as  the  valuable   input  regarding  the  thesis  design  and  suggested  focus  areas  

 We  would   like   to   thank   the   following   people   at   SKF   Belgium   and   SKF   Germany,  who  supported  us  during  the  visits.  Your  knowledge  is  invaluable  to  this  report.  

• Joris  Leys  (Warehouse  Operations  Manager,  SKF  Logistics  Services  Belgium)  –  for  providing  us  with  information  about  the  operations  in  Tongeren    

• Andreas   Wartha   (Moving   goods   –   process   and   optimization,   SKF   Logistics  Services  Germany)  –   for  providing  us  with   information  about   the  operations   in  Schweinfurt  

 Besides   these   people,   the   following   employees   must   be   mentioned,   as   they   had   an  impact  in  how  the  thesis  was  designed.  

• Joakim  Broberg  (Warehousing  supervisor,  SKF  Logistics  Services  Sweden)    • Henrik  Frische  (General  Manager,  SKF  Logistics  Services  Sweden)    • Filip  Larsed  (Business  Analyst,  Group  Business  Transformation  Office,  SKF)  • Tuvstarr   Dahlström   (Business   Analyst,   Group   Business   Transformation   Office,  

SKF)  • Lisbeth  Evertsson  (Team-­‐leader,  SKF  Logistics  Services  Sweden)  • Ismar  Tabakovic  (Team-­‐leader,  SKF  Logistics  Services  Sweden)  • Martin  Ferm  (Team-­‐leader,  SKF  Logistics  Services  Sweden)  • Fikret  Suceska  (Team-­‐leader,  SKF  Logistics  Services  Sweden)  

   

Page 7: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  III    

 

Table of contents Abstract  ...................................................................................................................................................................  I  Authors  remark  ...................................................................................................................................................  II  Table  of  contents  ..............................................................................................................................................  III  List  of  figures  ......................................................................................................................................................  VI  List  of  tables  .......................................................................................................................................................  VII  Abbreviations  ..................................................................................................................................................  VIII  1   Introduction  ..................................................................................................................................................  1  1.1   Background  ...........................................................................................................................................  1  1.2   SKF  ............................................................................................................................................................  2  1.2.1   The  3B-­‐program  and  the  Master’s  thesis  contribution  to  SKF  ..............................  2  1.2.2   Definition  of  Released  To  Warehouse  ..............................................................................  3  

1.3   Purpose  ...................................................................................................................................................  3  1.4   Scope  ........................................................................................................................................................  4  1.4.1   Pre-­‐study  .......................................................................................................................................  4  1.4.2   Scope  of  the  study  in  Gothenburg  ......................................................................................  5  

1.5   Outline  .....................................................................................................................................................  5  2   Frame  of  reference  .....................................................................................................................................  7  2.1   The  relation  between  lead-­‐time,  tied-­‐up  capital  and  flow  efficiency  ..........................  7  2.1.1   Lead-­‐time  ......................................................................................................................................  7  2.1.2   Flow  efficiency  ............................................................................................................................  8  

2.2   Process  design  .....................................................................................................................................  8  2.2.1   Division  of  processes  .............................................................................................................  10  

2.3   Capacity  planning  .............................................................................................................................  10  2.4   Success  factors  for  a  warehouse  ................................................................................................  12  2.4.1   Warehouse  layout  ...................................................................................................................  13  2.4.2   Materials  handling  activities  ..............................................................................................  14  2.4.3   Resources  ....................................................................................................................................  16  2.4.4   Tracking  and  control  systems  ............................................................................................  18  

2.5   Model  for  analysis  ............................................................................................................................  19  3   Methodology  ...............................................................................................................................................  21  3.1   Research  approach  ..........................................................................................................................  21  3.2   Research  process  ..............................................................................................................................  21  3.2.1   Preparations  and  initial  investigations  ..........................................................................  22  3.2.2   Process  mapping  ......................................................................................................................  22  3.2.3   Method  for  analysis  ................................................................................................................  23  3.2.4   Data  collection  ..........................................................................................................................  23  3.2.5   Recommendations  ..................................................................................................................  29  

3.3   Validity  and  reliability  ....................................................................................................................  29  4   Empirical  findings  ....................................................................................................................................  31  

Page 8: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  IV    

4.1   Gothenburg  .........................................................................................................................................  31  4.1.1   Warehouse  layout  ...................................................................................................................  31  4.1.2   Materials  handling  activities  ..............................................................................................  36  4.1.3   Resources  ....................................................................................................................................  44  

4.2   Schweinfurt  .........................................................................................................................................  49  4.2.1   Warehouse  layout  ...................................................................................................................  49  4.2.2   Materials  Handling  Activities  .............................................................................................  52  4.2.3   Resources  ....................................................................................................................................  54  4.2.4   Equipment  ..................................................................................................................................  56  

4.3   Tongeren  ..............................................................................................................................................  56  4.3.1   Warehouse  layout  ...................................................................................................................  56  4.3.2   Materials  handling  activities  ..............................................................................................  57  4.3.3   Resources  ....................................................................................................................................  59  4.3.4   Equipment  ..................................................................................................................................  61  

4.4   Tracking  and  control  systems  .....................................................................................................  62  4.4.1   IT-­‐systems  ..................................................................................................................................  62  

5   Analysis  and  results  .................................................................................................................................  65  5.1   Process  design  ...................................................................................................................................  65  5.1.1   Goods  Receiving  .......................................................................................................................  65  5.1.2   Handling  GSPs  in  buffer  ........................................................................................................  66  5.1.3   Put  away  ......................................................................................................................................  70  5.1.4   Taking  on  a  holistic  view  ......................................................................................................  73  

5.2   Capacity  matching  ............................................................................................................................  74  5.2.1   Matching  inflow  with  resources  ........................................................................................  74  5.2.2   Coordination  between  work  areas  ...................................................................................  76  5.2.3   Resource  distribution  ............................................................................................................  78  

5.3   Measuring  and  follow  up  inbound  performance  ................................................................  80  5.3.1   Suggested  KPIs  to  increase  transparency  and  assess  performance  ..................  81  

5.4   Answer  to  research  question  ......................................................................................................  82  5.4.1   Research  question  1  ...............................................................................................................  82  5.4.2   Research  question  2  ...............................................................................................................  83  5.4.3   Research  question  3  ...............................................................................................................  83  

6   Recommendations  ....................................................................................................................................  85  6.1   Goods  receiving  .................................................................................................................................  85  6.2   Buffer  .....................................................................................................................................................  86  6.3   Put  away  ...............................................................................................................................................  86  

7   Discussion  ....................................................................................................................................................  89  7.1   Process  design  ...................................................................................................................................  89  7.1.1   How  do  the  results  contribute  to  reducing  RTW  lead-­‐time?  ................................  89  7.1.2   Implications  from  the  result  ...............................................................................................  89  

7.2   Capacity  matching  ............................................................................................................................  91  7.2.1   How  do  the  results  contribute  to  reducing  RTW  lead-­‐time?  ................................  91  7.2.2   Implications  from  the  result  ...............................................................................................  91  

Page 9: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  V    

7.3   Limitations  ..........................................................................................................................................  92  7.4   Can  Schweinfurt  and  Tongeren  reap  any  benefits  from  Gothenburg?  .....................  92  7.5   Area  of  further  investigation  .......................................................................................................  93  

8   Conclusion  ...................................................................................................................................................  94  9   References  ...................................................................................................................................................  96  Appendix  A  –  Interview  guides  .....................................................................................................................  I  Appendix  B  –  Layout  Gothenburg  floor-­‐1  ................................................................................................  V  Appendix  C  –  Layout  Gothenburg  floor-­‐2  ..............................................................................................  VI  Appendix  D  –  Layout  Gothenburg  floor-­‐3  .............................................................................................  VII  Appendix  E  –  Layout  Gothenburg  floor-­‐4  ...........................................................................................  VIII  Appendix  F  –  Process  map  of  inbound  flow  in  Gothenburg  ............................................................  IX  Appendix  G  –  Schweinfurt  ..............................................................................................................................  X  Appendix  H  –  Tongeren  MWH  .....................................................................................................................  XI  Appendix  I  –  Tongeren  WEC  1  ...................................................................................................................  XII  Appendix  J  –  Productivity  measurements  ..........................................................................................  XIII  Appendix  K  –  Inbound  distribution  of  GSPs  to  floor-­‐1  ...................................................................  XIV  Appendix  L  –  Number  of  GSPs  in  buffer  ................................................................................................  XV  Appendix  M  –  Available  capacity  before  and  after  1st  April  .........................................................  XVI  Appendix  N  –  Overdue  GSPs  for  Factory-­‐D,  SKF  Poznan  and  SKF  Mekan  ...........................  XVII  Appendix  P  –  Definitions  .........................................................................................................................  XVIII  

Page 10: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  VI    

 

List  of  figures  Figure  1  -­‐  The  drivers  of  shareholder  value  (Christopher,  2011,  p.  63)  ....................................  1  Figure  2  -­‐  Boundaries  for  RTW  lead-­‐time  ................................................................................................  3  Figure  3  -­‐  Structure  of  a  process  (adapted  from  Bergman  and  Klefsjö,  2007,  p.25)  ............  9  Figure  4  -­‐  Network  of  interrelated  activities  (adapted  from  Bergman  and  Klefsjö,  2007,  

p.  24)  ..............................................................................................................................................................  9  Figure   5   –   Deep   stacking,   high-­‐rack   storage   and   shelf   box   stacking   (Adapted   from  

Lumsden  2007,  p.  369-­‐371)  ...............................................................................................................  14  Figure  6  -­‐  Virtual  road  (Alvgren  et  al.  2007)  ........................................................................................  19  Figure  7  -­‐  Model  for  analysis  .......................................................................................................................  20  Figure  8  -­‐  Systematic  combining  (Dubois  and  Gadde,  2002)  ........................................................  21  Figure  9  -­‐  Research  process  .........................................................................................................................  22  Figure  10  -­‐  Amount  of  GSPs  that  arrive  to  the  warehouse  every  hour  .....................................  33  Figure  11  -­‐  GSPs  located  in  buffer  19/3  -­‐  5/4  ......................................................................................  35  Figure  12  -­‐  GSPs  located  inside  the  buffer  2/5  -­‐  24/5  .....................................................................  35  Figure  13  -­‐  The  RTW  lead-­‐time  for  Factory-­‐D  .....................................................................................  38  Figure  14  –  RTW  lead-­‐time  for  SKF  Mekan  ...........................................................................................  39  Figure  15  -­‐  RTW  lead-­‐time  for  SKF  Poznan  ..........................................................................................  40  Figure  16  -­‐  Throughput-­‐time  for  a  GSP  from  the  conveyer  belt  on  floor-­‐1  to  storage  ......  41  Figure  17  -­‐  Amount  of  GSPs,  from  Factory-­‐D,  SKF  Poznan  and  SKF  Mekan,  the  warehouse  

put  in  storage  every  hour  ....................................................................................................................  42  Figure  18  -­‐  Amount  of  assignments  conducted  on  average  every  hour  ...................................  43  Figure  19  -­‐  Maximum  supply  of  capacity  with  100%  attendance  ...............................................  46  Figure  20  -­‐  The  current  put  away  frequency  compared  to  the  required  .................................  72  Figure  21  -­‐  Amount  of  conducted  work  compared  to  the  number  of  operators  available  

for  work  ......................................................................................................................................................  77  Figure  22  -­‐  Implementation-­‐matrix  .........................................................................................................  88    

Page 11: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  VII    

List  of  tables  Table  1  -­‐  Summary  of  RTW  lead-­‐time  .......................................................................................................  4  Table  2  -­‐  Methods  for  short-­‐term  increase  in  capacity  ....................................................................  12  Table  3  -­‐  List  of  people  subject  for  interviews  ....................................................................................  25  Table  4  -­‐  Collection  period  and  number  of  samples  for  inbound  Gothenburg  ......................  26  Table  5  -­‐  Collection  period  and  number  of  samples  for  outbound  Gothenburg  ...................  27  Table   6   -­‐   Collection   period   and   number   of   samples   for   inbound   and   outbound  

Schweinfurt  ...............................................................................................................................................  28  Table  7  -­‐  Collection  period  and  number  of  samples  for  inbound  and  outbound  Tongeren

 ........................................................................................................................................................................  28  Table  8  -­‐  Collection  period  and  number  of  samples  for  put  away  frequency  ........................  28  Table  9  -­‐  Collection  period  and  number  of  samples  for  frequency  in  picking  assignments

 ........................................................................................................................................................................  28  Table  10  -­‐  Distribution  of  volume  between  the  three  flows  ..........................................................  33  Table  11  -­‐  Summary  of  RTW  lead-­‐time  for  Factory-­‐D  ......................................................................  38  Table  12  -­‐  Summary  of  RTW  lead-­‐time  for  SKF  Mekan  ...................................................................  40  Table  13  -­‐  Summary  of  RTW  lead-­‐time  for  SKF  Poznan  ..................................................................  40  Table  14  -­‐  Summary  of  throughput-­‐time  from  the  conveyer  belt  on  floor-­‐1  to  storage  ...  41  Table  15  -­‐  Summary  of  outbound  RTW  lead-­‐time  .............................................................................  44  Table  16  -­‐  Summary  of  the  shifts  in  Gothenburg  ................................................................................  45  Table  17  -­‐  Summary  of  the  two  shifts  in  Schweinfurt  ......................................................................  55  Table  18  -­‐  Summary  of  the  three  shifts  in  Tongeren  ........................................................................  60  Table  19  -­‐  Summary  of  the  internal  planned  RTW  lead-­‐times  .....................................................  64  Table  20  -­‐  Unnecessary  tied-­‐up  capital  ..................................................................................................  68  Table  21  -­‐  Inbound  volume  vs.  put  away  frequency  .........................................................................  71  Table  22  -­‐  Desired  increase  in  productivity  or  operators  ..............................................................  72    

Page 12: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  VIII    

Abbreviations  ATP  –  Available  To  Promise  DOH  –  Dispatch  Order  Handling  EDC  –  European  Distribution  Center  EDI  –  Electronic  Data  Interchange  FIFO  –  First  In  First  Out  GIT  –  Goods  In  Transit  GSP  –  Goods  Standardized  Pallet  ICSS  –  International  Customer  Service  System  LIFO  –  Last  In  First  Out  MWH  –  Main  Warehouse  MSO  –  Manufacturing  and  Supply  Optimization  FPSO  –  Finished  Product  Stock  Optimization  RTW  –  Released  To  Warehouse    SKU  –  Stock  Keeping  unit  SLS  –  SKF  Logistics  Services  WASS  –  Warehouse  Administration  System  WEC  1  –  Warehouse  External  Customers  1  WEC  2  –  Warehouse  External  Customers  2    See  appendix  P   for  definitions  on:  assignment,   available  capacity,  productivity,  one   in-­‐one  out,  put  away-­‐frequency,  efficiency,  effectiveness  and  the  size  of  a  GSP.  

 

Page 13: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  1  

1 Introduction  This  chapter  provides  an  introduction  to  the  Master’s  thesis  by  presenting  the  background  to  the  project,  the  purpose  and  the  scope.  The  chapter  ends  with  an  outline  about  what  the  thesis  will  include.  

1.1 Background  The   business   climate   has   changed   rapidly   over   the   past   twenty   years   due   to  sophisticated   Information   Technology-­‐systems   and   a   trend   towards   globalization.  Companies   today  are  working  on  a  global   arena  with  access   to   customer   segments  all  over   the  world.  This  has  resulted   in   increased  rivalry,  making  competition  harder  and  more   challenging   to  handle.  With   the   global   perspective   and   the  opportunity   to   reach  customers   from   all   over   the   world   the   importance   of   managing   the   supply   chain  effectively   to   fulfill   customers’   demand  becomes   evident   to   stay   competitive.   This   has  led  to  a  shift  in  modern  business  management:  individual  businesses  do  not  compete  as  single  entities  but  rather  as  supply  chains  versus  supply  chains.  (Christopher,  2000)    To  stay  competitive,   it   is  critical   to  manage  the  five  drivers  of  shareholder  value,  all  of  which  are  directly  and  indirectly  affected  by  supply  chain  and  logistics  strategy  (Figure  1)   (Christopher,   2011).   The   focal   point   of   this  Master’s   thesis   is   to   reduce   lead-­‐times,  which  is  directly  connected  to  “Working  capital  efficiency”.  Working  capital  is  comprised  of  different   components,  where  one  of   the  most   important   is   the  amount  of   inventory  and  how  these  levels  can  be  reduced.  The  better  a  company  manages  its  working  capital;  the  less  it  needs  to  borrow  (Scott  and  Brigham,  2008).    

Figure  1  -­‐  The  drivers  of  shareholder  value  (Christopher,  2011,  p.  63)    Complex  distribution  networks  have  a  tendency  of  generating  more  inventories,  which  in   turn   affects   the   amount   of   tied-­‐up   capital.   By   reducing   complexity,   and   increasing  transparency,   will   help   to   assess   the   flow-­‐performance.   When   understanding   which  processes  are  prone  with  poor  performance,  it  will  be  possible  to  make  improvements,  

Shareholder  value  

Revenue  growth  

Tax  minimization  

Fixed  capital  efpiciency  

Operating  cost  reduction  

Working  capital  efpiciency  

Page 14: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  2  

decreasing   the   amount   of  working   capital   and   faster  move  products   to   the   customers  (Christopher,  2000).    

1.2 SKF  Svenska  Kullagerfabriken  AB  is  a  leading  global  supplier  of  bearings  and  bearing  related  products.   They   are   represented   in   more   than   130   countries   and   have   about   15000  distributors   worldwide.   Their   operations   are   supported   by   their   internal   logistics  provider;  SKF  Logistics  Services  (SLS)    SLS  provide  SKF  with  warehouses  and  transportation  services.  Their  network  includes  three   different   kinds   of  warehouses:   factory  warehouses   regional   distribution   centers  and  local  warehouses.  The  operations  within  the  warehouses  look  very  different,  where  the   factory   warehouses   has   larger   volumes   per   order   but   fewer   order-­‐lines   while  distribution  centers  have  lower  volumes  per  order  but  more  order-­‐lines.    A   part   of   SKF’s   product   assortment   is   produced   to   stock   in   order   to   secure   high  availability  for  customers.  This  means  that  there  is  a  large  number  of  products  that  are  located   within   the   SLS   distribution   network,   either   that   is   in   stock   or   on   the   move  between  warehouses.  SKF  has  initiated  an  inventory  reduction  program  named  “3B”,  in  order  to   improve  the  customer  service-­‐level  and  reduce  unnecessary  capital  tied  up  in  inventory.  

1.2.1 The  3B-­‐program  and  the  Master’s  thesis  contribution  to  SKF  The  3B-­‐program  was  launched  in  September  2011  targeting  improved  customer  service  and   inventory   reduction  with   a   purpose   of  more   effective  working   capital   utilization.  The   end-­‐effect   will   enable   new   investments   and   acquisitions,   through   anticipated  savings  of  3  Billion  SEK  until   2015.  To   reach   these  goals   the  program  has   established  both   short-­‐term   and   long-­‐term   activities   for   systematic   improvements.   In   the   area   of  inventory   reduction   there   are   two   main   initiatives:   The   Manufacturing   and   Supply  Optimization-­‐program   (MSO)   and   the   Finished   Product   Stock   Optimization-­‐program  (FPSO).      The  FPSO-­‐program,  to  which  this  Master’s  thesis  is  connected,  aims  at  optimizing  stock  levels  across  the  entire  SKF  distribution  network  using  a  multi-­‐echelon  approach.  This  means   to   optimize   the   finished   product   stock   from   a   global   perspective,   hence   avoid  sub-­‐optimization.  FPSO  was  initiated  to  enable  SKF  to  serve  customers  more  reliably  on  a  pre-­‐determined  service-­‐level  at  optimal  inventory  cost.    This   Master’s   thesis   is   a   part   of   the   inventory   reduction   project   within   the   FPSO-­‐program.   The   objective   is   to   analyze   the   product   flows   with   the   status   “Released   to  Warehouse”  (RTW)  and  investigate  how  the  volume  can  be  decreased  through  lead-­‐time  reductions.  

Page 15: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  3  

1.2.2 Definition  of  Released  To  Warehouse  Within   SLS   distribution   network,   products   are   categorized   differently   depending   on  where   in   the   flow   they   are   located:   production,   storage,   transportation   etc.   The  categorization  can  be  seen  as  an  identity  to  know  where  the  product  is  located  and  who  has  the  ownership  of  that  particular  product.      RTW   is   a   status   of   finished   products   that   they   receive  when   they   are   finished   in   the  production  cell.  Responsibility   for   the  Goods  Standardized  Pallet   (GSP)   is   then  handed  over   to   SLS,   although   it   is   still   located   inside   the   factory.   The   GSP-­‐status   shifts   to   “in  stock”   when   put   in   storage   inside   the   warehouse;   hence   it   is   not   identified   as   RTW  anymore.  When  the  product  is  picked  from  storage  it  becomes  RTW  once  again  and  has  this   status   until   it   is   put   on   an   outbound   transport,   from   the   warehouse   to   its   next  destination.   This   process   is   then   iterated   if   the   goods   are   transported   to   additional  warehouses.  When  the  goods  are  shipped  from  a  warehouse,  it  receives  the  tag  “Goods  in   transit”   (GIT),   and   has   this   tag   until   it   arrives   at   the   next   warehouse/customer,  concluding   that   there   are   three   major   finished   product   statuses   in   the   flow:   “RTW”,  “GIT”  and  “In  stock”.    

 Figure  2  -­‐  Boundaries  for  RTW  lead-­‐time  

 The   definition   of   RTW   changes   depending   on   what   standpoint   the   viewer   takes.   The  lead-­‐time  is  not  identical  if  the  viewer  examines  RTW  lead-­‐time  from  a  system  point-­‐of-­‐view  compared  to  the  physical  point-­‐of-­‐view  (where  the  product  is  physically  located).  The  definition  that  will  be  used  throughout  this  thesis  is:      “A  finished  product  is  classified  as  RTW  whenever  it  is  either  inside  a  warehouse  but  not  in  storage,  or  in  a  production  facility  ready  to  be  sent  to  a  warehouse”.  

1.3 Purpose    The  purpose   of   this   thesis   is   to   assist   SKF   in   their   effort   to   reduce   inventory   through  analyzing   the   lead-­‐time   related   to   finished   goods   with   the   status   RTW   within   the  warehouses  in  Gothenburg,  Schweinfurt  and  Tongeren.      In  order  to  decrease  the  RTW  lead-­‐time  it  is  crucial  to  identify  the  most  time-­‐consuming  and  inefficient  processes  within  the  warehouse  and  which  activities  and  standards  that  

 

 

                 

Factory  warehouse

Regional  warehouse

Local  warehouse

         

GIT  

RTW

Page 16: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  4  

causes  the  waste.  The  investigation  will  start  with  an  open  perspective  and  examine  the  RTW  lead-­‐time  for  all  three  warehouses.  Each  step  of  the  internal  flow  will  therefore  be  investigated  on  a  general   level   to  see  where   the  bottlenecks  are   located  and  how  they  affect   the   other   processes   in   the   flow.   A   deeper   analysis  was   then   carried   out   in   one  focus  area,  where  the  greatest  potentials  for  improvements  were.    With  respect  to  the  above  purpose,  the  thesis  will  answer  the  three  following  questions:    

1. Which   routines,   standards   and   activities   within   the   warehouses   increase   the  RTW  lead-­‐time  when  they  are  not  designed  to  fit  the  flow,  and  does  the  structural  warehouse  layout  influence  the  performance?  

 2. What   routines,   standards   and   activities   can   be   changed   to   decrease   the   RTW  

lead-­‐time?    

3. Could   these  solutions  reduce   the  RTW  lead-­‐time   for   the  other   two  warehouses,  which  has  not  been  in  focus?  

1.4 Scope  The  thesis  focus  on  three  nodes  in  SLS’s  distribution  network.  The  warehouses  of  focus  are   the   international   factory   warehouse   in   Gothenburg   (Sweden),   the   international  factory   warehouse   in   Schweinfurt   (Germany)   and   the   regional   distribution   center   in  Tongeren   (Belgium).   The   warehouses   were   chosen   due   to   their   strategic   importance  within  SLS  operations  in  Europe.  

1.4.1 Pre-­‐study  An  initial  study  was  conducted  to  determine  what  warehouse  had  the  greatest  potentials  for   improvements  by  examining   the  RTW   lead-­‐time   for   each  of   the   three  warehouses.  See  chapter  3.2.1  for  a  detailed  explanation  of  how  the  pre-­‐study  was  executed.      The  study  showed  that  the  greatest  improvement  potential  for  reducing  RTW  lead-­‐time  was  found  in  the  inbound  flow  of  the  international  warehouse  in  Gothenburg  (Table  1).  The  major  focus  of  this  Master’s  thesis  will  therefore  be  to  investigate  the  inbound  flow  to   understand  what   factors   has   a   significant   impact   on   the  RTW   lead-­‐time.   The   other  two   warehouses   will   still   be   subject   for   a   benchmark   study   to   establish   what   makes  them   more   efficient   and   if   there   are   opportunities   to   use   their   success   factors   in  Gothenburg.    

Table  1  -­‐  Summary  of  RTW  lead-­‐time     RTW  inbound  lead-­‐time   RTW  outbound  lead-­‐time  Gothenburg   40-­‐50  hours   15  hours  Schweinfurt   <2  hours   15-­‐16  hours  Tongeren   <2  hours   6-­‐7  hours    

Page 17: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  5  

1.4.2 Scope  of  the  study  in  Gothenburg  The  design  of  the  warehouse  in  Gothenburg  is  unique  in  the  sense  that  it  is  built  in  five  floors,  as  a  result  both  the  inbound  and  outbound  operations  share  the  same  resources.  To  understand  what   routines,   standards   and  activities   that   impact   the  RTW   lead-­‐time  for  the  inbound  flow,  the  outbound  flow  will  also  be  considered  and  analyzed  in  order  to  determine  how  it  affects  the  inbound  operations.    There  is  a  high  degree  of  complexity  in  the  warehouse  due  to  the  physical  structure  of  the  building  and  types  of  activities  that  are  carried  out  in  the  building.  The  investigation  will   not   focus   on   assessing   all   warehouse   storage   locations,   but   instead   focus   on  assessing  the  performance  on  each  floor.    To  make   a   solid   analysis   of   the   inbound   flow  and   reduce   the   complexity   to   a   suitable  level,  only   the   three   largest   flows  will  be  subject   for   the  analysis.  The   three   flows  are:  SKF   Poznan   (Poznan,   Poland),   SKF  Mekan   (Katrineholm,   Sweden)   and   internal   goods  from  Factory-­‐D  (Gothenburg,  Sweden),  together  comprising  of  80%  of  the  total  inbound  volume.  These  flows  were  chosen  to  make  sure  that  the  suggested  improvements  were  feasible  to  as  many  products  as  possible  being  inbound  in  Gothenburg.  

1.5 Outline  Frame   of   reference   –   The   frame   of   reference   will   present   the   findings   from   the  literature  study.  The  chapter  starts  by  presenting   the   link  between   lead-­‐time  and   flow  efficiency.  Within  flow  efficiency  two  concepts  are  presented  that  has  a  direct  impact  on  the  lead-­‐time.  Following  the  two  concepts,  four  key  performance  factors  for  warehouse  operations   are   presented.   The   chapter   ends  with   a  model   for   analyzing   the   empirical  findings.      Methodology  –  This  chapter  will  present  the  research  method  and  the  five  steps  of  the  research  process  that  was  used   in  order  to  conduct   the  study.  This  section  will  also   in  depth  describe  how  the  different  types  of  data  were  collected  and  the  validity  of  it.    Empirical   findings  –  This  chapter  will  present   the  empirical   findings  by  sorting  them  according   to   the   four   success   factors   presented   in   the   frame   of   reference.   The  benchmark  study  conducted  in  Schweinfurt  and  Tongeren  will  also  be  presented  here  in  the  same  way  as  the  data  collected  in  Gothenburg.    Analysis   and   results   –  This  chapter  will  present   the  analysis   that   is   the  basis   for   the  discussion   and   recommendations.  The   chapter   is   divided,   according   to   the  model   that  was  presented   in   the   frame  of   reference,   into   two  main  sections.  The   first   section  will  analyze  the  flow  with  regard  to  the  process  design  and  the  second  section  in  regard  to  how  well  the  supply  of  capacity  is  matched  with  the  workload.  The  chapter  will  end  with  answering  the  research  questions  presented  in  chapter  1.3.    

Page 18: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  6  

Recommendations   –   This   chapter   will   present   the   recommendations   that   will   be  provided  to  SKF.    Discussion   –   This   chapter  will   present   the   discussion   of   the   results   identified   in   the  analysis  as  well  as  the  limitations  and  its  applicability  to  Schweinfurt  and  Tongeren.    Conclusion  –  This  chapter  will  present  a  concluding  remark  about  the  thesis,  taking  the  aim  and  the  purpose  into  account.    

Page 19: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  7  

2 Frame  of  reference  This  chapter  present  and  explore  previous  research  about  theories  relevant  to  the  purpose,  and  act  as  a  base  for  the  model  that  is  used  for  analyzing  the  empirical  data.  The  chapter  is  divided  into  five  sub-­‐chapters.  The  first  explores  the  concept  of  lead-­‐time  and  explain  how  it  is  linked  to  flow  efficiency.  The  second  and  third  sub-­‐chapters  break  down  the  lead-­‐time  in   two   different   concepts   that   have   a   direct   impact   on   the   lead-­‐time.   The   fourth  investigates   what   factors   impact   the   performance   of   a   warehouse   and   how   those   are  related  to  the   lead-­‐time.  Finally,   the   fifth  summarizes  the   frame  of  reference  and  present  the  model,  which  will  be  used  to  analyze  the  empirical  data.  

2.1 The   relation   between   lead-­‐time,   tied-­‐up   capital   and   flow  efficiency  

This   section   defines   lead-­‐time   and   explains   the   connection   to   tied-­‐up   capital   by  presenting  Little’s  Law.  The  connection  to  the  overall  efficiency  of  a  flow  is  also  linked  to  the  lead-­‐time  in  this  chapter.    

2.1.1 Lead-­‐time  Lead-­‐time  is  defined  as  “the  elapsed  time  from  an  internal  or  external  customer  places  an  order  until  it  is  delivered  to  its  designated  place”  (Farhani  et  al.,  2011).  The  time  it  takes  to  procure,  manufacture  and  distribute  goods  is  often  longer  than  the  time  a  customer  is  willing  to  wait,  therefore  there  is  a  discrepancy  between  the  actual  throughput-­‐time  and  the  customers  expectations.   It   is  therefore  necessary  to  have  a  certain   level  of  work  in  progress   (WIP)   and   finished   goods   to   secure   delivery  within   the   expected   timeframe  (Baker  and  Canessa,  2007).    The  importance  of  time  has  increased  over  the  past  years  due  to  larger  market  volatility,  bigger   customer   bases   and   a   need   for   availability   (Leitch,   2001).   This   has   led   to  increased   coordination   complexity   across   the   entire   supply   chain   as   well   as   in   each  node,  which  has  amplified  the  need  for  more  timely  coordinated  activities.  This   is  also  the   case   at   SKF,   as   top   management   believes   that   there   are   possibilities   of   cost-­‐reductions   through   better-­‐coordinated   activities   in   the   flow.   Better   coordination   will  lead  to  better  understanding  of  the  actual  lead-­‐time,  which  in  turn  will  make  it  easier  to  meet  customer  expectations.      In  order  to  measure  the  internal  processes,  a  narrower  concept   is  needed,  as  the  lead-­‐time   is   related   to   the   overall   waiting   time.   Noted   in   the   beginning   of   this   thesis,   it  becomes  necessary  to   investigate  the  supply  chain   is  detail.  Therefore  the  throughput-­‐time  will   be   used   as   a  measurement   for   the   internal   lead-­‐time.   The   throughput-­‐time,  which   is   closely   related   to   the  RTW   lead-­‐time,   is   defined   as:   “the  point   from  when  the  product   is   allocated  until   the  product   is   delivered   to   the   customer”.   Christopher   (2011)  describes  the  throughput-­‐time  for  a  system  as  the  combined  times  of:  

• Planning  –  order  processing,  source  material,  production  planning  

Page 20: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  8  

• Material  handling  –  supplier  lead-­‐time,  receive  and  inspect  goods  • Assembly  –  process  and  assembly  material,  time  spent  in  buffers  • Distribution  –  transportation,  prepare  goods  for  final  customer  

 There   is   a   strong   connection   between   the   throughput   time   and   tied-­‐up   capital.   This  means   that   the   amount   of   goods   inside   a   system   is   closely   related   to   the   throughput-­‐time.  According  to  Little’s  Law  (Little,  2011):  “The  average  number  of  items  in  a  queuing  system   (L),   equals   the   average   arrival   rate   of   items   to   the   system   (λ)  multiplied   by   the  average  waiting  time  (throughput-­‐time)  of  an  item  in  the  system  (W)”.    

! = ! ∗!    The  length  of  a  physical  flow  determines  the  amount  of  goods  present  inside,  which  then  increases  the  tied-­‐up  capital.  The  tied-­‐up  capital  can  be  reduced  either  by  reducing  the  length  of  the  flow  or  increasing  the  speed.    

2.1.2 Flow  efficiency  The   throughput-­‐time   has   a   direct   correlation   to   the   efficiency   of   the   system.   The  capacity  is  constrained  by  the  bottleneck,  which  will  determine  the  throughput-­‐time,  as  it   is  determining  the  speed  of  the  system  (Leitch,  2001).     It  results   in  situations  where  there  could  be  a  lack  of  capacity  to  handle  outgoing  orders  or  incoming  goods  in  time  if  not  handled  correctly.  This  will  lead  to  further  stress  on  the  system  and  put  tension  on  other  processes  in  the  flow,  which  are  connected  to  the  bottleneck,  that  otherwise  would  not  experience  any  stress.  Capacity   is  therefore  a  key  factor,  having  a  direct   impact  on  the   throughput-­‐time   and   must   be   carefully   planned   in   order   to   match   supply   and  demand   of   capacity   (Leitch,   2001).   By   assessing   how   capacity   is   planned   in   the  warehouse   in   Gothenburg,   will   make   it   easier   to   understand   if   and   where   there   is   a  mismatch  between  supply  and  demand  for  capacity.      Efficiency   in   a   flow   can   however   also   be   reached   by   either   merging   or   eliminating  processes   in   the   flow   or   the   activities   connecting   them.   Materials   handling   and  transportation  activities  are  needed  in  order  to  bridge  the  discrepancy  in  both  time  and  place,  which   occur  when   the  processes   cannot   take  place  directly   after   each   other.     A  flow  with  more  sub-­‐processes  is  therefore  less  effective  than  a  flow  with  few  processes.  Redesigning   and   merging   two   sub-­‐processes   can   result   in   reduced   throughput-­‐times  and  the  materials  handling  activities  connecting  them  can  be  eliminated  (Johansson  and  Öjmertz,   1996).   The   two   concepts:   process   design   and   capacity   planning   will   be  elaborated  in  greater  detail  in  the  following  two  chapters.  

2.2 Process  design  Presented  in  chapter  2.1.2,  there  is  a  connection  between  the  design  of  a  process  and  the  throughput-­‐time.  This  chapter  presents  the  definition  of  a  process  and  in  greater  depth  illustrate  the  connection  between  a  process  and  the  throughput-­‐time.    

Page 21: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  9  

The   aim  of   a   process   is   to   fulfill   its   customers  demand  by  using   a  minimal   amount   of  necessary  resources.  The  process  must  therefore  be  robust  enough  to  handle  variations  and  allow  day-­‐to-­‐day  operations  to  be  carried  out  in  a  standardized  and  efficient  way.  A  process  is  defined  as:  “all  the  activities  performed  to  transform  an  input  to  a  system  into  an  output  of   the   system”   (Johansson   and   Öjmertz,   1996).   Every   process  must   have   an  input  in  form  of:  equipment,  labor  or  material  with  an  output  such  as  information,  goods  or   services.   However,   one   can   also   state   that   the   input   to   a   process   consists   of   six  elements:  Machine,  Method,  Material,  Mother  Nature,  Man   and  Measurements   (Wei   et  al.,  2006).  

 Figure  3  -­‐  Structure  of  a  process  (adapted  from  Bergman  and  Klefsjö,  2007,  p.25)  

 According  to  Bergman  and  Klefsjö  (2007),  there  are  three  different  types  of  processes:  

• Main  processes  –  with  the  objective  to  meet  external  customer  expectations,  and  refine   the   offered   company   products.   Examples   on   processes   could   be   product  development  processes,  production  and  distribution.  

• Support   processes   –   has   the   purpose   of   providing   resources   to   the   main  processes.  These  processes  can  be  employee  recruitment,  information  processes  etc.  

• Management   processes   –   involves   top   management   and   concerns   long-­‐term  strategy  and  company  goals.    

Figure  4  -­‐  Network  of  interrelated  activities  (adapted  from  Bergman  and  Klefsjö,  2007,  p.  24)    In  the  case  of  SKF,  it  becomes  important  to  not  only  investigate  the  actual  product  flow  and  the  actions  directly  related  to  these  specific  tasks,  but  also  how  support  processes  are  managed,  e.g.  how  resources  are  distributed  and  other  external  parameters  impact  

!"#$%&'()*''+)

,-*-.'&'*$)/(%0'##'#)

1"//%($)/(%0'##'#)

,-2*)/(%0'##'#)34$'(*-5)0"#$%&'(#)

!"#$%&'()*

+,-./*

0,)'/$,1*

2(3./&,4.(*

5..67*

8'/9$:'7*8#%%1$'/* ;#7).&'/*

Page 22: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  10  

the  throughput-­‐time.  It  becomes  evident  that  management  processes  should  be  included  in   order   to   link   the   operations  within   the  warehouse   to  management   commitment   in  order  to  secure  actual  implementation  of  the  suggested  recommendations.    

2.2.1 Division  of  processes  Sub-­‐processes   are   needed   when   the   input   to   a   main   process   has   to   be   executed   at  several  places  and/or  with  idle  time  in  between.  Materials  handling  activities  are  needed  to  connect  two  divided  processes,  which  results  in  that  fewer  sub-­‐processes  will  lead  to  less   materials   handling   activities.   As   a   result,   the   need   for   division   causes   extra  transportation  or  handling,  requiring  additional  time  and  resources  to  be  used,  e.g.  move  products  in  and  out  of  a  buffer.  To  decrease  the  length  of  a  material  flow,  the  processes  within  the  flow  can  either  be  redesigned  or  removed.  A  perquisite  is  a  stable  flow  where  work  is  synchronized.  (Johansson  and  Öjmertz,  1996)    There  are  two  factors  causing  a  process  to  divide  into  sub-­‐processes:  the  design  of  the  process  or  the  operation  of  the  process.  The  design  of  a  process  is  a  long-­‐term  decision  as   it   involves   where   activities   should   take   place,   how   they   are   performed,   who   is  responsible   and  what   equipment   is   to   be   used.   The   design   has   some   restrictions   that  could   limit   the  optimization:   fixed   location,   available   resources,   space-­‐related  capacity  and  competence.    The   operation   of   a   process   is   related   to   the   design   of   the   process   and   linked   to   how  equipment  and  information  is  used  to  control  the  process.  Restrictions  in  operations  are  primarily   linked   to   uncertainty:   demand,   disturbance,   economic   quantities   and  organization,  e.g.   if  planning  is  performed  well  the  need  for  buffers  and  slack  might  be  eliminated.    Liker  and  Meier  (2006)  present  similar  arguments.  The  first  step  to  lean  processes  is  by  accomplishing  a  basic  level  of  stability.  They  further  present  indicators  that  could  tell  if  a  process  is  unstable.  

• High  level  of  variability  • Low  recognition  of  standardized  methods  or  work  • Batches  of  WIP  that  are  random  and  both  in  quantity  and  time  • Frequent  use  of  the  words:  usually,  normally,  typically,  generally  

 When   the   aim   is   to   reduce   or   merge   processes,   Johansson   and   Öjmertz   (1996)  emphasizes  the  importance  of  taking  an  overall  perspective  to  avoid  sub-­‐optimizations.  To   assess   the   performance-­‐level   at   SKF,   the   process   design   and   how   processes   are  divided  will  help  to  understand  the  degree  of  standardization.  

2.3 Capacity  planning  Presented  in  chapter  1.1.2  there  is  a  connection  between  capacity  and  throughput-­‐time.  This   chapter   illustrate   the   connection   between   the   two   and   present   different  ways   to  adjust  current  capacity  in  greater  depth.  

Page 23: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  11  

 The   demand   for   capacity   varies   over   time,   as   the   customer   demand   is   fluctuating   in  terms  of  time  and  volume.  Leitch  (2001)  states  that  it  results  in  a  discrepancy  between  the   demand   for   capacity   and   the   customer   demand,   where   too   much   capacity   is   an  unnecessary  expense  while  too  little  will  result  in  system  restrictions  and  cause  delays  that   increase  the  WIP  and  throughput-­‐time.  He  argues  therefore  that  capacity  must  be  planned  carefully  with  consideration  to  the  system  environment.    Maximum  capacity   is   the  maximum  volume  of  a  specific  output   that  a  combined  set  of  resources  can  create  (Jonsson  and  Mattsson,  2009).  The  maximum  output  a  process  can  create  is  when  the  process  is  100%  utilized  each  day,  every  day.  This  is  rarely  the  case  as  the  level  of  staffing  varies  over  time.  However,  Jonsson  and  Mattsson  (2009)  argue  that  the  nominal  capacity   is  more   interesting  to  measure.  The  nominal  capacity   is   the   level  that   a   process   has   under   normal   working   conditions   and   is   encompassed   by   four  variables:  number  of  manufacturing/equipment  units,  number  of  shifts  per  day,  amount  of  hours  in  each  shift  and  number  of  days  in  each  period.  By  using  these  parameters  it  will  be  easier  to  analyze  the  current  staffing  in  the  Gothenburg  warehouse  with  respect  to  what  is  actually  needed  to  cope  with  the  demand  fluctuations.      There  are  numerous  methods  for  aligning  the  supply  and  demand  for  capacity;  the  two  mostly   used   being   level   or   chase.   Leveled   denote   that   the   same   nominal   capacity   is  continuously   used   without   regards   to   fluctuations   in   demand.   A   leveled   strategy   will  result   in   inventory   fluctuations,   as   there   will   be   misalignments   between   supply   and  demand.  The  strength  of  a  leveled  strategy  is  easier  planning  as  the  same  resources  are  used.      A   chase   strategy   is   the   opposite;   supply   of   capacity   is   adapted   according   to   demand.  Jonsson   and   Mattsson   (2009)   list   four   different   actions   for   short-­‐term   increase   or  decrease  of  current  capacity  (table  2).  

Page 24: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  12  

 Table  2  -­‐  Methods  for  short-­‐term  increase  in  capacity  

Action   Method  Increase/decrease  capacity   Subcontracting  

Extra  shift  Re-­‐allocate  capacity   Move   personnel   between   different  

work  areas  Adjust  capacity   Over  time  

Postpone   meetings/training   or  maintenance  

Re-­‐allocate  capacity  requirements   Postpone  customer  orders  

 1. The  first  action  is  to  change  the  capacity  by  either  letting  someone  else  perform  

the  task  with  more  resources  or  by  hiring  an  extra  shift  of  temporary  workers.  2. The  second  action   is   to  either  move  capacity   from  one  work  area   to  another  or  

move  work  to  another  work  area  where  there  is  excess  capacity.  3. The  third  action  is  to  increase  the  utilization  of  the  company’s  own  resources  by  

either  using  overtime  or  re-­‐schedule  activities  such  as:  maintenance  or  training.  4. The   fourth   action   is   to   change   the  demand   for   outbound  orders   by  postponing  

customer  orders  to  a  later  time-­‐period  where  there  is  excess  capacity.  

2.4 Success  factors  for  a  warehouse  This   section  presents   four   key   success   factors   for   internal   operations   in   a  warehouse.  The  section  also   covers  how   the   success   factors  are   related   to   the  design  of   a  process  and   how   capacity   is   matched   to   the   demand.   These   success   factors   will   play   an  important  role  when  investigating  the  performance  of  the  Gothenburg  warehouse.  As  a  basis  for  assessing  the  actual  performance  these  factors  will  be  used.    The   purpose   of   a   warehouse   is   to   store   goods   that   will   take   longer   to   produce   and  distribute   than   what   the   customers   are   willing   to   wait   (Gu   et   al.,   2006).   A   properly  managed  warehouse   should   therefore   know:  what   is   stored,  where   it   is   stored   and   in  what   quantities,   in   order   to   fulfill   customer   expectations   on   time.   Schleyer   and   Gue  (2011)  argues  that  a  system  with  a  high  degree  of  variation  for  both  arriving  goods  and  the   time   it   spends   in   each   process   will   cause   the   throughput-­‐time   to   fluctuate.   If  inventory   and  operations   are  not   controlled   in   a  proper  manner   it   is   a   liability   to   the  company,  as  both   the   throughput-­‐time  and  stock   levels  will  be   less  reliable  due   to   the  uncertainty.     Both   capacity   and   the   design   of   processes   must   therefore   be   carefully  planned  in  order  for  the  warehouse  to  have  the  desired  performance.  Schleyer  and  Gue  (2011)  conclude  that  the  overall  performance  of  a  warehouse  is  determined  on  how  well  the  customer  agreements  are  met.      Wayman   (1995)   lists   factors   for   successfully   controlling   a   warehouse,   which   are  grouped   into   four   areas.  How  well   these   four   factors   are   adapted   to   the   environment  and  the  type  of  stock  keeping  units  (SKU)  being  stored  in  the  warehouse  will  determine  

Page 25: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  13  

the   performance.   The   areas   presented   are:   the   warehouse   layout,   materials   handling  activities,  resources  and  tracking  and  control  systems.  

2.4.1 Warehouse  layout  The  layout  sets  the  overall  boundaries  for  how  well  the  warehouse  performs  (Wayman,  1995).  It  is  a  highly  dynamic  environment  and  it  is  therefore  necessary  to  continuously  evaluate   the   current   processes   and   routines.   If   the   warehouse   development   becomes  static   it  will   slowly   fall  out  of  control,  as   there  will  be  a  mismatch  between  the  design  and   the   flow.   The   layout   is   of   high   importance   in   Gothenburg   as   this   warehouse   is  unique,  which  plays  an  important  part  in  the  throughput-­‐time.      The   layout   is   the   first   area   to   consider  when   evaluating   a  warehouse.   The   evaluation  must  take  a  number  of  factors  into  account  in  order  to  understand  how  well  the  goods  flows  through  the  warehouse.  The  following  factors  are  most  significant   for  evaluating  the  design  of  the  warehouse  layout  (Wayman,  1995):  how  goods  are  grouped  depending  on   their   characteristics,   what   storing   methods   are   used   and   how   well   the   space   is  utilized.    

Storing  methods  2.4.1.1The   next   factor   to   consider   is   where   goods   are   stored   and   after   what   rules,   suitable  storing  methods  must  be  applied.    There   is   often   a   need   for   different   storage   methods,   as   a   result   of:   multiple   storage  policies,   the   physical   characteristics   of   a   product,   together   with   the   time   it   is   stored  (temporarily  or  final  location).  Hansen  and  Gibson  (2008)  emphasize  the  importance  of  understanding  the  characteristics,  movements  and  velocity  of  products  moving  through  the  warehouse  when  choosing  an  appropriate  storage  method.  They  argue  the  need  for  more   then   one   storage   method   as   different   products   have   different   characteristics.  Lumsden   (2007)   lists   the  most   common   storage  methods  which   is   also   confirmed   by  Dolgui  and  Proth  (2010):  

• High-­‐rack   storage   –   the  most   common   storage  method   for   industrial   products.  Pallets  and  boxes  are  placed  in  compartments  created  by  vertical  elements  into  a  pallet  rack.  This  way  it  is  possible  to  store  pallets  and  boxes  on  top  of  each  other,  which  makes  picking  a  specific  pallet  easier  than  deep  storage.    

• Deep   storage   –   boxes   are   put   on   the   floor   and   on   top   of   each   other   building  outwards  from  the  back.  Only  the  pallets  furthest  out  are  accessible  for  picking,  making  it  a  suitable  method  for  last  in  first  out  (LIFO).  The  room  is  well  utilized  but   provides   the   risk   of   a   low   inventory   turnover   rate   with   a   risk   of   making  products  in  the  back  outdated.  

• Shelf  box  stacking  –  box  stacking  is  useful  for  smaller  items  needed  to  be  handled  manually.  Boxes  are  put  together  into  racks  creating  a  wall  of  compartments.    

     

Page 26: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  14  

 

 Figure  5  –  Deep  stacking,  high-­‐rack  storage  and  shelf  box  stacking  (Adapted  from  Lumsden  2007,  p.  369-­‐371)    Goods  that  are  stored   in  buffer  and   in   final  storage  need  rules   for  how  they  should  be  picked.  The  two  most  common  rules  (Lee,  2006)  are  First  In  First  Out  (FIFO)  and  Last  In  First  Out  (LIFO).  FIFO  is  more  suitable  for  sequenced  and  easy-­‐outdated  products  while  LIFO  is  better  suited  for  bulky  products.  

Space  usage  2.4.1.2To   increase  efficiency  and  utilization,  Lumsden  (2007)  presents   the  principles  of   fixed  and   floating  storage   locations.  Fixed   locations  means   that  every  article-­‐number  has   its  own   fixed   location.   The   number   of   SKUs   determines   the   size   of   the   product   area.  Floating  storage  locations  indicates  the  opposite;  a  product  can  be  placed  anywhere  and  just   before   the   product   is   put   into   storage   it   receives   its   storage   location.   When   the  product   is  withdrawn   from   storage,   the   location   is   once   again   available   for   any   other  product.  This  principle   reduces   the  number  of   needed   storage   locations   as   the   supply  and   demand   is   better  matched   to   the   different   products.   It   however   requires   that   an  identification  system  is  adapted  to  the  flow.  The  space  usage  is  especially  important  in  the  Gothenburg  warehouse,  as   the  space   is  quite   limited.  By   implementing   the  correct  system  it  is  possible  to  increase  the  throughput-­‐time  and  use  the  space  in  a  better  way.  

2.4.2 Materials  handling  activities  Material  handling’s  main  purpose   is   to   link  processes  together  and  make  sure  that   the  goods  are  available  for  the  next  process  when  it  is  needed,  in  order  to  align  the  supply  of  capacity  in  a  process  with  the  demand  for  it.  This  chapter  will  go  through  how  successful  materials  handling  activities  are  created  and  the  different  types  of  activities  that  can  be  performed.   Understanding   how   materials   handling   activities   should   be   executed   are  essential   to   the   investigations  of   the  warehouse   in  Gothenburg,   to   see  how   they  differ  from  the  theory.      Farhani   et   al.   (2011)   states   that   one   side   of   material   handling   is   to   transport   small  amounts   of   goods   short  distances   inside  warehouses,   production   facilities   or  between  transportation  modes.  The  other  side  of  material  handling  is  to  provide  the  right  goods,  in  the  right  time  and  place,  hence  secure  a  desired  customer  service   level  and  provide  internal  functions  with  the  material  and  goods  needed.      

Page 27: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  15  

Arnold  et  al.  (2008)  takes  on  a  more  general  view  and  describes  that  materials  handling  must  be  aligned  with  the  overall  warehouse-­‐management  and  work  with  the  following  areas:  

• Optimal   use   of   space:   cost   for   space   often   stands   for   the   largest   capital   cost.  Temporarily  storage  space  e.g.  buffers  does  not  add  value  to  the  customer  and  is  only  an  expense  caused  by  inefficient  processes.  

• Effective   use   of   equipment   and   labor:  materials   handling   equipment   and   labor  represent   the   second-­‐largest   capital   cost,   and   the   largest   operating   cost.  However,  they  do  not  work  in  synergies  as  an  increase  in  equipment  reduces  the  amount   of   staff,   hence   the   labor   cost   decrease  when   equipment   cost   increases  and  vice  versa.  

 In  order  to  fulfill  both  optimal  use  of  space  and  effective  use  of  labor  and  equipment  it  is  necessary  to  focus  attention  on  three  different  focal  points:  

1. Find   the   equilibrium   between   equipment   and   personnel.   Too  much   equipment  and  the  utilization  will  be  low,  too  much  personnel  and  the  labor  cost  will  be  too  high.    

2. Ready   access   to   all   SKUs.   A   prerequisite   for   this   initiative   is   a  well   functioning  stock  location-­‐system  and  layout.  

3. Efficient  flow  of  goods  in  and  out  of  storage.    These  arguments  are  also  supported  by  the  second  rule  of  the  Toyota  production  system  presented   by   Spear   and   Bowen   (1999)   “every   customer-­‐supplier   connection   must   be  direct,   and   there   must   be   an   unambiguous   yes-­‐or-­‐no   way   to   send   requests   and   receive  response”.  There  must  not  be  any  gray  areas  in  the  communication  between  two  people  in  the  division  of  responsibility  or  coordination.  Every  action  should  have  a  purpose  and  be  well  defined  so  that  everyone  acts   the  same  way  and  can  expect   the  same  outcome  from  that  action.    How  well   the   three   focal   points   are  met   depends   on   how  well   the  materials   handling  activities  are  executed  and  aligned  with  the  overall  structure  of  the  warehouse  and  the  type   of   goods   flowing   through   it   (Arnold   et   al.,   2008).   The   type   of   activities   can   vary  between   different   warehouses   depending   on   what   services   are   requested   and   what  equipment  is  used.      It   is   furthermore   important   that   activities   are  well   defined.   Spear   and   Bowen   (1999)  argues:   “all   work   should   be   specific   as   to   content,   sequence,   timing   and   outcome”.   A  prerequisite   for  measuring   and   improve   standards   is   to   secure   that   the  processes   are  stable.  Work  must  therefore  be  specified  and  executed  the  same  way  every  time.  This  is  not   only   applicable   for   repetitive   processes   in   the   manufacturing   but   to   all   activities  within  a  company.    

Page 28: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  16  

2.4.3 Resources  The  chapter  goes  through  different  aspects  of  the  workforce  and  how  it  can  be  organized  to  match   the   supply   and   demand   for   capacity,   as   well   as   a   general   review   of   what   a  warehouse’s  equipment  must  be  able  to  do.      Resources  are  needed  as  an  input  to  processes  in  order  to  create  an  output  of  product  availability  and  coordination  (Baudin,  2004).    A  warehouse  main  resource  is  the  staff,  as  they   are   the   backbone   of   all   operations.   To   support   the   staff   there   are   additional  equipment   that   should   make   their   work   easier   and   more   efficient.   The   amount   and  complexity  of  equipment  are  mainly  determined  by  the  space  and  time  together  with  the  sensitivity  or  perishability  of  the  product  (Lumsden,  2007).  

Workforce  2.4.3.1Warehouses  operate  under  great  uncertainty  at   the  same  time  as   they  are  expected  to  provide   flexibility   and   rapid   deliveries   to   customers.   Sanders   and   Ritzman   (2004)  argues   that  one  solution   to   increase   internal   flexibility   for  a  warehouse   is  by  having  a  flexible   workforce.   They   propose   three   different   ways   to   create   a   flexible   workforce:  cross-­‐training,  part-­‐time  workers  and  floaters.  Floaters  do  not  have  a  fixed  workstation  but   are   assigned   to   a   specific   task   or   area   where   the   need   for   extra   capacity   is   the  greatest.  The  authors  state  that  especially  cross-­‐trained  personnel  and  use  of  part-­‐time  labor  can  have  significant   impact  on  scheduling  cost  and  customer  service   level.  Yang,  Webster  and  Ruben  (2002)  mentions  similar  methods  with  their  earlier  research  such  as   cross   training  and   labor-­‐transfer.  They   further  propose  a   combination  of  over-­‐time  and   time   off,   where   supply   and   demand   of   labor   is   matched   from   week   to   week.   A  worker  can  stay  home  one  day  and  work  over-­‐time  the  next,  making  the  staff  more  agile  to  changes  in  demand.    Matching  the  amount  of  personnel  to  the  actual  demand  for  labor  is  a  sensitive  process.  Too   few  workers   create   stress   for   the  employees,  while   too  many   is   a   liability   for   the  company.   In   Schultz   et   al.   (2003)   article,   similar   methods   for   increased   flexibility   as  above-­‐mentioned   researchers   are   presented.   However,   the   earlier   puts   greater  emphasize  on  the  benefits  while  Schultz  et  al.  (2003)  presents  some  major  trade-­‐offs.    They  argue   that   too  much   re-­‐distribution  could  disturb   the   flow  as   tasks   could  be   left  partially  undone  in  order  to  help  someone  who  are  in  greater  need  of  help,  and  getting  back   up   to   speed   to   the   original   task   could   take   some   time   or   be   forgotten   about,   as  other  activities  are  piling  up.      The  greatest  drawback  with  a  more  flexible  workforce  is  regarding  the  level  of  fairness  within  the  workforce.   If  a  worker  always  can  rely  on  getting  help  when  falling  behind,  then  some  worker  could  constantly  work  slower  while  others  are  forced  to  work  harder  to  keep  customer  expectations.  These   trade-­‐offs  cannot  be  disregarded  and  the  design  and  scheduling  of  the  workforce  must  continuously  be  re-­‐evaluated.  Through  metrics  for  

Page 29: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  17  

efficiency   and,   it   will   be   easier   to   assess   the   operators   actual   performance   to   take  actions  against  people  exploiting  the  system.  

Management  commitment  2.4.3.2Lloyd   (1994)   argues   that   if   the   right   commitment   does   not   come   from   higher-­‐level  management,   the   organization   will   become   stiff   and   inflexible,   as   the   workforce   will  oppose   to   further   changes.   Haapaniemi   (2001)   suggests   that   a  manager   have   to   lead  with   a   good   example   showing   the   lower-­‐level   staff   how   work   should   be   done.   This  means   that   a  manager   should   take   part   in   the   same   training   and  make   sure   that   the  personnel   is  conducting   the  operations   in   the  exact  right  way.  Liker  and  Meier  (2006)  agree  with  the  responsibilities  of  a  leader  and  states  that  they  must  set  a  good  example  and  be  the  ones  pioneering  the  changes.  They  further  state  that  the  team-­‐leader  should  act  as  a  jumper,  to  help  where  bottlenecks  occur.  This  is  a  fundamental  part  in  the  lean  philosophy;   if   a   company   wants   to   change,   it   must   come   from   above.   This   becomes  important   in   the   case   of   SKF   if   the   suggested   improvements   are   going   to   be  implemented  and  followed.  By  securing  commitment  from  top-­‐management  will  make  it  easier  to  make  sure  that  the  changes  will  be  followed.    

Work  organization  2.4.3.3Autonomous  work  groups   -­‐   the  aim  with  a  more  autonomous  work  group   is   to   create  flexibility   and   better   adapt   to   changes   in   the   environment   through   the   idea   that   the  whole   group  work   together   towards   a   common  goal   rather   than  work  by   themselves.  The  work  performed  by  the  group  is  pre-­‐defined  by  standardized  tasks,  and  the  group  can  by  themselves  choose  who  and  when  to  perform  the  tasks.  The  target  for  the  group  must  be  clear  and  simple  as  well  as  their  decision-­‐making  boundaries.  Furthermore  the  rules  for  how  the  behavior  within  the  group  is  regulated  must  be  well  defined  in  order  to  prevent  deviations  from  set  standards  and  expectations.  (Engström  et  al.,  1996)    Traditional  work   groups   -­‐   Taking   on   a  more   traditional   role   on  how   the  workforce   is  organized.   The   principles   of   Lean   production   presented   by   Liker   and   Meier   (2006)  suggests  that  the  work  is  more  standardized  and  strictly  controlled  through  additional  but  shorter  work  cycles.  The  groups  are  also  in  general  smaller.  Adler  and  Cole  (1993)  suggest   that   a   group   should   consist   of   4-­‐5   workers   where   the   team-­‐leader   has  more  decision-­‐making  power  to  steer  the  group.  

Equipment  2.4.3.4The  purpose  of  equipment  is  to  relieve  workers  from  unsafe  work  methods  by  e.g.  heavy  lifting,  and  increase  efficiency.  The  type  of  equipment  in  use  in  a  warehouse  is  therefore  largely  dependent  on  the  product  and  what  tasks  are  carried  out  (Lumsden,  2007).  Since  a   lack   or  wrongly  distributed   equipment  will   affect   the   throughput-­‐time   in   a   negative  way,  this  parameter  must  be  evaluated  at  the  Gothenburg  warehouse.    The  most  used  material  handling  equipment  for  internal  transportation  is  the  forklift.  It  is   a   powerful   handling   tool   as   they   can   transport   large   quantities   relatively   fast   and  

Page 30: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  18  

efficient  inside  factories  and  warehouses.  There  are  many  different  types  of  forklifts  and  their   design   depends   on   the   purpose.   Forklifts   designed   for   picking   are   in   general  smaller   and   the   driver   stands   upright   in   the   vehicle,   while   forklifts   designed   for  transporting  goods  are  generally  larger  and  more  powerful.  (Luton,  1998)    Cavinato   (1990)   states   that   equipment   is   a   large   part   of   a  warehouse’s   expenses   and  must   carefully   be   planned   and   adapted   to   the   requirements   of   the  warehouse.   Luton  (1998)  agrees  and  states  the  importance  of  adapting  the  warehouse’s  fleet  of  forklifts  to  what  type  of  goods  flow  and  what  activities  are  carried  out  along  the  way,  to  support  a  smooth  flow.  

2.4.4 Tracking  and  control  systems  This   chapter   explains   different   kind   of   control   systems   and   present   how   the   general  order  process  carried  out  in  a  warehouse.    The  control  of  a  warehouse  is  largely  dependent  on  what  type  of  control  system  is  used.  A  well   functioning   system   should   be   able   to   keep   updated   records   of  what   is   kept   in  stock  and  what  assignments  are  carried  out  at   the  moment.  The   tracking  and  control-­‐systems   is,   as   resources,   a   support   process   and   does   not   have   a   direct   impact   on   the  actual  throughput-­‐time.  However,  it  becomes  crucial  in  monitoring  the  performance.  By  using  effective  systems   for   tracking  and  control   it  becomes  easier   to  assess  where   the  weakest   link   is  situated  and  which  sub-­‐process   is  most  prone  to   fail.  These  systems  at  SKF  will  be  a  key  factor  in  what  kind  of  data  we  will  gather  and  how  the  empirical  data  will  be  presented.    Companies  today  are  part  of  more  complex  supply  chains  spread  out  over  larger  areas  in  more  volatile  markets.  Olson  (2012)  declares  that  each  part  of  the  supply  chain  has  its  own   specialized   system   on   different   levels:   to   plan,   execute   and   control   inventory,  ordering,  distribution,   forecasting  etc.  The  common  denominator   for  all  systems   is   the  ability  to  communicate  and  transmit  information  between  the  systems.        Information   sharing   improves   the   integration   and   increases   the   flexibility   of   a   supply  chain   (Tseng   et   al.,   2011).   A   well   functioning   information   system   will   increase   the  visibility  of  the  supply  chain  and  help  to  manage  new  material  being  ordered,  as  well  as  how   finished   products   are   withdrawn   from   the   system.  Wayman   (1995)   agrees   with  Tseng,  Wu  and  Nguyen  (2011)  but  emphasizes   that   the  system   itself  does  not  provide  additional  value.  It  has  to  be  adapted  to  its  environment  to  provide  additional  benefits.    Mentioned   by   Stefansson   and   Lumsden   (2009),   data   exchange   is   an   important   issue  when   dealing   with   logistics.   As   it   might   be   several   different   IT-­‐systems   containing  different  type  of  information  and  many  participants  in  a  logistic  set-­‐up,  all  are  in  need  to  access  information  in  some  way.  A  “virtual  road”  will  enable  a  fast  and  error-­‐free  flow  of  information   exchange   between   the   involved   parties   (Figure   6)   (Stefansson   and  

Page 31: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  19  

Lumsden,  2009).  The  virtual  road  provides  a  way  of  transfer  information,  similar  to  the  physical  infrastructure  providing  a  way  to  transfer  goods.    

   

Figure  6  -­‐  Virtual  road  (Alvgren  et  al.  2007)    The  virtual  road  can  be  related  to  Bayraktar  et  al.   (2009)  as   they  state  that   integrated  information   systems  will   increase   competitiveness   of   the   individual   firm.   By   enabling  seamless   information   flows,   it   is   possible   to   eliminate   poor   supplier   performance,  unpredictable   demands   and   uncertain   business   environments.   This   in   turn  makes   an  integrated  supply  chain  having  a  clear  advantage  compared  to  a  supply  chain  with  a  less  utilized  information  flow.      Mentioned   by   Olson   (2012),   an   IT-­‐system   may   serve   different   purposes   within   a  company.   It   could   include   activities   ranging   from   production   planning   to   material  sourcing  and  production  scheduling,   logistics  and  distribution  network  optimization.  It  is   safe   to   say   that   information   technology-­‐systems   are   implemented   to   improve  operational  performance  (Swafford  et  al.,  2008).      One  of  the  fundamental  functions  of  controlling  a  warehouse  is  the  control  system  that  keeps   track   of   what   comes   in,   what   flows   through   and   to   whom   the   products   are  transported  (Kappauf  et  al.,  2012).  Rapid  development  within  data  systems  has  created  the  so-­‐called  Warehouse  Management  Systems  (WMS)  that  has  the  capabilities  of  taking  cost  and  flow  optimization  into  account.  This  means  that  a  WMS-­‐system  should  have  the  same   capabilities   as   the  material   handling   activities   performed   inside   the  warehouse.  This  is  important  in  the  case  of  SKF,  where  the  internal  warehouse  system  must  be  able  to  measure  and  keep  track  of  the  RTW  lead-­‐time.    

2.5 Model  for  analysis  To  sort  out  the  empirical  data  and  analyze  it  with  respect  to  the  purpose  of  this  thesis,  an  analysis  model  was  developed.      Processes  with  high  internal  variability  together  with  an  uncertain  arrival  rate  according  to  theory  have  a  direct  negative  impact  on  the  throughput-­‐time.  Two  separate  concepts  have  been  identified  and  broken  down  for  further  investigation.  The  two  concepts  are:  

Page 32: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  20  

how  well  the  supply  of  capacity  is  matched  to  the  demand  for  capacity  and  how  well  the  processes  are  designed  to  their  purpose.    The   two   concepts   has   been   linked   to   the   internal   performance   of   a   warehouse   by  connecting   the   throughput-­‐time   to   the  overall  performance  of  a  warehouse.  An  article  written   by   Wayman   (1995)   presents   factors   that   determines   the   performance   of   a  warehouse,  which   is   then   grouped   into   four   areas:   the   design   of   the  warehouse,   how  well  the  materials  handling  activities  are  carried  out,  what  resources  are  available  and  how  well  the  tracking  and  control  systems  are  used.    By   connecting   the   two   concepts   with   Wayman’s   (1995)   four   key   areas,   a   model   for  analysis  was  developed  (figure  7).  Each  process  in  the  table,  in  the  lower  section  of  the  model,  will  be  analyzed  with  respect  to  the  two  factors  by  breaking  them  down  into  the  four  key  areas.  Support  and  management  processes  will  also  be  analyzed  with  regard  to  the   two  concepts   to  cover  all   internal  operations.    The  purpose  of   the  model   is   to  sort  out   what   factors   and   activities   that   drive   the   throughput-­‐time   and   how   they   interact  with   other   processes   in   the  warehouse.   These   findings  will   be   the   foundation   for   the  proposed  recommendations,  presented  in  the  end  of  this  thesis.    Furthermore  the  empirical  findings,  for  each  of  the  three  warehouses,  will  be  structured  according  to  the  four  key  areas  presented  by  Wayman  (1995).  

 Figure  7  -­‐  Model  for  analysis  

Tracking  and  control  system

Resources Materials  handling

Warehouse  layout

Capacity  matching  

Process  design

   

Page 33: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  21  

3 Methodology  This   chapter   presents   the   methodology   that   was   used   to   conduct   this   thesis.   The   first  section  presents  the  research  approach  (the  abductive  approach),  which  acted  as  a  guide  for   how   the   empirical   data   was  matched   to   the   theoretical   framework.   Furthermore,   it  presents   how   the   research   process   was   carried   out.   The   chapter   ends   with   a   discussion  about  the  validity  and  reliability  of  the  study.  

3.1 Research  approach  The  abductive   approach  presented  by  Dubois   and  Gadde   (2002)  was  determined   as   a  suitable   research   method   for   the   thesis,   as   it   lets   the   researcher   continuously   re-­‐evaluate  and  develop  the   frame  of  reference,  empirical  data  and  the   framework  as   the  project   progresses.   This   process   is   called   “systematic   combining”   (Dubois   and   Gadde,  2002).  The  framework  should  be  the  foundation  for  the  analysis  and  help  the  researcher  to   gather   information   in   the   right   places.   As  more   data   is   collected   and   new   insights  about  the  case  are  found,  it  might  be  necessary  to  redirect  the  framework  or  the  frame  of  reference  to  develop  useful  insights.  This  implies  that  theory  and  empirical  data  will  reap  the  best  results  when  combined.  

Figure  8  -­‐  Systematic  combining  (Dubois  and  Gadde,  2002)    The  systematic  combining  hence  refers  to  two  aspects  of  the  abductive  approach.  Firstly,  the  researchers  have  to  evaluate  how  theory  and  empirical  findings  are  relevant  to  each  other,  which   is  done  continuously   throughout   the  research.  Secondly,   it   challenges   the  framework  to  constantly  be  aligned  to  the  case.  The  case  had  a  broad  scope,  as  neither  the   definition   of  RTW  nor  what   locations   to   investigate  were   predefined.   These   areas  have  been  developed  and  defined  as  time  progressed;  hence  the  abductive  approach  was  a  good  fit.  

3.2 Research  process  To  fulfill   the  purpose  and  present   the  work   in  a  clear  and   logical  way,  a  roadmap  was  created,  consisting  of  five  steps  that  presents  the  steps  that  were  carried  out  to  fulfill  the  purpose  of  the  thesis  (figure  9).  The  research  process  was  not  a  linear  process  and  the  

Page 34: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  22  

authors  have  moved  back  and  forth  in  the  steps,  to  adapt  the  model  and  data  collection  depending  on  the  development  of  the  study.  

 Figure  9  -­‐  Research  process  

3.2.1 Preparations  and  initial  investigations  The   first   step   of   the   research   process   encompassed   the   fulfillment   of   the   necessary  parameters  in  order  to  conduct  the  thesis  in  a  frictionless  manner,  such  as  establishing  the   area   of   investigation,   define   the   research   problem   and   choosing   the   appropriate  methodology  yielding  a  high  validity  and  reliability.  Due  to  the  width  of  the  initial  scope  it  was  decided   that   the  study  would  start  with  a  holistic  approach  and   then  narrowed  down  to  one  warehouse  in  order  to  provide  solid  recommendations.    Before  a  decision  of  what  warehouse  had  the  greatest  potential  for  improvements  could  be   taken   it  was  necessary   to  define  RTW  as   a   concept   and  what   the  boundaries   for   it  were.  Observations  and  unstructured  interviews  had  a  fundamental  role  in  this  first  part  of  the  thesis  in  order  to  understand  the  operations  and  between  which  points  in  the  flow  the  RTW  lead-­‐time  should  be  measured.    When   RTW   was   defined   it   was   possible   to   assess   lead-­‐time   data   from   the   three  warehouses   to   see   where   the   greatest   areas   for   improvements   were.   The   data   was  provided   by   the   IT-­‐departments   in   the   respective   warehouses,   assessed   from   the  warehouse   management   systems.   From   what   was   seen   in   the   initial   study,   it   was  decided   that   the   inbound   flow   in   Gothenburg   had   the   greatest   potentials   for  improvements  and  was  chosen  as  the  area  for  further  investigations.  

3.2.2 Process  mapping  One  of  the  key  principles  of  the  lean  philosophy  presented  by  Liker  and  Meier  (2006)  is  “If  you  can  see,  you  can  understand  –  If  you  understand  you  can  act”.  It  was  therefore  vital  to   create  a  holistic  picture  of   the   flow   to  understand  how  processes  and  activities  are  connected  to  each  other.  It  becomes  easier  to  break  them  down  into  sub-­‐sets  to  find  root  causes  for  waste,  when  you  understand  the  processes  and  how  they  are  linked.    The  initial  study  was  not  enough  to  assess  the  root  causes  for  waste  in  the  warehouse  in  Gothenburg.   A  more   extensive   process  mapping  was   therefore   conducted  where   both  the  inbound  and  outbound  flow  was  considered  to  create  a  picture  of  the  flow  and  what  processes  it  was  made  up  of.  As  more  insights  about  the  flow  and  the  operations  were  gained,  the  focus  was  aimed  at  certain  areas  for  further  investigations  while  others  were  left   out.   The   two   other  warehouses  were   also   studied,   for  why   these   processes  were  more  efficient   than   the  ones   in  Gothenburg,   in  order   to   gain   further  knowledge  about  SKF’s  warehouse  operations.  

Preparations  and  initial  

investigations  Process  mapping  

Developing  a  model  for  analysis  

Data  collection   Recommendation  

Page 35: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  23  

3.2.3 Method  for  analysis  From   the   literature   review,   a   model   was   developed   to   break   down   and   sort   out   the  empirical  data  and  provide  a   structured  way  of  analyzing   the  empirical  data.  The   first  part   of   the  model   is   based   on   four   key   areas   that   have   an   impact   on   the   warehouse  performance.  This  performance  was  then  linked  to  two  concepts  having  a  direct  impact  on  the  lead-­‐time:  how  well  the  supply  of  capacity  is  matched  to  the  demand  for  capacity,  and   how   the   processes   are   designed   to   fit   their   purpose.   The   four   key   areas   were  grouped   as   sub-­‐concepts   to   the   two   main   concepts   as   a   support   for   identifying   key  drivers  in  the  flow.    The  analysis  will  be  divided  into  two  main  chapters  where  the  empirical  data  is  analyzed  with  respect  to  the  process  design  and  how  well  capacity  is  matched  to  the  operations.  The  analysis  will  look  into  each  part  of  the  inbound  flow  as  well  as  take  a  more  holistic  view  to  summarize  the  flow.  

3.2.4 Data  collection  With  a  good  understanding  of  the  processes  and  activities  in  the  flow,  a  more  extensive  data  gathering  was  initiated.  The  data  used  to  understand  the  flow  and  analyze  potential  drivers   for   RTW   lead-­‐time   was   collected   through:   an   extensive   literature   review,  interviews,   benchmarking   studies,   observations   and   extractions   of   quantitative   data.  The  benchmarking  study  in  Schweinfurt  and  Tongeren  was  conducted  on-­‐site,  two  days  in   each   warehouse.   This   was   vital   in   order   to   understand   how   the   activities   and  processes  were   conducted   in  warehouses  with   shorter  RTW   lead-­‐time   and   to   identify  the  main  differences  between  these  sites  and  the  Gothenburg  warehouse.  

Literature  review  3.2.4.1The  literature  review  was  conducted  in  two  steps.  First  the  concept  of  RTW  was  broken  down  into  areas  that  were  understandable  and  could  be  analyzed.  This  step  was  carried  out   by   reading   articles   and   previous   course   literature   about  warehouse  management,  material   handling   and   supply   chain   management.   Once   a   basic   understanding   of   the  concept  was  formed  a  more  extensive  review  was  conducted  where  the  authors  focused  the  search  to  specific  areas.  The  new  review  lead  to  the  identification  of  four  key  areas  that  affect   the  performance  of  a  warehouse,  and  was   the  basis   for   the  structure  of   the  empirical  findings.  The  second  step  was  to  gather  support  to  develop  a  model  that  could  structure   the   analysis,   through   previous   conducted   research   within   warehouse  management,  which   could   determine  what   the  most   significant   drivers   for  RTW   lead-­‐time  are  and  how  they  affect  the  flow.    The   data   was   gathered   by   using   Chalmers   search   engine   Summon   to   access   scientific  databases.   The   most   commonly   used   databases   were:   Book   24/7,   Proquest,   Elsevier,  Emerald   and   Sciverse.   Relevant   articles,   E-­‐books   and   journals   were   found   by   using  specific  key  words.    

Page 36: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  24  

Observations  3.2.4.2According   to   Liker   and  Meier   (2006)  Genchi  Genbutsu   is   a   vital   part   of   understanding  solving  a  problem.  It  translates  to  “actual  place,  actual  part”,  which  means  that  a  person  cannot  solve  a  problem  from  the  desk  but  have  to  go  see  for  herself  and  create  her  own  understanding  of  the  situation.  Baker  (2006)  presents  the  complexity  of  observation  as  a  research  or  data  collection  method.  She  argues  that  it  is  sometimes  necessary  to  take  on  more   than   just   the   role   as   an   observer,   sometimes   being   just   an   observer   without  interaction  and  sometimes  a  complete  member  of  the  group  being  studied.      Due  to  the  complexity  of  the  flow  and  to  understand  how  GSPs  actually  move  rather  than  what  is  stated  in  the  process  definition,  observations  was  used  as  a  method  for  gathering  data.  The  method  was  mainly  a  guiding  tool  for  further  data  collection  but  also  to  gather  hands-­‐on   facts  about   the   internal   flows   in   the  warehouse.  The  process  maps  collected  from   SKF’s   internal   network   could   only   show   a   limited   view   in   how   goods  moved.   It  therefore  became  important  to  expand  these  to  see  how  products  move  not  according  to  a   process-­‐map   but   how   they   actually   flow,   if   the   root-­‐cause   were   to   be   found.  Throughout  the  thesis  the  authors  were  never  a  member  of  the  group  and  stood  by  as  an  observer.  

Interviews  3.2.4.3Two  kinds  of  interviews  were  performed  throughout  the  thesis:  unstructured  and  semi-­‐structured.   Bryman   and   Bell   (2011)   argues   that   there   are   both   advantages   and  disadvantages  with  the  two  approaches.  The  advantages  with  a  more  open  approach  are  primarily  related  to  if  the  researchers  have  limited  previous  knowledge  about  the  area.  However,  the  downside  is  that  the  answers  provided  will  be  less  specific  and  there  is  a  risk  that  some  answers  will  be  left  out  or  ignored,  while  interviewing.    Unstructured   interviews  was  chosen  as  an  appropriate  method   for   the  pre-­‐study,  as   it  was   not   yet   clear  who  were   the   best   person   to   talk   to   and  what   process  would   be   of  interest.    Once   a   basic   understanding   of   the   flow   was   reached,   unstructured   interviews   were  changed   to   semi-­‐structured   interviews.   This   switch   from   unstructured   to   semi-­‐structured  interviews  allowed  the  authors  to  first  gain  a  basic  understanding  and  then  move   further   into  certain  areas   that  appeared  more   important.  As  a   result,   from  what  was   learned   in   the   initial   step   by   going   out   to   the  warehouse   and   talk   to  warehouse  personnel,   semi-­‐structured   interviews   was   set   up   with   managers,   logistics  administration  and  planning  personnel,  to  focus  on  specific  areas.  The  interviews  were  planned   in   advanced  and   the  questionnaire  was   sent   a   couple  of  days  before   to  make  sure  that  the  interviewee  had  time  to  prepare  answers.  If  the  interviewee  had  not  seen  the  questions  in  beforehand,  it  was  clarified  that  they  had  the  option  do  deny  a  response.  After  the  interview,  the  interviewers  sat  down  together  and  discussed  and  summarized  the  interview  to  make  sure  that  the  key  findings  were  preserved.  

Page 37: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  25  

 The  same   interview  guide  was  used   in  Schweinfurt  and  Tongeren.  Due  to   the   fact   that  the  interviews  was  set  up  before  arrival  and  no  information  was  provided  for  whom  to  interview,  the  authors  had  to  adapt  the  interview  guide  as  the  interviews  progressed.      In  table  3,  the  interview  objects  are  presented  with  title  and  date  of  interview.    

Table  3  -­‐  List  of  people  subject  for  interviews  Title   Location   Date  Warehousing  supervisor   Gothenburg   1/2-­‐13,  14/2-­‐13,  21/3-­‐13  Manager  inventory  management  process  

Gothenburg   13/2-­‐13  

Manager  business  Development  

Gothenburg   28/3-­‐13  

Moving  goods  –  process  and  optimization  

Schweinfurt   8/4-­‐13  

Manager  quality  and  environment  

Schweinfurt   9/4-­‐13  

Warehouse  operations  manager  

Tongeren   10/4-­‐13  

Team-­‐leader   Gothenburg   15/4-­‐13    See  appendix  A  for  a  list  of  the  interview  guides  that  were  used.  

Quantitative  data  3.2.4.4The   definition   for   RTW   lead-­‐time   that   was   established   together   with   the   supervisors  was  not  the  same  as  in  the  IT-­‐systems,  which  mean  that  not  all  data  could  be  extracted  directly   from  the  WMS  system:  Warehouse  Administration  Service  System  (WASS).  To  assess  the  data  that  was  required  for  measuring  the  RTW  lead-­‐time  and  the  variation  in  the  GSP   flow,   it  was  necessary   to   combine  extractions   from  WASS  with  going  out   and  physically  writing   down   arrival   times.   In   the   sections   below,   the  method   for   how   the  quantitative  data  was  gathered  is  presented.  

3.2.4.4.1  Inbound  variation  The  variation  in  when  goods  arrive  was  measured  with  separate  methods  for  each  of  the  three  factories  SKF  Poznan,  SKF  Mekan  and  Factory-­‐D,  since  the  flows  before  arrival  are  not  identical.  These  flows  were  chosen  since  they  represent  80%  of  the  inbound  volume;  hence  the  provided  solutions  would  have  the  most  significant  impact  if  implemented  on  these  flows.    Factory-­‐D  –  The  variation  of  GSPs  from  Factory-­‐D  was  measured  by  extractions  of  the  production   time   of   all   GSPs,   produced   during   the   sampling   period,   from   WASS.   The  

Page 38: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  26  

transportation  time  from  the  factory  to  the  warehouse  was  then  added  to  see  when  they  arrived  to  the  warehouse.    SKF  Mekan  –  The  inbound  variation  for  SKF  Mekan  could  not  be  measured  in  the  same  way   due   to   a   higher   level   of   uncertainty   for   how   long   the   GSPs   are   buffered   at   the  production  facility  before  being  shipped  to  Gothenburg.  The  variation  was  measured  by  collecting  data  over  when  the  GSPs  left  SKF  Mekan  and  then  add  a  transportation  lead-­‐time  of  six  hours.  The  six-­‐hour  add-­‐on  was  the  estimated  time  it  takes  to  send  the  goods  from   SKF   Mekan   to   the   Gothenburg   warehouse,   and   the   estimation   was   done   in  discussion  with  warehouse  personnel  to  secure  a  reliable  time-­‐estimation.      SKF  Poznan  –  GSPs  from  SKF  Poznan  have  a  longer  transport  lead-­‐time  than  SKF  Mekan  and   therefore   the   authors   physically   had   to   be   in   the   warehouse   and   note   when   the  trucks   from   SKF   Poznan   arrive,   as   they   fluctuated   heavily.   To   eliminate   the   risk   that  some  trucks  were   left  out,   the  forklift  operators   in  the  warehouse  helped  to  document  the   arrival   time   for   the  ones   that  were  missed.  The  operators  did   this,   as  most   of   the  transports  were  inbound  late  at  night,  hence  this  was  easier  than  for  the  authors  to  sit  in  the  warehouse  and  wait  for  several  hours  just  to  document  the  arrival  time.  

3.2.4.4.2 Lead-­‐times  All   GSPs   gets   an   arrival   scan   when   they   arrive   to   the   warehouse   but   they   are   not  necessarily  scanned  directly  when  they  arrive.  To  secure  that  the  calculated  RTW  lead-­‐time  was  the  same  as  the  definition  of  the  RTW  lead-­‐time,  it  was  necessary  to  calculate  the   RTW   lead-­‐time   by   dividing   the   inbound   flow   in   three   different   parts;   inbound   –  conveyor  belt   for   SKF  Poznan   and  SKF  Mekan,   inbound  –   conveyor  belt   for   Factory  D  and  conveyor  belt  –  storage.  See  table  4  for  collection  period  and  number  of  samples  and  the   following  sections   for  how  the  samples  were  collected.  A  sample   is  defined  as  one  GSP.    

Table  4  -­‐  Collection  period  and  number  of  samples  for  inbound  Gothenburg  Gothenburg  Inbound  

Factory-­‐D   SKF  Poznan   SKF  Mekan   Automated  elevator  

Time  period   8/2-­‐11/4   18/3-­‐5/4   11/3-­‐5/4   18/3-­‐5/4  No.  of  samples   18370   135   110   98  

 Factory-­‐D   –  The  RTW  lead-­‐time   for  GSPs   from  Factory-­‐D  was  measured  by  extracting  the  time  when  the  GSPs  was  finished  in  production  through  WASS.  Since  all  GSPs  have  its   own   unique   number,   a   GSP   could   be   traced   from   finished   in   production   to   final  storage.   The   time   from   being   finished   in   production  was  measured   against  when   the  GSPs  were  placed  in  their   final  storage   locations  to  assess  the  total  RTW  lead-­‐time.  To  identify  the  lead-­‐time  from  the  production  facility  to  buffer,  the  authors  manually  noted  arrival  time  of  the  GSPs  to  the  buffer,  which  could  then  be  compared  to  the  time  of  being  finished   in   production.   By   doing   this,   it   was   possible   to   measure   lead-­‐time   from  

Page 39: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  27  

production  to  buffer,  from  buffer  to  final  storage,  and  total  lead-­‐time  from  production  to  storage.      The  considerable  large  amount  of  observations  can  be  explained  by  WASS,  storing  data  about  Factory-­‐D-­‐products   for   several   years.  Therefore,   it  was  possible   to  measure   the  total  lead-­‐time  through  only  extracting  the  time  when  being  finished  in  production  and  compare  it  to  time  and  date  of  arrival  in  storage.  To  assess  the  lead-­‐time  from  buffer  to  storage,  the  lead-­‐time  from  production  to  buffer  was  subtracted.    SKF  Poznan  and  SKF  Mekan  –  The  RTW  lead-­‐time  for  SKF  Poznan  and  SKF  Mekan  were  measured  using  the  same  method;  the  authors  physically  wrote  down  arrival  time  and  serial   number   of   six   GSPs   from   each   shipment.   The   arrival   time   was   then   measured  against  when   the   GSPs  were   placed   in   their   final   storage   locations   to   assess   the   total  RTW  lead-­‐time.  This  had  do  be  done  manually  as  these  touch  points  at  the  time  was  not  established  in  WASS,  hence  there  was  not  any  reliable  data  in  this  part  of  the  flow.    Automated  elevator  to  storage  –  To  determine  how  long  on  average  a  GSP  were  in  the  buffer,   the   time   from  a  GSP   is   fetched   from  the  buffer  until   it   is  placed   in  storage  was  also  measured.  There  is  no  system  point  for  this,  and  therefore  had  to  be  done  manually.  The  time  and  serial  number  for  three  GSPs  was  documented  three  times  every  day.  The  point   of   measure   was   when   the   GSP   was   put   on   the   conveyor   belt   leading   to   its  designated   floor.  This   time  was   then  measured  against  when   the  GSPs  were  placed   in  their  final  storage  locations.    

Table  5  -­‐  Collection  period  and  number  of  samples  for  outbound  Gothenburg  Gothenburg   Outbound  Time  period   12/3-­‐3/4  No.  of  samples   5804  

 Outbound  Gothenburg–  Data  extractions  for  the  outbound  flow  could  be  done  directly  from  WASS   due   to   the   fact   that   it   was   better   monitored   than   the   inbound   flow.   The  extracted  data  contained  products  going  from  Gothenburg  to  Schweinfurt  and  Tongeren.  The  measuring  points  was  set  from  the  point  of  put  on  the  outbound  conveyor  belt  until  put   on   an   outbound   transport.   As   all   these   GSPs   have   a   unique   serial   number,   it  was  possible  to  identify  the  total  lead-­‐time  for  all  pallets,  from  put  on  conveyor  belt  to  put  on  an  outbound  transport.  As  all  GSPs  must  be  scanned  when  performing  these  actions,  the  provided   data   is   accurate,   and   depicts   the   average   lead-­‐time   for   a   GSP   for   the  whole  outbound  flow.      Outbound  Schweinfurt  and  Tongeren  –  The  data  was  extracted  by  the  IT-­‐department  in  the  respective  warehouse.  Two  month  of  data  was  suggested,  but  as  this  was  difficult  to   attain   in   Tongeren,   the   received   data   was   three  months   instead.   The   reason   for   a  conservable   lower   amount   of   samples   in   Schweinfurt   is   the   way   the   IT-­‐department  

Page 40: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  28  

extracted   data.   They   took   2   samples   from   every   transport   during   this   time,   as   they  argued  that  assessing  all  GSPs  would  show  a  similar  result.    

Table  6  -­‐  Collection  period  and  number  of  samples  for  inbound  and  outbound  Schweinfurt  Schweinfurt   Inbound   Outbound  Time  period   N/A   17/12-­‐2012  –  15/3-­‐2013  No.  of  samples     N/A   262    

Table  7  -­‐  Collection  period  and  number  of  samples  for  inbound  and  outbound  Tongeren  Tongeren   Inbound   Outbound  Time  period   N/A   1/3-­‐26/4  No.  of  samples   N/A   28794    

3.2.4.4.3 Number  of  GSPs  in  buffer  The  amount  of  GSPs  was  counted   three   times  everyday  day  during   the  data  collection  period.  The  collection  had  to  be  done  manually  by  going  out  and  counting  each  GSP.  To  see  the  effect  of  the  newly  implemented  shift  (from  April  1st,  2013),  the  amount  of  GSPs  were   counted   once   again   every   day,   two   weeks   after   the   “official”   collection   period  ended.  

3.2.4.4.4 Put  away  frequency  The  put   away   frequency   -­‐  how  much   the  warehouse  puts   in   storage  every  hour   -­‐  was  measured  by  extractions  from  WASS.  The  time  for  when  a  GSP  was  put   in  storage  was  categorized  according  to  which  hour  this  happened  to  assess  how  many  GSPs  on  average  was  put  away  each  hour.      

Table  8  -­‐  Collection  period  and  number  of  samples  for  put  away  frequency  Gothenburg    Time  period   1/3-­‐8/4  No.  of  samples   18077    

3.2.4.4.5 Frequency  in  picking  assignments  The  distribution  in  when  the  picking  takes  place  during  a  day  was  measured  in  a  similar  way  as  the  put  away  frequency.  Extractions  of  when  picking  assignments  were  initiated  on   floor-­‐1,   floor-­‐3   and   floor-­‐4   were   extracted   from   WASS.   These   times   were   then  summarized   and   grouped   hour-­‐wise,   similar   to   the   put   away   frequency.   The   samples  were   picked   from   only   one   day   but   according   to   the   warehousing   supervisor   that  provided  the  data  it  is  representable  for  all  days.    

Table  9  -­‐  Collection  period  and  number  of  samples  for  frequency  in  picking  assignments  Gothenburg    Time  period   22/4  No.  of  samples   1275  

Page 41: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  29  

 

3.2.5 Recommendations  As   noted,   the   focal   point   is   the   warehouse   in   Gothenburg,   which   means   that   the  solutions   will   be   focused   to   fit   this   context   firstly.   When   the   recommendations   have  been  developed,   it  will  be  investigated  if  the  warehouses  in  Schweinfurt  and  Tongeren  can  reap  any  benefits  from  implementing  the  same  suggestions.      The  provided  recommendations  are  based  on  the  theoretical  findings  and  the  empirical  research.  The  empirical  research  in  Schweinfurt  and  Tongeren  acts  as  a  foundation  for  how  efficient  warehouse  processes  should  be  conducted,  based  on  what  has  been  seen  in  the  pre-­‐study  (table  1).    

3.3 Validity  and  reliability  Using  the  abductive  approach,  it  was  possible  to  go  back  and  forth  between  the  theory  and   the   empirical   data.   By   doing   this,   it   was   possible   to   start   in   a   broad   sense   and  continuously   narrow   down   the   theoretical   framework   according   to   the   empirical  findings.  As  the  flow  in  Gothenburg  is  complex,  data  was  gathered  continuously,  which  is  the  reason  to  why  not  all  empirical  data  is  from  the  same  time  period.  This  fact  will  have  some  impact  on  the  analysis  since  changes  have  been  made  in  the  warehouse  during  the  data   collection   (e.g.   new   shift   rotation   from   April   1st   2013,   new   routines   for  identification  of  GSPs  in  buffer).      The   authors   established   new   KPIs   and   were   forced   to   monitor   the   touch   points  physically  on  an  everyday  basis,  as  these  were  not  accessible  through  the  WMS  system.  As  the  monitored  processes  were  found  to  be  unstable  and  include  high  variations,  the  authors   sometimes   encountered   no   or   few   GSPs   on   the   move   when   conducting   the  empirical  gathering.  As  this  was  the  case,  the  low  amount  of  observations  could  explain  the  high  standard  deviation  in  the  different  flows.  However,  as  the  Factory-­‐D-­‐products  had   over   5000   observations   and   still   had   a   large   standard   deviation,   the   standard  deviation  is  believed  to  be  accurate  even  if  the  amount  of  observations  are  rather  low  for  the   SKF   Mekan   and   SKF   Poznan-­‐flow   (91   and   131).   As   the   three   flows   have   almost  identical   processes   inside   the  warehouse,   it   suggests   that   the   data   is   correct,   and   the  throughput-­‐time  should  be  similar  for  all  three  flows.    Due  to  the  development  of  the  case  and  as  new  insights  about  the  empirical  world  were  made,   new   data   was   collected.   This   resulted   in   data   being   gathered   during   different  time-­‐periods,  which  could  have  effect  the  outcome  and  the  results,  as  volumes  fluctuate  over   time.   However,   the   data   has   been   discussed   with   personnel   from   different  departments  within  the  warehouse  regarding  its  validity  and  is  believed  to  be  accurate.    Since  the  authors  themselves  counted  the  number  of  GSPs  in  the  buffer,  there  is  always  a  risk  of  missing  GSPs.  This   could   criticize   the  accuracy   in   figure  11  and  12   (number  of  GSPs  in  buffer).  However,  the  counting  did  not  put  any  stress  on  the  authors  and  it  was  

Page 42: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  30  

conducted  in  a  structured  way  to  make  sure  no  GSPs  were  missed.  Therefore,  the  graph  and  the  number  of  GSPs  in  the  buffer  are  believed  to  be  accurate.    Some  of  the  findings  are  not  backed  up  by  data-­‐driven  research,  but  through  interviews  with  personnel  in  the  warehouse  (e.g.  that  the  estimated  limit  for  when  operators  start  to  loose  control  over  the  situation  in  the  buffer  is  approximately  800  GSPs).  As  this  type  of  data  is  difficult  to  assess,  it  was  believed  that  the  warehouse  personnel  could  provide  a   fairly  accurate  number.  Also   important   to  note   is   that   the  actual  percentage  on  how  often   the   multi   cycle   was   used   have   not   been   assessed.   The   authors   believe   that   if  measuring  how  often  the  multi  cycle  was  used,  the  operators  would  recognize  what  was  counted,  and  the  operators  would  definitely  conduct   the  multi-­‐cycle  every  time,  which  would  not  depict  the  actual  performance-­‐level.      The  maximum  put  away  capacity  (52  GSPs/hour)  is  also  estimated  through  observations  and   interviews,   which  means   that   there   is   a   level   of   uncertainty   to   the   number.   The  argument  to  why  this  was  not  calculated  through  quantitative  measures  was  because  of  the   high   number   of   factors   affecting   the   put   away   capacity.   As   the   processes   in   the  warehouse  operations  regarding   the   inbound   flow  are  unstable,   it  becomes  difficult   to  assess  the  maximum  capacity,  since  there  is  such  a  high  degree  of  variation.    In  order  to  validate  the  results  and  test  different  scenarios,  simulations  were  discussed  as  a   tool   to   investigate  different   factors’   impact  on   the   flow  performance.  However,  as  the  processes  were  unstable,   the  simulation  would  have  shown  different  results  every  time,  even   if  no  parameter  were  changed.  As  seen   in   the  empirical  data,  several  of   the  investigated   observations   lay   outside   ±3σ,   which   can   be   seen   as   a   measurement   on  assessing  if  a  process  is  stable  or  not  (Wei  et  al.,  2006).    

Page 43: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  31  

4 Empirical  findings  This  chapter  presents  the  empirical  findings  from  the  warehouses  in  Gothenburg,  Tongeren  and   Schweinfurt.   Within   the   three   warehouse-­‐sections,   there   is   an   explanation   of   the  layout,   the   materials   handling   activities   and   the   distribution   of   personnel.   The   fourth  factor  in  the  model  for  analysis  (tracking  and  control  systems)  is  explained  after  the  three  warehouse-­‐sections,  as  the  same  system  is  used  in  all  three  sites.    The   warehouses   in   Gothenburg,   Schweinfurt   and   Tongeren   have   different  characteristics,   operate   under   different   conditions   and   serve   different   purposes.  Gothenburg   and  Schweinfurt   are   international  warehouses,  which  mainly   serves   large  customers   who   order   directly   from   the   factory   e.g.   OE-­‐manufactures,   while   the  warehouse  in  Tongeren  is  a  regional  distribution  center  that  serves  the  after  market  and  retailers.   The   characteristics   of   the   customer   orders   are   therefore   different.   The  international  warehouses  comprise  of  5%  of  the  total  order-­‐lines  while  handling  50%  of  the  volume  in  Europe.  The  regional  distribution  center  (Tongeren)  handles  85%  of  the  order-­‐lines  but  only  25%  of  the  volume  in  Europe.    The  international  warehouses  have  a  longer  planning  horizon  as  their  customers  order  larger   quantities   and   fewer   types   and   some   who   share   the   order   books   with   SKF.  Tongeren  has  a  more  uncertain  environment  where  it  must  carry  a  large  part  of  the  SKF  assortment  and  have  to  be  able  to  support  customers  much  quicker  due  to  breakdowns  etc.  This  is  the  case  as  Tongeren  is  a  regional  warehouse  with  a  bigger  focus  on  serving  the  aftermarket  with  spare  parts.  This  makes  it  hard  to  forecast  for  which  products  are  most  likely  to  be  sent,  as  breakdowns  are  hard  to  predict.  

4.1 Gothenburg  This  chapter  covers  the  warehouse  in  Gothenburg.  It  will  cover  three  areas:  the  layout,  the  materials   handling   activities   conducted  within   the  warehouse   as  well   as   how   the  personnel  is  distributed  together  with  other  resources,  such  as  equipment.  

4.1.1 Warehouse  layout  The   factory   warehouse   in   Gothenburg   serves   mainly   the   production   facilities   in  Gothenburg  (Vehicle  Parts,  Factory-­‐E  and  Factory-­‐D),  SKF  Mekan  in  SKF  Mekan  and  SKF  SKF  Poznan  in  Poland.  There  are  also  some  other  both  internal  and  external  customers  that   store   goods   in   the  warehouse.   The  warehouse   is   also   a   hub   for   goods   sent   from  other  factories  and  warehouses  to  customers  in  Finland  and  Norway.  The  goods  is  cross-­‐docked   and   consolidated   with   other   orders   for   further   shipment   later   the   same   day.  However,   incoming  goods   for  distribution  to  Swedish  customers  are  not  received  here  and  are  outsourced   to  an  external   service  provider,  as   there   is  not  enough  capacity   in  the  warehouse  to  handle  these  volumes.  See  appendix  B  –  appendix  E  for  pictures  of  the  layout.  

Page 44: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  32  

Warehouse  flow  4.1.1.1The  medium  bearings  produced  in  Factory-­‐D  are  sent  under  ground  via  an  elevator  and  forklifts   through   a   pathway   connecting   Factory-­‐D   with   the   warehouse.   The   external  goods  arriving  from,  SKF  Mekan  and  SKF  Poznan  are  inbound  through  two  loading  docks  on  floor-­‐1.  Goods  produced  by  Vehicle  Parts  who  is  located  internally  in  the  premises  of  Gothenburg,   are   generated   by   customer   orders.   This   means   that   those   GSPs   are  inbounded  on  the  first  floor  and  during  the  same  day  sent  up  to  the  second  floor,  to  be  consolidated  with  other  orders  and  sent  out  from  floor-­‐2.    This  warehouse   is   unique  within   SKF   as   it   is   the   only  warehouse  where  products   are  stored  on  different  floors.  It  is  comprised  of  five  floors  serving  different  purposes.  Three  automated  elevators  connect  the  different  floors  with  each  other.  One  elevator  operates  on   all   floors   except   the   second   floor,  which  makes   this   elevator   dedicated   to   inbound  goods  only.  The  other  two  elevators  run  across  all   floors  and  are  dedicated  to  sending  outbound  goods  to  floor-­‐2.      There   is   an   aspiration   to   have   an   equal   flow   of   products   from   all   floors   as   well   as  between   the   inbound   and   outbound   flow.   A   priority   rule   determines   where   goods  should   be   placed   to  minimize   a   risk   that   one   of   the   three   conveyor   belts   are   clogged.  There   has   been   an   ABC-­‐classification   to   optimize   which   products   should   be   located  closest   to   the  elevators.  However,   the  classification  has  not  been  updated  according  to  set   standards   and   a   possibility   of   having   an  out-­‐of-­‐date  product   priority  might   be   the  case.      See  appendix  F  for  a  process  map  of  the  inbound  flow.  

Floor-­‐1:  Goods  receiving  and  warehousing  4.1.1.2The  first  floor  is  comprised  of  a  buffer  for  inbound  goods  and  a  storage  area.  The  storage  area   is   made   up   by   high-­‐racks   with   a   capacity   of   4200   GSPs,   utilized   to   about   80%,  similar   to   the   other   floors.   Goods   designated   to   the   first   floor   are   mainly   medium  bearings   and   products   from   SKF   Mekan.   There   are   additional   storage   areas   under  Factory-­‐D   called   LAD-­‐1,   where   some   of   the   products   from   Factory-­‐D   are   located  together  with  bulkier  products  that  do  not  fit  in  the  warehouse  high-­‐racks.  They  do  not  fit  since  the  production-­‐facility  and  SLS  have  different  standards  for  some  products.  The  storage  method  for  this  area  is  deep  stacking.    There   are   additional   storage   locations   in   an   adjacent   building   to   the   warehouse  (Storage-­‐E)   where   goods   for   heavy   picking   are   stored.   The   area   is   equipped   with  additional  equipment  to  support  the  heavy  movements.    

4.1.1.2.1 Inbound  transportation  Arriving   goods   are   offloaded   at   two   loading   docks.   Internal   transports   have   a   fixed  delivery   schedule  organized  according   to  a  milk-­‐run   route.  External   transports  do  not  currently   have   slot   times   for  when   the   trucks   arrive   and   it   creates   an   uncertainty   for  

Page 45: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  33  

external   transportations  as   the  trucks  can  vary  both   in   terms  of  number  of   trucks  and  delivery   time   every   day.   SKF  Mekan   notifies   the   number   of   trucks   each   day,   creating  some  ability  to  plan  ahead.  The  arrival  times  for  trucks  from  SKF  Poznan  are  harder  to  plan  as  their  delivery  time  depends  to  a  greater  extend  on  traffic  and  how  the  trucks  can  catch  the  ferries  departure  time.    

 Figure  10  -­‐  Amount  of  GSPs  that  arrive  to  the  warehouse  every  hour  

 Figure   10   shows   the   variation   in   how  many   GSPs   on   average   arrives   from   the   three  factories   during   one   day.   Goods   from   Factory-­‐D   arrive   at   the   same   pace   as   the  production  facility’s  takt-­‐time.  Goods  from  SKF  Mekan  are  told  to  arrive  in  the  evening  between   17:00   and   22:00.   However   if  management   believes   that   there   is   not   enough  capacity  to  unload  the  trucks  in  the  evening,  they  are  postponed  until  the  next  morning.  Due  to  the  longer  transportation  distance  from  SKF  Poznan,  these  trucks  are  harder  to  control,  but   the  goal   is   to  arrive   in   the  afternoon.  The  distribution  of  volume  between  the  three  flows  is  presented  in  table  10.    

Table  10  -­‐  Distribution  of  volume  between  the  three  flows  Factory-­‐D   SKF  Poznan   SKF  Mekan  39%   16%   45%  

4.1.1.2.2 Buffer  zones  The  buffers  purpose  is  to  create  a  decoupling  point  to  even  out  variations  between  the  need   for   capacity   and   the   actual   capacity   in   the  warehouse.   One   part   of   the   buffer   is  composed  of  painted  lines  on  the  floor  together  with  signs  hanging  from  the  ceiling.  The  other  half  of   the  buffer  only  has  signs  on  the  pillars  showing  the  operators  where  one  area  starts  and  the  other  ends.  All   these  zones  are  comprised  of  deep-­‐stacking  storage  methods.      

0  10  20  30  40  50  60  70  80  

01.00  

02.00  

03.00  

04.00  

05.00  

06.00  

07.00  

08.00  

09.00  

10.00  

11.00  

12.00  

13.00  

14.00  

15.00  

16.00  

17.00  

18.00  

19.00  

20.00  

21.00  

22.00  

23.00  

00.00  

GSPs  arriviing  /  hour  

Time  

Variation  in  arriving  goods  (GSPs/hour)  Sampling  period:  11/3-­‐5/4  

Factory-­‐D  

SKF  Poznan  

SKF  Mekan  

Page 46: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  34  

There  have  not  been  any  explicit  routines  for  where  and  how  GSPs  are  grouped  in  terms  of  arrival  date  and  to  what  floor  they  are  going,  which  makes  it  hard  for  the  operators  to  understand  what  GSPs  should  be  prioritized.  To  get  an  understanding  of  what  GSPs  has  been  there  the  longest  there  is  a  whiteboard,  with  a  schematic  overview  of  the  buffer,  to  write  down  at  what  date  the  GSPs  arrived  and  to  what  location  they  are  going.  However,  only   the   GSPs   placed   inside   the   zones   will   be   marked   on   the   whiteboard.   This   new  standard  has  just  recently  been  implemented  and  the  whiteboard  has  during  the  time  of  the  data-­‐gathering  not  once  been  fully  updated.  Operators  are  also  not  supposed  to  put  GSPs  together  if  they  are  going  to  different  floors,  but  if  the  GSPs  are  mixed  the  operator  marks  them  with  a  sign  as  “unsorted”.  When  there  is  too  much  goods  in  the  buffer,  GSPs  are  put  wherever  there  is  space  at  the  moment,  which  results  in  GSPs  placed  in  walking-­‐  or  forklift-­‐pathways.    One  zone  in  the  corner  of  the  buffer  is  reserved  for  outbound  goods.  There  are  no  visual  markings   for   this   buffer   other   than   a   sign   pointing   to   the   area.  When   there   are   large  volumes  of  outbound  goods  from  floor-­‐1  there  is  a  risk  of  goods  placed  in  driving  lanes  of   the   forklifts.  The  purpose  of   this  area   is   to  enable  picking  even  when   the  outbound  flow  is  clogged.  So  to  eliminate  the  risk  that  the  operator  has  to  wait  to  put  a  GSP  in  the  elevator,  they  will  drop  it  off  in  the  outbound  zone.      The   buffer   in   the   basement   of   Factory-­‐D   is   connected   to   the   warehouse   through   an  internal   pathway,   making   transports   between   the   two   facilities   fully   in-­‐house.   Goods  produced  in  Factory-­‐D  are  sent  to  the  basement  by  an  automated  elevator.  Next  to  the  elevator   there   is   a   buffer   where   goods   are   placed   for   consolidation   for   easier  transportation  into  the  warehouse  or  because  lack  of  space  in  the  buffer.      Figure  11  and  12  presents  how  the  amount  of  GSPs  fluctuates  in  the  buffer  from  week  to  week   (see   appendix   L   for   numbers).   The   period   of   data   gathering   for   this   particular  investigation  was  first  between  19/3-­‐5/4  and  then  between  2/5-­‐24/5,  to  see  if  the  new  shift-­‐rotation  had  an   impact  on   the  buffer.  The  blue  bar   is   the  main  buffer  on   floor-­‐1,  whilst   the   red   bar   is   the   temporarily   buffer   adjacent   to   the   vertical   elevator   beneath  Factory-­‐D.  According  to  the  team-­‐leaders,  it  becomes  difficult  to  manage  the  GSPs  within  the   buffer   when   the   number   of   GSPs   exceeds   800   and   control   is   slipping   away.  Important  to  note  is  that  this  number  has  been  assessed  through  interviews,  hence  not  something  that  has  been  investigated  through  data-­‐driven  research.    

Page 47: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  35  

 Figure  11  -­‐  GSPs  located  in  buffer  19/3  -­‐  5/4  

 

 Figure  12  -­‐  GSPs  located  inside  the  buffer  2/5  -­‐  24/5  

Floor-­‐2:  Loading  area,  goods  receiving  and  warehouse  4.1.1.3All  outbound  operations  take  place  at  this  floor.  As  mentioned  earlier,  this  floor  receives  goods  from  two  of  the  three  automated  elevators.  GSPs  are  transported  on  a  conveyor-­‐belt  to  two  stations  where  they  are  weighted,  strapped  and  labeled.  They  are  then  lifted  off  the  conveyor-­‐belt  and  taken  to  its  designated  outbound  area.  GSPs  are  consolidated  according  to  destination  before  loaded  on  the  transportation  unit.  Each  destination  has  its   own   area   with   painted   isles   on   the   floors   and   signs   hanging   from   the   ceiling   and  pillars.      

0  

500  

1000  

1500  

2000  

Amount  of  GSPs  

Date  

GSPs  in  buffer    Sampling  period:  19/3-­‐5/4  

Main  buffer   Vertical  elevator  buffer  

0  200  400  600  800  1000  1200  1400  1600  1800  

2-­‐5  

3-­‐5  

4-­‐5  

5-­‐5  

6-­‐5  

7-­‐5  

8-­‐5  

9-­‐5  

10-­‐5  

11-­‐5  

12-­‐5  

13-­‐5  

14-­‐5  

15-­‐5  

16-­‐5  

17-­‐5  

18-­‐5  

19-­‐5  

20-­‐5  

21-­‐5  

22-­‐5  

23-­‐5  

24-­‐5  

Amount  of  GSPs  

Date  

GSPs  in  buffer  Sampling  period:  2/5-­‐24/5    

Main  buffer   Vertical  elevator  buffer  

Page 48: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  36  

Outbound   transport-­‐modes   are:   truck,   sea,   air   and   train   depending   on   the  characteristics   of   the   order.   There   are   three   loading   docks   for   truck   transports,   two  loading  docks  for  container  transports  and  one  dock  for  inbound  goods  that  are  kept  in  storage  on  the  second  floor  e.g.  Factory-­‐E.    

Floor-­‐3:  Warehouse-­‐office  and  warehousing  4.1.1.4The   third   floor   is   mostly   used   for   storage   but   also   has   office   space   for   warehouse  administration.   Goods   in   storage   at   this   floor   are   mainly   goods   from   Factory-­‐D,   SKF  Mekan,  SKF  Poznan,  some  just-­‐in-­‐time  products  to  SCANIA  and  components  from  India.  The  storage  method  is  high-­‐racks  with  a  capacity  of  about  12  300  GSPs.    

Floor-­‐4:  Warehousing  4.1.1.5The  fourth  floor  is  only  used  for  storage  with  high  racks  and  has  a  total  capacity  of  about  12  900  GSPs.  There  are  mainly  Factory-­‐D-­‐products  and  some  SKF  Mekan-­‐components  at  this  floor.  Some  components  from  SKF  Mekan  are  located  exclusively  here,  as  they  must  be  handled  with  special  equipment.  

Floor-­‐5:  Management,  logistics  administration  and  inspection  4.1.1.6This   floor   is   divided   into   several   sections,   mainly   office-­‐space,   customer   returns   and  defects.  Defected  products  have  to  be  sent  to  the  SKF  lab  located  a  few  hundred  meters  from  the  warehouse.  If  there  is  only  a  scuff  on  the  package,  it  is  being  repacked  and  sent  to  a  lower  floor  where  it  is  being  registered  in  storage.  Returns  are  controlled  and  a  new  label  is  created  if  it  is  OK,  and  then  put  in  storage.  From  April  1st,  all  goods  on  this  floor  should  be  moved  to  the  high  racks  on  floor-­‐1.  

4.1.2 Materials  handling  activities  This  section  will  cover  the  activities  conducted  within  the  warehouse.  The  focal  point  is  the  activities  being  executed  directly  to  a  GSP.  

Inbound  flow  4.1.2.1The   three  major   inbound   flows   are,   as  mentioned   earlier,   goods   from   Factory-­‐D,   SKF  Poznan   and   SKF  Mekan.   As   these   products   are   stored   on   all   floors,   it   is   important   to  remember   that   one   truckload   often   is   designated   to   several   floors,   and   the   average  distribution   between   floor-­‐1,   floor-­‐3   and   floor-­‐4   is   equally   1/3   for   the   three   flows  Factory-­‐D,  SKF  Mekan  and  SKF  Poznan.    

Factory-­‐D  4.1.2.2Step  1:  Notification  When  the  production  cell   is   finished  with  a  GSP,   the  operator  prints  a  WASS-­‐label  and  puts  it  on  the  GSP.  From  now  on  SLS  is  responsible  for  the  GSP.  From  the  point  when  the  label   has   been  printed,   SLS   has   3-­‐4   days   (depending   on   from  what   factory   the  GSP   is  coming  from)  to  move  the  GSP  to  its  designated  storage  area  in  the  warehouse.      Step  2:  SLS  pick-­‐up  (floor-­‐2)  

Page 49: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  37  

An  operator  recognizes  that  a  GSP  in  the  outbound  area  of  one  of  the  production  cells  is  ready   to   be   picked-­‐up.   The   operator   picks   up   the   GSP   and   takes   it   to   the   automatic  elevator  (located  inside  Factory-­‐D).    Step  3:  GSP  travels  to  floor-­‐1  The   GSP   is   sent   one   level   down   via   the   automatic   elevator,   and   is   released   onto   a  conveyor   belt.   The   average   time   from  notification   to   this   step   is   42  minutes.   The  belt  goes   through   a   strapping   machine   where   some   products   are   strapped   depending   on  what  type  of  medium-­‐bearings  the  GSP  contains.  The  conveyor  belt  moves  the  GSP  about  10  additional  meters  to  the  end  of  the  belt.  From  here  an  operator  fetches  the  GSP.        Step  4:  Fetching  GSP  (floor-­‐1)    An  operator  lifts  of  the  GSP  from  the  conveyer  belt  and  puts  it  either  in  the  buffer  area  next  to  the  conveyor  belt  or  directly  in  the  main  buffer  if  there  is  space  available.  They  have  recently  started  to  inbound  scan  the  GSP  when  the  operator  takes  it.  If  there  is  lack  in   time,   the   operator   sometimes   ignores   the   scanning   and   focuses   on   emptying   the  elevator.      Step  5:  fetched  from  buffer  (floor-­‐1)  An   operator   fetches   the   GSP   from   the   buffer   and   scans   it.   Depending   on   the  characteristics   of   the   GSP   it   will   be   sent   to   different   locations.     As   there   are   storage  locations  on  all   five   floors   in   the  warehouse,  beneath  Factory-­‐D  and   in  storage  area  E,  WASS  tells  the  operator  where  it  should  be  put.  If  the  GSP  is  designated  to  the  first  floor  he   or   she   puts   it   in   storage   directly.   If  WASS   suggests   it   should   be   placed   on   another  floor   (3-­‐5),   the   GSP   is   placed   on   another   conveyor   belt   connected   to   one   of   three  additional  automatic  elevators.      Step  6:  Elevator  (floor-­‐1)  to  floor-­‐3,  floor-­‐4  Depending  on  the  product,  the  GSP  will  be  sent  to  floor-­‐3  or  floor-­‐4.  When  the  GSP  is  put  on  the  conveyor  belt  the  operator  presses  a  button  on  the  belt  telling  the  elevator  where  the  GSP   is  going.   It   is  possible   to  put   two  GSPs  on   top  of  each  other   in   the  elevator   to  send  up  more  GSPs  at  the  same  time.    Step  7:  Arriving  at  floor-­‐3,  floor-­‐4  The  conveyor  moves  the  GSP  to  the  end  of  the  belt  where  a  truck-­‐operator  fetches  it.    Step  8:  Transportation  from  conveyor  to  storage  The  operator  scans  the  GSP  and  WASS  tells  which  high-­‐rack  to  put  the  GSP  in.  He  or  she  then   takes   the   GSP   to   that   place  where   both   the   barcode   on   the   rack   and   the   GSP   is  scanned  and  the  inbound  flow  for  the  medium  bearings  is  complete.    

Page 50: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  38  

 Figure  13  -­‐  The  RTW  lead-­‐time  for  Factory-­‐D  

 Figure  13  depicts   the  number  of  GSPs   from  Factory-­‐D  and  the  amount  of   time   it   takes  from  unloading  to  put  in  storage  on  floor-­‐3,  floor-­‐4.  Although  it  is  clear  that  a  very  large  amount  of  all  investigated  GSPs  has  a  throughput-­‐time  of  less  than  5  hours  (40%),  there  are  a  great  number  of  outliers,  all  of  which  are  not  shown  in  this  graph,  as  it  would  not  fit  if  all  observations  were  included.    

Table  11  -­‐  Summary  of  RTW  lead-­‐time  for  Factory-­‐D     Factory-­‐D  Average  (hours)   39,5  Standard  deviation  (hours)   59  Max  (hours)   503  Sample  period   8/2-­‐5/4  Observations   18370  RTW  lead-­‐time  target  (hours)   72  

 Although  the  amount  of  observations  in  this  particular  flow  exceeded  2500,  the  standard  deviation  is  quite  high  (59  hours),  the  average  throughput-­‐time  is  almost  40  hours  and  the  maximum  time  to  storage  is  close  to  500  hours.    

SKF  Mekan  and  SKF  Poznan  4.1.2.3Step  1:  Empty  truck  (floor-­‐1)  Trucks  from  SKF  Poznan  and  SKF  Mekan  arrive  at  one  of  the  two  loading  docks  on  floor-­‐1.  The  operator  responsible  for  putting  GSPs  on  the  elevator  empties  the  truck  and  puts  the  GSPs  in  one  of  the  available  zones  in  the  buffer  on  the  first  floor.  The  GSPs  need  to  be  sorted  due  to  the  fact  that  WASS  distributes  them  throughout  the  warehouse  to  create  a  smooth   flow.   Sometimes   there  might  not  be   enough   time  or   space   to   sort   the  GSPs  at  arrival  and  they  are  put  together  with  old  ones  for  to  be  sorted  later.      

0,0  200,0  400,0  600,0  800,0  1000,0  1200,0  

0h  -­‐  5h  

5h  -­‐  10h  

10h  -­‐  15h  

15h  -­‐  20h  

20h  -­‐  25h  

25h  -­‐  30h  

30h  -­‐  35h  

35h  -­‐  40h  

40h  -­‐  45h  

45h  -­‐  50h  

50h  -­‐  55h  

55h  -­‐  60h  

60h  -­‐  65h  

65h  -­‐  70h  

70h  -­‐  75h  

75h  -­‐  80h  

80h  -­‐  85h  

85h  -­‐  90h  

90h  -­‐  95h  

95h  -­‐  100h  

100h  -­‐  105h  

105h  -­‐  110h  

110h  -­‐  115h  

115h  -­‐  120h  

120h  -­‐  125h  

Num

ber  of  GSPs  

Hours  

RTW  lead-­‐time  Factory-­‐D    Sampling  period:  8/2-­‐11/4    

Page 51: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  39  

The  operator  scans  the  GSP  and  the  barcode  representing  the  zone  where  he  or  she  puts  the  GSP.   This   is   done   in   order   to   know  where   the  GSPs   are   located  within   the   buffer.  There   are   no   visual   aids   to   notify   operators   of   truck   arrivals.   Sometimes,   the   truck-­‐driver   has   to   wait   for   his   truck   to   be   emptied   as   operators   are   occupied   with   other  activities  or  on  break.      Step  2:  Putting  GSP  on  conveyor  belt  (floor-­‐1)  The   GSPs   should   be   fetched   according   to   the   first   in   FIFO-­‐principle.   However,   as   the  operators  themselves  are  responsible  for  doing  this  by  visually  checking  the  whiteboard  and  as  this  standard  is  not  yet  fully  implemented  it  has  been  observed  that  newer  GSPs  has   been   taken   before   old   ones.   The   operator   should   empty   the   entire   zone   before  starting  with  the  next  one  to  eliminate  the  risk  of  LIFO.    Depending   on   what   storage   location   the   GSP   is   going   to   it   is   either   placed   on   the  conveyer   belt   for   the   inbound   elevator   or   fetched   by   another   operator  who  puts   it   in  storage  on  floor-­‐1.  If  the  GSP  is  going  to  floor-­‐3  or  floor-­‐4  the  operator  presses  a  button  at  the  belt  to  tell  the  elevator  what  floor  it  is  supposed  to  go  to.  The  GSP  is  then  moved  to  the  designated  floor  automatically  by  the  elevators.      Step  3:  Transportation  from  automated  elevator  to  storage  The  operator  scans  the  GSP,  where  WASS  tells  the  operator  which  high-­‐rack  to  put  the  GSP  in.  He  or  she  then  takes  the  GSP  to  that  place  where  both  the  barcode  on  the  rack  and   the   GSP   is   scanned   and   the   inbound   flow   for   SKF   Poznan   and   SKF   Mekan   is  complete.    

 Figure  14  –  RTW  lead-­‐time  for  SKF  Mekan  

 

0  

2  

4  

6  

8  

10  

12  

14  

Num

ber  of  GSPs  

Hours  

RTW  lead-­‐time  SKF  Mekan  Sampling  period:  8/2-­‐11/4    

Page 52: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  40  

GSPs  arriving  from  SKF  Mekan  show  a  similar  pattern  as  the  GSPs  coming  from  Factory-­‐D.   The   majority   of   GSPs   are   put   away   within   40   hours   but   with   a   large   number   of  outliers.    

Table  12  -­‐  Summary  of  RTW  lead-­‐time  for  SKF  Mekan     SKF  Mekan  Average  (hours)   52  Standard  deviation  (hours)   58  Max  (hours)     282  Sample  period     11/3-­‐8/4  Observations   110  RTW  lead-­‐time  target  (hours)   72    As   seen   in   Table   12   and   mentioned   above,   it   is   evident   that   the   throughput-­‐time   to  storage   for   this  particular   flow  fluctuates  heavily.  The  average  time   is  52  hours  with  a  standard  deviation  of  58  hours  and  a  maximum  time  of  282  hours.      

 Figure  15  -­‐  RTW  lead-­‐time  for  SKF  Poznan  

 The  throughput-­‐time  for  SKF  Poznan  is  similar  to  SKF  Mekan.  As  can  be  seen  in  figure  15,  the  largest  amount  of  GSPs  is  put  in  storage  within  30  hours.    

Table  13  -­‐  Summary  of  RTW  lead-­‐time  for  SKF  Poznan     SKF  Poznan  Average  (hours)   48  Standard  deviation  (hours)   61  Max  (hours)   286  Sample  period   18/3-­‐5/4  Observations   120  RTW  lead-­‐time  target  (hours)   96  

0  5  10  15  20  25  

Num

ber  of  pallets  

Hours  

RTW  lead-­‐time  Poznan  Sampling  period:  18/3-­‐5/4      

Page 53: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  41  

 Table  13   is   similar   to  both  Factory-­‐D  and  SKF  Mekan,  where   the   average   throughput-­‐time   is  48  hours  with  a   standard  deviation  of  61  hours.  The  maximum  time   for  a  GSP  was  286  hours,  which  is  similar  to  SKF  Mekan.  

From  buffer  to  storage  location  4.1.2.4To  see  how  long  the  GSPs  are  located  in  the  buffer  the  average  time  it  takes  to  transport  a  GSP  from  the  buffer  to  storage  was  measured.    

 Figure  16  -­‐  Throughput-­‐time  for  a  GSP  from  the  conveyer  belt  on  floor-­‐1  to  storage  

 Figure  16  presents   the   throughput-­‐time   for  a  GSP   to   travel   from   the  conveyor  belt  on  floor-­‐1   to   its   designated   storage   place   either   on   floor-­‐3,   floor-­‐4.   The   y-­‐axis   shows   the  accumulated   amount   of   samples   with   the   throughput-­‐time   marked   on   the   x-­‐axis.   As  noted   in   the   graph,   it   is   evident   that  most   of   the   GSPs   has   a   throughput-­‐time   in   this  process-­‐step   of   maximum   two   hours,   although   there   are   some   GSPs   experiencing   a  considerable  longer  throughput-­‐time.      

Table  14  -­‐  Summary  of  throughput-­‐time  from  the  conveyer  belt  on  floor-­‐1  to  storage     Automated  elevator  -­‐  Storage  Average  (hours)   2,7  Standard  deviation  (hours)   5,2  Max  (hours)   23,8  Sample  period   18/3-­‐27/3  Observations   98  

 Table   14   depicts   the   gathered   data.   The   average   time   to   storage   is   approximately   2,7  hours  (2  hours  and  42  minutes)  with  a  maximum  time  of  approximately  24  hours  and  a  standard  deviation  of  about  5  hours.      

0  10  20  30  40  50  

0h  -­‐  0,5h  

0,5h  -­‐  1h  

1h  -­‐  1,5h  

1,5h  -­‐  2h  

2h  -­‐  2,5h  

2,5h  -­‐  3h  

3h  -­‐  3,5h  

3,5h  -­‐  4h  

4h  -­‐  4,5h  

4,5h  -­‐  5h  

5h  -­‐  5,5h  

5,5h  -­‐  6h  

6h  -­‐  6,5h  

6,5h  -­‐  7h  

7h  -­‐  7,5h  

7,5h  -­‐  8h  

8h  -­‐  8,5h  

8,5h  -­‐  9h  

9h  -­‐  9,5h  

Num

ber  of  GSPs  

Lead-­‐time  

Throughput-­‐time    Buffer  -­‐  storage  

Measuring  period:  18/3-­‐5/4      

Page 54: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  42  

 Figure  17  -­‐  Amount  of  GSPs,  from  Factory-­‐D,  SKF  Poznan  and  SKF  Mekan,  the  warehouse  put  in  storage  every  

hour    Figure  17  depicts  the  amount  of  GSPs  on  average  from  Factory-­‐D,  SKF  Poznan  and  SKF  Mekan,   put   in   storage   every   hour   during   a   day.   Floor-­‐3   and   floor-­‐4,   including   the  elevator,  have  a   total  handling  capacity  of  22  GSPs/hour  (Jankulovksi  et  al.,  2012)  and  the   operator   on   the   floor-­‐1   can   under   normal   circumstances   put   away   about   30  GSPs/hour.  However,  this  is  largely  dependent  on  that  the  GSPs  are  stacked  and  sorted  in  the  buffer   in  a  correct  way,  and  that  their  storage  locations  are  located  next  to  each  other.   This   gives   the   warehouse   an   estimated   maximum   put   away   capacity   of   52  GSPs/hour.  

Outbound flow 4.1.2.5Step  1:  Picked  up  from  storage  The  operator  receives  a  pick   list   in  the  computer   in  the  forklift,  showing  which  GSP  to  pick.  The  GSP  is  fetched  from  storage  and  scanned  manually  to  confirm  pick-­‐up  in  WASS.      Step  2:  Put  in  elevator  The   GSP   is   put   in   one   of   the   two   automatic   elevators   that   will   send   the   GSP   to   the  packaging   area   on   floor-­‐2.   When   it   is   put   on   the   elevator   conveyor   belt,   the   GSP   is  scanned  once  again.  An  internal  transport  label  is  printed  and  put  on  the  GSP  before  it  is  sent  down  with  the  elevator.      Step  3:  Labeled  and  weighted  When   the   GSP   arrives   at   floor-­‐2   it   is   transported   by   conveyer   belts   to   the   weighting  station,   where   the   label   is   scanned   to   confirm   the   right   weight.   If   needed   it   is   being  strapped.  When   the  weight   has   been   controlled   a   new   label   is   printed   and   the   old   is  thrown  away.  After  a  transportation  label  is  printed,  it  is  ready  for  transportation.    Step  4:  Put  in  buffer  before  transportation  

0  

10  

20  

30  

40  

50  

60  0.00  

1.00  

2.00  

3.00  

4.00  

5.00  

6.00  

7.00  

8.00  

9.00  

10.00  

11.00  

12.00  

13.00  

14.00  

15.00  

16.00  

17.00  

18.00  

19.00  

20.00  

21.00  

22.00  

23.00  

Amount  of  GSPs  

Time  

Put  away  frequency  (GSPs/hour)  Measuring  period:  1/3-­‐8/4      

Page 55: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  43  

An  operator  picks  up  the  GSP  and  puts  it  in  a  buffer  with  other  GSPs  going  with  the  same  transport.  To  know  where  the  other  GSPs  are  located,  the  operator  scans  the  GSP  to  see  where   the   other   GSPs   in   the   same   shipment   are   located,   and   puts   it   where   they   are.  When   the   first  GSP   in   a   transportation   consignment   is   put   in   the   buffer,   it   is   scanned  when   put   there.   The   following   GSPs   are   put   in   the   same   location   and   scanned  accordingly.    Step  5:  From  buffer  to  transportation  unit  The  GSP  is  fetched  to  be  loaded  in  the  transportation  unit  and  at  the  same  time  scanned  by  the  operator  [status:  85].    Summary  of  the  statuses  for  the  outbound  flow:  22  –  An  order  for  a  GSP  to  be  picked  is  created  but  not  yet  released  50  –  The  order  is  released  by  the  transport  unit  and  is  now  available  for  picking  60  –  The  GSP  has  been  picked  up  by  a  forklift  65  –  The  GSP  is  sent  down  in  the  elevator  to  the  outbound  area  70  –  The  weight  of  the  GSP  has  been  confirmed  and  a  transportation  label  is  printed  out  75  –  The  GSP  is  put  together  with  other  GSPs  on  an  outbound  area  and  is  waiting  to  be  loaded  85  –  The  GSP  is  on  the  transportation  unit  and  the  transport  is  approved  for  outbound  destination.    90  –  The  order  is  closed  and  the  shipment  has  left  the  facility    

 Figure  18  -­‐  Amount  of  assignments  conducted  on  average  every  hour  

 Figure  18  depicts   the  amount  of  assignments  performed  every  hour   in  the  warehouse.  By  simplifying  an  assignment,  it  is  possible  to  state  that  one  assignment  equals  one  GSP.  The  assignment   is   registered  when   the  GSP   is  put  on   the   conveyor  belt   leading   to   the  outbound  area  on  floor-­‐2.  This  is  the  first  step  in  the  outbound  flow.    

0  

50  

100  

150  

0.00  

1.00  

2.00  

3.00  

4.00  

5.00  

6.00  

7.00  

8.00  

9.00  

10.00  

11.00  

12.00  

13.00  

14.00  

15.00  

16.00  

17.00  

18.00  

19.00  

20.00  

21.00  

22.00  

23.00  

Amount  of  GSPs  

Time  

Variation  in  picking  assignments  (assignments/hour)  

Measuring  period:  22/4      

Page 56: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  44  

Table  15  -­‐  Summary  of  outbound  RTW  lead-­‐time     Outbound  Average  (hours)   14  Standard  deviation  (hours)   13  Max  (hours)   104  Sample  period   12/3-­‐3/4  Observations   5805  

 As   can  be   seen   in   table  15,   the  average   throughput-­‐time   from  storage   to  an  outbound  transport  is  14  hours.  The  standard  deviation  is  almost  as  high  (13  hours).  

Shared activities between inbound and outbound 4.1.2.6Operators  at  floor-­‐3  and  floor-­‐4  driving  the  side-­‐loaded  forklifts  are  both  responsible  for  order  picking  and   fetching  GSPs   inbound   from   floor-­‐1.  To   increase   the   flow  efficiency,  SLS   launched   the   project   “multi-­‐cycle”.   When   the   operators   has   dropped-­‐off   an  outbound   GSP   on   the   conveyor   belt,   they   should   pick   up   a   GSP   from   the   inbound  conveyor,   making   it   possible   to   carry   out   assignments   both   ways.   This   project   is  temporarily  put  on  hold  due  to  system  problems,  but  the  operators  should  still  take  one  in  and  one  out.  The  operators  argue  that   it   is   too  time-­‐consuming  to  work   like  this,  as  they  cannot  keep  up  the  pace  on  the  outbound  assignments.  This  happens  if  the  inbound  pallet  and  the  outbound  pallet  are   located   in  racks  far   from  each  other.   In  these  cases,  the  operator  can  ignore  to  pick  up  inbound  GSPs  or  skip  picking  assignments  and  focus  on  one  flow  only.  This  mainly  occurs  when  the  pickers  fall  behind  on  their  pick-­‐lists.        

4.1.3 Resources Inbound   and   outbound   activities   share   the   same   resources.   This   creates   a   need   for  prioritization  of  how  they  should  be  distributed  or  re-­‐distributed.  The  general  rule  is  to  prioritize   the   outbound   flow   as   it   is   connected   to   the   service   level   and   the  measured  KPI’s  whilst  the  inbound  flow  does  not  affect  those  KPI’s  in  the  same  way.  

Personnel 4.1.3.1The  personnel  are  divided  in  two  schemes  that  together  make  sure  that  the  warehouse  is  staffed  every  hour  of  the  day  and  some  hours  of  the  weekend.    The  day  scheme  is  comprised  of  four  teams  with  seven  operators  in  each  team.  They  are  rotated  around  a  four-­‐week  schedule,  working  three  weeks  as  a  day  shift  and  the  fourth  week  as   the  evening  shift.  The  dayshift   is  divided   into   three  areas,  not  necessarily   the  same  amount  of  operators  in  each  team,  as  this  depends  on  the  current  workload.  One  team  is  responsible  for  the  first  floor,  one  team  for  the  second  floor  and  the  third  team  are  spread  out  over  the  three  remaining  floors.  The  teams  are  self-­‐governed  in  the  sense  that  they  are  responsible  to  make  sure  that  all  responsibilities  in  their  area  are  covered.  They  decide  who  works  at  what   station  at   the   regular   startup  meeting  every  morning  before  they  start  working.  See  table  16  for  the  structure  of  the  different  shifts.    

Page 57: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  45  

Operators   who   work   in   the   shift-­‐scheme   work   according   to   a   rotation   schedule;   one  week  nights  with  start  on  Sunday  and  end  on  Friday  morning,  one  week  evenings,  with  start   Monday   and   end   on   Friday,   one   week   days,   with   start   on   Monday   and   end   on  Saturday  and  then  one  week  off.  This  rotation  scheme  has  been  in  place  from  1st  of  April  2013,  where  there  now  is  a  more  even  distribution  of  personnel  throughout  the  day.    

Table  16  -­‐  Summary  of  the  shifts  in  Gothenburg  Teams   Working  

hours  Breaks   Work  days   No.  of  People  

Day-­‐Scheme          Day   06:48-­‐15:30   09:00:09:18  

11:18-­‐12:00  14:00-­‐14:18  

Monday-­‐  Friday  

21  (3x7)  

Evening   14:00-­‐22:00   30min  When   depends   on  workload  

Monday-­‐  Friday  

7  

Shift-­‐scheme          Night   21:48-­‐06:00   02:00-­‐02:20   Sunday-­‐  

Friday  5  

Evening   13:48-­‐22   30min  When   depends   on  workload  

Monday-­‐  Friday  

5  

Day   05:48-­‐14:00   09:00-­‐09:20   Monday-­‐  Saturday  

5  

Off-­‐work       Monday-­‐  Friday  

5  

 The   warehouse   used   to   have   temporary   staff   as   a   tool   for   adjusting   the   supply   of  capacity,  which   they  could  utilize   the   same  day   in  order   to   increase   the  capacity.  This  option   is   today   much   harder   to   use   for   several   reasons.   Where   the   most   significant  reason   found,   was   the   fact   that   they   haven’t   used   this   option   for   some   time   and   the  access  to  trained  staff   is   limited.  See   figure  19  for  a  graph  over  the  maximum  capacity  during  a  regular  day.  On  a  normal  day  the  staffing  is  on  average  92%.  This  number  takes  only   short-­‐term   absences   into   account.   Observations   has   been   made   where   the  operators  sometimes  take  longer  breaks  than  agreed,  making  the  idle-­‐time  longer  than  it  should,  which  affects  the  current  capacity.  This  observation  is  not  general  for  the  entire  workforce  and  believed  to  be  isolated  happenings.      

Page 58: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  46  

 Figure  19  -­‐  Maximum  supply  of  capacity  with  100%  attendance  

Team-leaders 4.1.3.2To  coordinate  the  work  and  secure  that  goods  are  sent  away  according  to  the  delivery  schedule,  there  are  four  team  leaders.  Their  job  is  to  makes  sure  that  the  operations  run  smoothly  and  that  available  resources  are  used  in  an  efficient  way.  They  try  to  even  out  the  workload  for  the  picking  assignments  by  sending  operators  to  the  floor  in  which  the  capacity  is  needed  the  most.  They  rotate  around  four  positions:  

• Goods   receiving   –   Help   out   and   coordinate  work   on   floor-­‐1   so   that   the   buffer  does  not  get  clogged  and  that  the  oldest  GSPs  are  sent  up  first.  

• Order  handling  –  Coordinate  work  regarding  order  picking,  packing  and  loading.  This  person  is  also  responsible  for  releasing  orders  for  the  early  shipments  while  the  rest  is  taken  care  of  by  customer  service.  

• Quality  –  Handles  return  of  damaged  inbound  GSPs  and  quality  problems  related  to  the  outbound  flow  e.g.  wrongly  picked  orders.  

• Evening  –  Coordinate  work  that  takes  place  during  the  evening.    The   team-­‐leaders   should  be  out   in   the  warehouse  20%  of   their   time  but   try   to  be  out  more   if   time   allows.   This   depends   greatly   on   their   current   position   and   back-­‐office  workload.      When  problems  occur,  it  is  the  team-­‐leaders  responsibility  to  handle  the  situation.  The  operators  can  call  any  of  the  team-­‐leaders  who  then  decide  what  actions  are  to  be  taken.  If   it   is   severe   enough   they  will   call   for   external   help   otherwise   they  will   handle   it   by  them  selves.  

Work areas 4.1.3.3This   section   presents   the   different   work-­‐areas   within   the   Gothenburg   warehouse,  grouped  according  to  floor.  It  also  states  the  responsibilities  for  the  operators  working  evenings  and  nights.    

0  5  10  15  20  25  30  35  

7.00.00  

8.00.00  

9.00.00  

10.00.00  

11.00.00  

12.00.00  

13.00.00  

14.00.00  

15.00.00  

16.00.00  

17.00.00  

18.00.00  

19.00.00  

20.00.00  

21.00.00  

22.00.00  

23.00.00  

0.00.00  

1.00.00  

2.00.00  

3.00.00  

4.00.00  

5.00.00  

6.00.00  

Amount  of  operators  

Maximum  supply  of  labor    From  April  1st  2013  

Number  of  operators  working  

Page 59: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  47  

Floor-­‐1  • Vertical   elevator   –   Empty   the   conveyor   belts   and  make   sure   that   the   elevator  

always   is   running  smoothly.  Also  responsible   for  put  away  goods  designated   to  the  LAD-­‐1  storage  area.  

• Storage  area  E  –  Picking  orders  from  storage  area  E  and  put  away  inbound  goods  designated  for  that  area.  

• LAD-­‐1  storage  –  Picking  goods  from  LAD-­‐1  storage  area  and  put  it  in  the  elevator  for   transportation   to   floor-­‐2,   as  well   as   fetch  goods   from   the  buffer  next   to   the  vertical  elevator  and  transport  it  to  the  elevator.  

• PLO-­‐1  storage  –  Put  away/pick  full  GSPs  on  floor-­‐1.  • Picking  –  Picking  orders  from  the  high  rack  storage.    • Goods   receiving   –   Manage   the   inbound   area   by   emptying   arriving   trucks,   sort  

GSPs  according  to  the  floor  and  load  GSPs  into  the  elevator.    Floor-­‐2  

• Packaging   –   Responsible   for   checking   the   weight   of   the   GSPs,   print   a  transportation  label  and  stripe  them  if  needed.    

• Loading   –   Responsible   for   picking   GSPs   from   the   conveyor   belts,   consolidate  them  into  full  shipments  and  then  load  them  onto  a  truck  or  container.    

• LAD-­‐2  storage  –  Picking  from  LAD-­‐2  storage  area.  • Packaging  –  Products  are  packed  into  parcels,  not  GSPs,  for  shipment.  

 Floor-­‐3  

• Order  Picking  –  Picking  less-­‐than-­‐full-­‐GSP-­‐orders  from  the  high  rack  storage.    • Side-­‐loaded  forklift  –  Picking  full  GSP-­‐orders  and  put  away  inbound.  

 Floor-­‐4  

• Order  Picking  –  Picking  less-­‐than-­‐full-­‐GSP-­‐orders  from  the  high  rack  storage.    • Side-­‐loaded  forklift  –  Picking  orders  of  full  GSPs  and  put  away  inbound  goods.  

 Night  and  weekend  

• Vertical  elevator  –  Same  responsibilities  as  during   the  day  but  more  emphasize  on  helping  out  other  operators.  

• Goods  receiving  –  Same  responsibilities  as  during  the  day.  • Side-­‐loaded  forklift  on  floor-­‐3  –  Put  away.  • Side-­‐loaded  forklift  on  floor-­‐4  –  Put  away.  • Load  outbound  trucks  –  GSPs  that  are  ready  for  transportation  are  fetched  from  

the  outbound  area  and  loaded  into  the  transportation  unit.    The   operator   responsible   for   the   vertical   elevator   is   supposed   to   help   out  with   other  duties  when  the  operator  has   time.  However   there  are  some  operators   that  persist  on  

Page 60: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  48  

only  being  responsible  for  emptying  the  elevator,  similarly  to  the  day  shift  when  there  are  more  people  working.  

Resource distribution 4.1.3.4The  schedule   for   the  next  day   is   created   in   the  afternoon  before   the   team-­‐leaders  end  their  shift.  It  only  shows  what  floor  the  workers  should  be  at  and  does  not  specify  what  work  area  he  or  she  should  be  at.  To  determine  how  many  are  needed  on  each  floor  they  look  at  what  resources  are  available  and  how  many  are  absent  together  with  what  types  of   order-­‐lines   are   released   in  WASS.   Areas   that  must   be   covered   at   all   times   are   first  secured  and  the  rest  of  the  available  workers  are  then  distributed  according  to  capacity  needs.  At  the  start  of  the  morning  shift  the  schedule  is  then  re-­‐evaluated  and  corrections  are  made  if  new  information  about  additional  absents  or  change  in  picking  volume  have  surfaced.  Even  if  an  operator  is  assigned  to  a  certain  area  he  or  she  is  encouraged  to  help  out  elsewhere  if  there  is  time  or  need.      The   team-­‐leader  who  has   the  position  of   order  handling,  monitors   the   outbound   flow  throughout  the  day  to  if  there  is  a  need  for  changes  in  the  distribution  of  resources.  He  or   she   checks   the   type   and   amount   of   released   orders   in   WASS   as   well   as   talks   to  customer  service  about  the  current  situation.  This  person  rotates  only  the  order-­‐pickers  while  the  team-­‐leader  who  is  responsible  for  goods  receiving  are  responsible  for  the  re-­‐distribution   of   personnel   on   floor-­‐1.   In   the   evening,   the   team-­‐leader   talks   to   the  customer-­‐service  department  about  the  current  workload  and  how  resources  should  be  distributed.      Breaks  are  spread  out,  making  sure  all  operations  are  not  idling  simultaneously,  except  for   one   hour   during   the   lunch   break.   This   creates   an   uneven   distribution   of   working  capacity  throughout  the  day.  This  could  cause  situations  where  operators  are  hindered  to  work   as   someone   else   is   on   break.   The   following   situations  were   found  during   the  data  gathering:    

1. The  operators  who  drive  the  narrow  aisle  forklifts  on  floor-­‐3  and  4  prioritize  outbound   goods   and   therefore   do   not   empty   the   inbound   conveyor-­‐belts,  preventing   the   operator   on   floor-­‐1   to   load   the   elevator   with   additional  inbound  goods,  causing  a  disruptive  flow.  

2. A  truck  has  arrived  to  floor-­‐1  with  goods  from  SKF  Poznan  or  SKF  Mekan  and  is  waiting  to  be  unloaded  with  the  responsible  operator  being  on  a  break.    

3. The   operators   handling   the   weighting   stations   have   their   breaks   while  operators  on  floor-­‐3  and  4  still  are  working.  The  team-­‐leaders  should  help  out  during  the  breaks  but  they  are  not  always  available.  

Equipment 4.1.3.5The   primary   resources   are   the   forklifts.   All   forklifts   are   equipped   with   scanners   and  connected  to  the  warehouse  IT  system  WASS,  see  Chapter  4.4.1.2  for  further  description  of   WASS.   It   is   therefore   possible   for   operators   to   receive   picking   orders   and   report  inbounded   goods   directly   from   the   forklift.   When   an   operator   accepts   a   new   picking  

Page 61: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  49  

order  he  or  she  will  see  it  on  their  screen  where  the  GSP  is  located  and  a  transportation  label   will   be   printed   out   in   the   forklift   to   attach   on   the   GSP   before   it   is   sent   down.  Similarly  the  operator  will  see  on  the  screen  where  WASS  suggests  is  the  best  place  to  put  an  inbound  GSP.      The  distribution  of  the  forklifts  between  the  floors  depends  on  the  workload  and  where  the   most   picking   assignments   are.   It   is   possible   to   move   a   forklift   from   one   floor   to  another   through   a   large   elevator.   There   are   three   different   kinds   of   forklifts   that   are  used  in  the  warehouse:  Side-­‐loaded  forklifts,  counterbalanced  forklift  and  order  picking  forklift.    The  standard  for  packaging  GSPs  are  on  half-­‐EUR  pallets  with  two  pallet  collars.  If  there  are  fewer  products  in  the  GSP  then  what  are  required  for  two  collars,  only  one  collar  is  used.  The  maximum  height  of  a  GSP  is  three  collars,  as  more  collars  would  result  in  that  the  GSP  would  not  fit  in  the  high-­‐racks.  When  they  are  deep-­‐stacked,  as  they  are  in  the  buffer  area  on  floor-­‐1,  they  are  stored  with  maximum  of  five  GSPs  high.    Some  goods  from  Factory-­‐D  are  not  suitable  to  store  with  GSP  collars  and  are  therefore  only  strapped  to  the  GSP  without  any  other  external  protection.  They  are  consequently  harder  to  deep-­‐stack,  as  they  only  can  be  stored  three  high.  

4.2 Schweinfurt  This  section  covers  how  the  warehouse  in  Schweinfurt  operates.  It  presents  the  layout,  the   materials   handling   activities   and   the   resources   used   to   conduct   the   different  operations  within  the  warehouse.  See  appendix  G  for  a  picture  of  the  layout.  

4.2.1 Warehouse  layout  The  warehouse  in  Schweinfurt  is  an  international  warehouse  and  the  same  type  as  the  warehouse   in   Gothenburg.   The   major   part   of   their   storage   goods   is   from   their   own  factory   and   goods   designated   for   the   German   market,   but   they   also   store   some  components  and  raw  material  for  the  production  facilities.  The  warehouse  is  also  a  hub  for  cross-­‐docking  goods  for  the  German  market  and  Eastern  Europe.      The  warehouse   is   located   in   the  same  area  as   the   two  other  manufacturing  plants,   for  which  they  serve  as  storage  location.  All  goods  that  will  be  stored  in  the  warehouse  are  inbounded  at  the  goods  receiving  area  while  cross-­‐docking  goods  and  outbound  goods  are  handled  in  the  outbound  dispatch  area  for  shortest  possible  transportation  distance.    The  warehouse   is  built   in  one   floor  with  an  automated  storage  system  as   the  primary  storage  method   that  has  a   capacity  of  handling  180  GSPs/hour.  The  picking  storage   is  however  regular  high-­‐rack  storage  used  by  the  picking  trucks.  The  major  transportation  is  made  through  a  conveyor  system,  transporting  the  GSPs  to  and  from  storage.    

Page 62: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  50  

Goods  receiving  4.2.1.1The  warehouse  has  three  loading  docks  located  right  next  to  the  automated  storage  and  retrieval  system  and  handles  external  goods  only.   Internal  goods  are  offloaded  outside  of  the  warehouse  from  the  loading  zones.      External  transports  The  warehouse  does  not  have  slot  times  for  their  external  inbound  transports,  similar  to  Gothenburg.  However,  they  assign  all  trucks  a  certain  time  that  they  should  arrive  at  the  docks.   Their   control   method   is   instead   focused   around   a   first   come-­‐first   served-­‐principle.  Management  believes  this  is  a  better  system  due  to  traffic  problems  and  that  it  can   be   extremely   hard   for   drivers   to   calculate   an   exact   arrival   time.      Internal  transports  The   warehouse   management   argues   that   there   really   is   no   need   to   know   when   the  internal   trucks   arrive   as   the   containers   only   contains   around  15-­‐24  GSPs   at   the   same  time,  while  there  is  a  greater  need  to  know  when  the  external  trucks  arrive  as  they  can  carry  up  to  80  GSPs  at  the  same  time.    The   inbound   area   is   directly   connected   to   a   buffer   where   goods   can   be   temporarily  stored  if  the  conveyor  belts  capacity  is  not  enough,  e.g.  due  to  several  transports  arriving  at   the   same   time.  The  buffer   can  be   accessed   from   three  ways,   eliminating   the   risk  of  GSPs  being  blocked.  The  two  factories  work  around  the  clock  while  the  warehouse  only  work  between  06:00  and  22:00.  As  a  result  there  is  a  workload  peek  at  the  start  of  the  shift   at   06:00.   If   there   is   not   enough   capacity   to   put   GSPs   on   the   conveyors   they   are  loaded   into   the   buffer   and   put   away   later   the   same   morning.   The   buffer   is   by   rule  emptied   every   day   so   that   no   GSPs   are   left   over   night.   There   are   a   few   exceptions   to  these  rules,  e.g.   if  there  is  a  large  container  arriving  at  the  end  of  the  shift.  In  that  case  the  area  will  be  emptied  in  the  morning.    When  there  is  a  problem  with  GSPs  they  are  lined  up,  with  walking  space  between  the  rows,  in  the  middle  of  the  inbound  area.  The  most  common  problem  is  that  the  scanners  cannot  read  the  barcode  on  the  labels  due  to  different  standards.  It  occurs  mainly  from  destinations  that  do  not  have  the  same  capabilities  e.g.  India  and  Mexico.    All   GSPs   are   automatically   weighed   and   measured   before   they   are   sent   away   to   the  automated  conveyor  belts.   If  a  GSP  does  not   fulfill   the  requirements   there   is  a  manual  quality   station   on   the   other   side   of   the   conveyor   belt,   where   GSPs   are   checked.   If  necessary,  they  are  sent  back  to  the  factory  or  repacked  on  a  new  GSP.  From  here,  there  is  a  conveyor  belt  leading  up  to  the  high-­‐rack  storage,  where  the  goods  are  stored.    The  conveyor  has  six  loading  belts,  four  for  regular  and  two  for  urgent  shipments,  which  merge  into  one  before  the  quality-­‐station  and  then  goes  into  an  automated  elevator.  This  elevator   operates   between   two   floors   only,   and   the   connecting   conveyor   belt   on   the  

Page 63: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  51  

second  floor  leads  into  the  high-­‐rack  storage  location.  The  conveyor  belt  sends  the  GSP  to  the  right  destination  with  the  help  of  ID-­‐scanners,  making  it  a  very  robust  automated  storage  system.    EUR-­‐pallets   are   also   inbounded   together  with   all   other   goods   but   since   the   conveyor  belts   cannot   handle   EUR-­‐pallets   they   are   stored   separately   in   their   own   high-­‐racks  adjacent  to  the  outbound  area.  The  EUR-­‐pallets  are  therefore  driven  to  the  other  side  of  the  warehouse   for   storage.  However,   there  are   currently  building  a  new   inbound  gate  for   EUR-­‐pallets   right   next   to   their   storage   location   in   order   to   reduce   the   internal  transportation.  Some  products  are  too  big  to  be  stored  on  a  EUR-­‐pallet,  and  are  instead  deep-­‐stacked  next  to  the  dispatch  area.  

Picking  and  Packing  4.2.1.2There  are  two  types  of  retrieval  orders:  replenishment  of  picking  location  and  full  GSP  orders.  When  a  picking  location  reaches  the  re-­‐order  point  an  automated  order  is  sent  through   WASS   to   retrieve   a   new   GSP   and   send   it   to   the   unpacking   station   for  preparation   before   being   transported   to   the   high-­‐rack   picking   location.   The   unpack  station  unstraps   the  GSP,   takes  of   the   lid   and   removes  unnecessary  protecting  plastic.  Full  GSPs  are  retrieved  in  a  similar  manner  and  sent  by  the  conveyer  system  to  one  of  two  packing  stations.  There  are  two  packing  station  available  but  the  second  station  is  only  used  for  high  volume  days  when  the  first  packing  station  cannot  handle  the  volume.      Less   than   full   GSP   picking   is   done   in   a   separate   location   from   the   automated   storage  system.  Picking  has  its  own  high-­‐racks,  which  is  continuously  replenished  having  19000  storage   locations.   The   picking   locations   are   determined   through   an   ABC-­‐classification  where  category-­‐A  products  are  located  in  the  center  of  the  picking  area  and  category-­‐B  and  C  located  towards  the  sides.    The  packing   stations   for  picking-­‐assignments  have   two   functions;  preparing  an  empty  GSP  for  the  forklifts  to  pick  up  at  the  start  of  a  picking  assignment  and  pack  the  finished  picking  assignments.  The  station   is  designed  to  allow  a  smooth  flow  where  the   forklift  enters  inside  the  packing  station  and  slides  off  a  GSP  with  a  finished  picking  assignment  to  the  left  and  at  the  same  time  slides  on  an  empty  GSP  from  the  right.    Products   packaged   in   box   cartons,   due   to   their   size,   have   a   separate   packing   station  where   they   are   handled.   They   are   handled   in   the   same  way   as   GSPs   but   in   a   smaller  system   where   they   are   sorted   on   a   conveyor   belt   into   destinations   and   then  consolidated  with  other  boxes  into  GSPs.  

Outbound  4.2.1.3The   outbound   operation   is   similar   to   the   operations   in   Gothenburg,  where   goods   are  sorted  and  consolidated  after  destination  in  buffers.  The  buffer  is  located  in  the  middle  of  the  warehouse,  which  gives  the  operators  the  ability  to  pick  goods  from  both  sides  of  an  isle  of  GSPs,  although  some  goods  are  stored  against  walls,  but  this  is  mainly  cross-­‐

Page 64: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  52  

docking  goods  in  the  outbound  room  where  space  is  more  limited.  The  buffer  zones  are  floating   and   their   size   can   be   adapted   to   the   shipments   need.   They   are   marked   by  painted  lines  together  with  signs  hanging  from  the  ceiling  for  easy  identification.        The  picking  is  generally  done  the  day  before,  which  increases  the  amount  of  goods  in  the  dispatch  area.  The  reason  for  this  is  to  have  a  buffer  against  uncertainty  and  same  day  orders.    

4.2.2 Materials  Handling  Activities  This  section  covers  the  activities  of  handling  the  GSPs  in  Schweinfurt.  

Inbound  flow  4.2.2.1The  incoming  goods  come  from  different  destinations.  They  are  grouped  as  internal  and  external   goods,   depending   on   if   they   arrive   from   the   adjacent   factory   or   from   other  places  further  from  the  warehouse.  The  internal  goods  are  sent  via  a  3PL-­‐provider  from  the   factory   to   the   transportation   docks   in   the  warehouse.   The   flow   is   initiated   by   the  forklift-­‐operator   in   the   factory,   pushing   a   button  when   he   has   filled   a   container  with  goods.  This  signals  the  3PL-­‐provider  to  pick  up  the  consignment  and  take  it  to  the  dock  at   the   warehouse.   This   throughput-­‐time   (from   pushing   the   button   to   arrival   at  warehouse)  should  be  60  minutes  at  most.  These  containers  usually  consist  of  15  GSPs  and  there  are  about  34  containers  arriving  to  the  warehouse  docks  each  day.  However  no   arrivals   occur   on   Saturdays   and   Sundays,   as   the   warehouse   does   not   operate   on  weekends.      The  external  transports  arrive  at  random  times,  but  the  transport  planners  at  SLS  tries  to  level  out  the  arrival  times  to  even  out  the  product  flow  as  much  as  possible.  There  are  about  20  daily  truck  arrivals,  consisting  of  roughly  80  GSPs  each.      Step  1:  The  truck  arrives  at  the  inbound  docks  and  the  driver  notifies  the  supervisor  on  duty.  The  supervisor  checks  so  that  the  right  amount  of  goods  is  on  the  truck  and  then  notifies  an  operator  how  many  GSPs  should  be  offloaded  and  hands  over  responsibility  to  that  employee.      Step   2:   The   operator   then   takes   the   GSP   onto   one   of   three   conveyor   belts  where   the  automated  system  takes  over.  If  there  is  no  space  on  the  conveyers,  the  GSPs  are  placed  on  the  warehouse  floor  just  inside  the  dock  on  a  designated  area.  Important  to  notice  is  that   the   consignment   is   put   in   the  middle   of   the   floor   in   order   to   access   it   from  both  ends.  This  is  important  as  they  are  working  according  to  the  FIFO-­‐principle,  so  the  GSP  put  furthest  in  should  be  the  one  taken  out  first.    Step   3:   The   GSP   is   transported   through   an   automated   checkpoint   where   its   size   is  confirmed.  The  GSP  can  have  one,  two  or  three  GSP  collars,  and  depending  on  which  one  it  has  it  will  be  given  a  designated  spot  in  the  storage  rack.  In  this  step,  WASS  designates  a  storage  location  for  the  GSP.  

Page 65: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  53  

 Step  4:  It  is  then  sent  to  the  second  checkpoint  where  the  theoretical  weight  is  checked  with   its   actual   weight.   There   is   a   tolerance   (+/-­‐   3%)   e.g.   if   the   GSP   is   wet,   but   if   it  however   should   differ  more   than   that,   it   is   being   pushed   onto   another   conveyor   belt  leading  to  a  manual  quality  station  where  the  goods  are  checked.  If  they  are  within  the  weight  limit,  they  are  sent  onto  an  elevator,  taken  one  floor  up  where  another  conveyor  belt  takes  them  to  the  automated  storage.      Step  6:  The  system  scans  the  GSP  automatically  when  arriving  to  its  designated  storage  area  and  the  inbound  flow  is  complete.    The  throughput-­‐time  from  put  on  the  inbound  floor  to  registered  in  storage  is  a  matter  of  hours,  if  not  minutes.  There  is  always  an  emphasis  on  taking  the  goods  directly  from  the   inbound   transport   to   the  conveyor  belt   leading   to   the   storage   racks,  but   if   several  transports  arrive  at  the  same  time  they  are  first  offloaded  onto  the  floor  and  then  put  on  the  conveyor  belt.    

Outbound  flow  4.2.2.2The  outbound   flow   is   comprised  of   three   flows;   two  designated   to  external   customers  and   one   for   internal   customers.   The   external   flows   are   comprised   of   full   GSPs   and  picking  assignments,  whilst  the  internal  flow  is  the  replenishment  of  new  picking  pallets  from  the  high  bay-­‐storage  to  the  picking-­‐area.    Full  GSP:  Step   1:   The   order   is   released   automatically   from   the   order   handling   system,  International  Customer  Service  System  (ICSS)  to  WASS,  WASS  fetches  the  GSP  from  the  storage  racks  via  conveyor  belts  (dedicated  to  the  outbound  flow)  to  the  outbound  area.  The  supervisor,  responsible  for  managing  an  even  outbound  flow  within  the  warehouse,  determines  which  of   the   two  packing  stations   it   should  be  sent   to   in  order   to  keep  an  even  flow  between  the  two.      Step  2:  As  the  storage  area   is   located  one  floor  above  the  regular  warehouse  floor,   the  GSP   is   transported   down   via   one   of   two   elevators   to   the   respective  weighting   station  where  it  also  is  being  labeled.      Step   3:   From   here,   a   forklift-­‐operator   takes   the   GSP   and   puts   it   in   the   designated  outbound-­‐spot  depending  on  its  destination.  These  spots  are  floating,  which  means  they  are  changed  every  day  in  order  to  cope  with  different  sizes  on  the  transports.    Step   4:   The   operator   then   put   the   goods   onto   the   outbound   truck   and   the   outbound  goods  for  full  GSPs  are  complete.          

Page 66: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  54  

Picking  assignments:  Step   1:   The   order   is   released   automatically   from   ICSS   and   the   supervisors   then  determines  when  the  order  should  be  picked.      Step  2:  A  forklift-­‐operator  takes  an  empty  GSP  from  one  of  the  three  picking  stations  and  tells  WASS  to  give  him  or  her  an  assignment.      Step  3:  The  picking  order  that  should  be  finished  the  soonest  it  prioritized  by  WASS,  and  sent   to   the   operator.   He   then   picks   the   different   items   from   the   picking   storage   and  return  the  complete  picked  GSP  on  a  conveyor  belt  adjacent  to  the  empty  GSPs  used  in  step  2.  Important  to  note  is  that  the  high-­‐rack  storage  situated  one  floor  above  is  not  the  same  storage  area  as  the  picking  storage.  This  will  be  explained  in  more  detail  shortly.    Step  4:  Similarly  as  with  full  GSPs,   the  picked  GSPs  are  weighted  and   labeled  and  then  ready  for  being  sent  to  its  dispatch  area.    Step  5:  A  forklift-­‐operator  moves  the  goods  to  the  pre-­‐determined  outbound  area  where  it  is  consolidated  with  other  packages  outbound  for  the  same  destination.    Replenishment  of  picking  storage:  The  picking  storage   is  replenished  through  the  automated  storage.  The  conveyor  belts  used  for  the  outbound  goods  are  also  used  for  this  purpose.  The  GSP  is  sent  via  its  own  dedicated  elevator  down  to   the   first   floor  where   it   is  put  on  a  conveyor  belt.  This  belt  can   hold   approximately   10  GSPs   and   is   continuously   off-­‐loaded  by   a   forklift-­‐operator,  who  replenishes   the  picking  storage  with   these  products.  The  products  on   these  racks  are  grouped  according  to  an  ABC-­‐analysis.      It   is   possible   to   place   an   order   until   two   hours   before   departure.   The   reason   is   to   be  flexible  towards  customers  but  at  the  same  time  have  buffer  to  cope  with  any  problems  prior  to  departure.    

4.2.3 Resources  Resources  in  the  warehouse  are  not  shared  between  inbound  and  outbound  activities  as  they   are   in   Gothenburg.   The   resources   are   instead   divided   into   three   areas:   goods  receiving,   picking   and   packing   and   outbound,  where   each   area   has   its   own   personnel  and   equipment.   Even   as   demand   for   capacity   varies   over   time,   the   same   amount   of  resources  is  kept  in  each  area.  There  are  some  situations  where  one  area  could  borrow  resources  from  another  area.  One  example  is  if  it  is  little  to  do  in  the  picking  area,  some  operators  will  be  sent  to  help  out  to  load  full  GSP-­‐orders  in  the  outbound  area.    When   deviations   occur,   there   is   a   clear   and   short   line   of   communication   between  workers,  supervisors  and  support  functions.  It  is  a  clear  focus  on  elevating  problems  and  

Page 67: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  55  

deviations  immediately.  The  manager  for  Quality  and  Environment  spends  roughly  40%  of  his  time  in  the  warehouse  to  investigate  and  talk  to  people  about  current  problems.    

Personnel  4.2.3.1There  are   two  shifts  working   in   the  warehouse,  where  one  shift  works  during   the  day  and  one  shift  during  the  evening.  The  personnel  rotate  between  the  two  shifts,  working  one  week,  days  and  one  week,  evenings.      

Table  17  -­‐  Summary  of  the  two  shifts  in  Schweinfurt  Teams   Working  

hours  Breaks   Work  days   No.  of  People  

Day   06:00-­‐14:00   08:42-­‐09:00  11:30-­‐12:00  

Mon-­‐Fri   54  

Evening   14:00-­‐22:00   18:00-­‐18:30   Mon-­‐Fri   47    As  there  are  no  rotations  between  the  areas  there  is  a  clear  understanding  of  how  many  operators  are  available  in  each  area.  There  are  5  operators  in  goods  receiving  during  the  day  and  4  during  the  evening,  41  operators  in  picking  and  packing  during  the  day  and  37  during   the   evening   and   8   operators   in   outbound   during   the   day   and   9   during   the  evening.    If   there   is  need   for  extra  capacity,  management  can  schedule  additional  work   time   for  the   personnel,   so   that   they   start  working   earlier   in   the  morning   or  work   later   in   the  evening.   There   are   some   regulations   for   how   this   can   be   used,   as  workers   never   can  have  more  than  100  hours  of  saved  overtime.  When  this  happens  the  operator  have  to  take  a  week  off  to  reduce  their  time  account.  

Work  areas  4.2.3.2This  section  presents  the  different  work  areas  in  the  warehouse.        Goods  receiving  

• Unloading  –  Responsible   for  unloading  arriving   trucks  and  put   the  GSPs  on   the  conveyor  belt  if  possible,  otherwise  put  them  in  the  buffer  zone  or  on  the  floor  in  the  middle  of  the  inbound  zone.  

• Quality  checkpoint  –  If  the  weight  of  the  GSP  is  incorrect,  it  needs  to  be  checked  so  the  right  product  and  quantity  is  in  the  GSP.  

• Return  goods  –  returning  goods  reported  into  the  system  and  put  in  storage.    Picking  and  packing  

• Order  picking  –  Picking  less  than  full  GSP  orders  from  the  high-­‐rack  storage.  • Packaging   –   Responsible   for   packing   GSPs   prepared   by   the   order   pickers.   The  

weight  is  checked,  it  is  being  striped  and  a  transport  label  is  printed.    • Consolidating  orders  –  pick  up  GSPs   from  the  packing  stations  and  put   them   in  

the  outbound  area.  

Page 68: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  56  

 Outbound  

• Load   trucks   –   Pick   GSPs   from   the   dispatch   area   and   load   them   onto   a  transportation  unit.  

 

4.2.4 Equipment  The  equipment  is  very  similar  to  Gothenburg.  However,  the  conveyor  belts  are  executing  most  of  the  movement  inside  the  warehouse,  as  forklifts  are  mainly  used  to  consolidate  orders  and  load  them  onto  a  transportation-­‐unit.    Every   morning   the   managers   see   what   type   of   orders   are   to   be   picked   and   then  distribute   the  workers   after  what   type   of   forklift   they   need.   The   same   rule   applies   to  equipment  as  to  personnel,  where  they  are  not  shared  between  the  work  areas.  If  there  is  a  great  need  for  extra  equipment  they  can  borrow  this  from  another  work  area.    The  main  types  of  packaging  are  the  same  as   in  Gothenburg  with  two-­‐collar-­‐GSPs.  The  warehouse  is  also  equipped  to  handle  EUR-­‐pallets.  Goods  are  stored  on  EUR-­‐pallets  due  to  special  customer  requirements.    Some  bearings  produced  in  Schweinfurt,  e.g.  for  wind  turbines,  are  extremely  large  and  require  special  boxes.  They  are  custom  made  for  the  bearing  and  have  built  in  legs  that  make  them  accessible  for  forklifts.    

4.3 Tongeren  This  section  covers  the  European  Distribution  Center  (EDC)  in  Tongeren.  It  goes  through  the  warehouse  layout,  the  materials  handling  activities  and  the  resources  used.    Tongeren   is   located   in   the   eastern   part   of   Belgium,   close   to   the   German   border.   The  warehouse   consists   of   three   buildings:   MWH   (Main   warehouse),   WEC   1   (Warehouse  External  Customers  1)  and  WEC  2  (Warehouse  External  Customers  2).  MWH  handles  all  ordinary  goods   flowing   through   the  hub  while  WEC  1  handles  all   cross-­‐docking  goods  and  non-­‐standardized  picking/packing   and  WEC  2   is  dedicated   to   external   customers.  As  WEC  2  only  stores  goods  for  external  customers  that  warehouse  will  not  be  a  part  of  the  benchmark  study.    

4.3.1 Warehouse  layout  EDC   is   categorized  as  a   regional  distribution  center.  The  main  difference   compared   to  Gothenburg  and  Schweinfurt   is   that   it   serves  a  different  market  with   lower  volume   in  each  order.  (See  appendix  H  and  appendix  I  for  layout).  

MWH  4.3.1.1The   main   warehouse   handles   all   major   product   flows   going   through   the   Tongeren  facility.  There  are  five  inbound  docks,  which  are  directly  connected  to  the  two  conveyor  

Page 69: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  57  

belts  dedicated  only  to   inbound  goods.  From  here,  the  goods  are  sent  to  an  automated  storage  and  retrieval  system.      The   picking   operations   in   the   warehouse   is   organized   in   what  most   similarly   can   be  described  as  packing  cells,  where  the  forklifts  either  fetch  empty  GSPs,  to  begin  picking,  or  drop  off  a  GSP,  from  a  finished  picking  assignments.    There   are   three   heavy   picking-­‐stations   and   two   unpacking-­‐stations,   dedicated   for  replenish   the   high-­‐racks   for   picking   goods   that   connected   directly   to   the   high   bay-­‐storage  via  conveyor  belts.  Furthermore,   there  are  three  packing-­‐stations   for   less  than  full  GSP  and  four  additional  stations  for  smaller  carton  boxes.      The   packing   area   for   less   than   full   GSPs   consists   of   four   stations,   each   capable   of  handling  10  GSPs  at  the  same  time.  When  packed,  the  GSP  is  taken  to  the  outbound  area  located  only  meters  away,  depending  on  which  dock  the  goods  are  supposed  to  depart  from.    All   loading-­‐docks  are  equipped  with  electrical   light  boards,  which  notify  when  a   truck  should  arrive  or  departure,  and  how  many  GSPs  should  be  off-­‐loaded.  

WEC  1  4.3.1.2Cross-­‐docking  goods  are  received  through  one  of  the  twelve  docks,  which  are  equipped  with  electrical  boards,  making   it  possible   for   the  operators   to  see  how  many  GSPs  are  supposed  to  be  offloaded,  where  the  truck  comes  from  and  the  goods  final  destination.  Within  this  area,  there  are  storage  racks  covering  the  20-­‐meter  high  walls  on  all  sides,  and  besides  this  there  is  also  space  in  the  middle  where  goods  can  be  temporarily  stored  while  handled.  The  products  are  grouped  according  to  destination.      The   non-­‐standardized   picking/packing-­‐products   are   located   in   the   same   building,  grouped   according   to   an   ABC-­‐analysis.   This   means   that   products   being   picked   most  frequently  are  located  closest  to  the  picking-­‐station  to  minimize  travel  distance.  There  is  one   picking/packing-­‐station   for   heavy   goods   and   one   station   for   lighter   and   smaller  goods.   The   smaller   goods-­‐area   has   one   conveyor   belt   where   all   finished   boxes   are  placed.   This   belt   is   then   dividing   the   flow   in   24   packing   stations   depending   on   their  destination.  The  station  for  heavy  picking  has  one  belt  in  total,  making  it  easier  to  follow  the  FIFO-­‐principle.    

4.3.2 Materials  handling  activities  The  chapter  describes  the  material  handling  activities  for  MWH  and  WEC  1.  

Material  Handling  Activities  MWH  4.3.2.1This  sub-­‐chapter  describes  the  materials  handling  activities  conducted  in  MWH  

Page 70: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  58  

4.3.2.1.1 Inbound  Goods  are  first  received  through  one  of  the  five  docks  dedicated  only  to  inbound  trucks.  The  operator   fetches  the  GSPs  from  the  truck  and  directly  puts   it   in  on  one  of   the  two  inbound   conveyor  belts.  However,   goods   arriving   from   certain   countries  must   receive  clearance   from  customs  before  proceeding,  making  a  buffer  zone  necessary  before   the  conveyor  belts.  Next  part  of  the  inbound  flow  is  a  quality  check.  It  is  conducted  to  check  weight  and  measurements  to  secure  that  the  GSP  is  according  to  standard.    This  step  is  the  same  as  the  one  conducted  in  Schweinfurt.    The  GSP  is  taken  with  conveyor  belts  to  the  high-­‐rack  storage.  The  storage  is  about  100  meters  deep,   25  meters  high   and  has   a   capacity   of   storing  60  000  GSPs.   Products   are  grouped  according  to  an  ABC-­‐analysis,  and  at  the  same  time  spread  out  in  several  aisles  to  hedge  against  a  breakdown  on  one  of  the  seven  automatic  cranes.  The  total  outbound  capacity  is  estimated  to  200  GSPs/hour  regardless  of  GSP  standard.    

4.3.2.1.2 Outbound  When  a  retrieval  order  from  the  automated  storage  system  from  WASS  is  received,  the  system   send   the   GSP   to   one   of   four   areas:   replenish   the   picking/packing   storage   in  MWH,   replenish   the   picking/packing   storage   in  WEC   1,   outbound   assignment   for   full  GSP  or  outbound  for  heavy  picking  (>17  kg).    Replenish  picking/packing  storage  in  MWH:  GSPs  are  taken  via  conveyor  belts  to  one  of  three  stations.  From  here,  a  forklift-­‐operator  fetches  the  GSP  and  puts  it  in  a  designated  GSP  location  in  the  picking/packing  storage.  WASS  automatically  suggests  a  spot  for  the  GSP  depending  on  what   is  available  and  in  accordance  with  the  ABC-­‐analysis.    Replenish  the  picking/packing  storage  in  WEC  1:  Via  conveyor  belts,  it  is  sent  to  a  station  similar  to  the  three  stations  for  replenishment  of  the  picking/packing  storage  in  MWH.  A  forklift-­‐operator  takes  the  GSP  from  here  to  another  conveyor  belt  taking  the  GSPs  to  the  other  building,  as  mentioned  earlier.    Outbound  assignment  for  full  GSP:  It   is   automatically   transferred   to   a   packing   station   adjacent   to   the   above-­‐described  stations.   An   operator   controls   the  weight,   prints   a   transport   label   and   takes   it   to   the  outbound  zone.      Outbound  for  heavy  picking  (>17  kg):  The  GSP   is   received   in   the  station  and   the  desired  number  of  parts   is  picked   from  the  box  with  the  help  of   lifting  equipment.  These  are   loaded  into  a  new  GSP  and  the  other  one  is  sent  back  to  the  high  bay-­‐storage.    Picking:  

Page 71: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  59  

Picking  is  done  with  forklifts  from  another  storage  location  with  high-­‐racks.  WASS  tells  the   operator   what   goods   and   in   what   quantity   should   be   picked   and   also   gives  suggestion  to  what  packaging  alternative  should  be  used,  either  GSP  or  cartons.  When  an  assignment   is   finished   the   GSP   or   box   is   dropped   off   for  weighing   and   labeling.   After  being   packed,   the   GSP   and   box   are   positioned   in   front   of   one   of   the   seven   outbound  docks  depending  on  their  destination.  When  a  truck  arrives,  a  forklift  operator  loads  the  goods  into  the  trailer  and  the  outbound  sequence  is  complete.  

Material  Handling  Activities  WEC  1:  4.3.2.2The  WEC   1   activities   consist   of   picking   and   packing,   offloading   and   on-­‐loading   cross-­‐docking  goods  as  well  as  replenishments  of  the  picking/packing-­‐storage  locations.      Picking  and  packing   is  executed  via   two  stations,  one  station   for   full  GSPs  and  one   for  carton  boxes,  where  the  operator  first  fetches  an  empty  GSP  and  returns  to  the  station  for  strapping  and  labeling  the  GSP.  Picking-­‐assignments  are  handled  in  the  same  way  as  the  other  warehouses,  through  WASS.      Replenishments   are   done   via   MWH   through   a   conveyer   belt   connecting   the   two  buildings,   and   are   automatically   initiated.   The   GSP   is   from   the   conveyer   taken  with   a  forklift  directly  to  its  designated  storage  location,  determined  by  WASS.    There  are  five  employees  dedicated  only  to  the  on-­‐  and  offloading  of  trailers.  When  the  trucks   arrive   the   operators   off-­‐load   the   GSPs   and   sort   them   in   the   middle   of   the  outbound  area.  If  for  some  reason  cross-­‐docked  goods  have  been  offloaded  in  MWH,  the  conveyor  belt  connecting   the   two  buildings   transports   the  GSPs   to  WEC  1   in   the  same  way   as   the   replenishments   of   the   picking/packing-­‐storage   area.   There   is   in   total   12  docks  for  both  inbound  and  outbound  goods.  

4.3.3 Resources  Fast  and  rapid  communication  is  very  important  in  EDC.  Management  emphasize  that  it  is  of  great  importance  that  everyone  knows  what  is  going  on  and  that  information  must  run  frictionless  through  all   levels  of  the  organization.  When  there  is  a  problem,  similar  actions  are  taken  in  Tongeren  as  in  Schweinfurt;  operators  call  the  technical  department  to  elevate  the  situation  in  order  to  take  action.      Management   further   believes   in   discipline   and   flexibility,   as   a   way   to   handle   the  uncertainty.   They   emphasize   the   importance   of   never   being   idle   and   that   everyone  should   be   busy   with   something.   If   however   personnel   are   idle,   they   should   be  redistributed   to   help   another   work   area   to   level   out   the   capacity.   As   a   control  mechanism   for   this,   they   conduct   spot   checks   for;  when   operators   take   a   break,   how  long   these   breaks   are   and  when   they   quit.   By   doing   this,   they   can  monitor   the   actual  working   time   for   each   operator,   providing   transparency   in   work   ethics.   The   most  important  aspect  of  this  is  the  security  of  knowing  that  everyone  is  productive  and  work  as  they  should.  

Page 72: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  60  

Personnel  4.3.3.1EDC  employs   roughly  180  people  within  warehouse  operations.  They  are  divided   into  three   shifts,  working   around   the   clock.  The   three   shifts   are  distributed   according   to   a  day   shift,   an  evening   shift   and  a  night   shift   (Table  18).  To  organize  and  control   these,  there  are  two  planners  and  one  supervisor  responsible  for  each  shift.  The  planners  are  responsible   to   coordinate   the   work   and   make   sure   that   the   workload   is   evenly  distributed  while  the  supervisor  has  the  overall  responsibility.    

Table  18  -­‐  Summary  of  the  three  shifts  in  Tongeren  Teams   Working  

hours  Breaks   Work  days   #People  

Day   06:00-­‐14:00   08:00-­‐08:10  10:00-­‐10:30  11:30-­‐11:40  

Mon-­‐Fri   60  

Evening   14:00-­‐22:00   16:00-­‐16:10  18:00-­‐18:30  19:00-­‐19:10  

Mon-­‐Fri   60  

Night   22:00-­‐06:00   00:00-­‐00:10  02:00-­‐02:30  04:00-­‐04:10  

Mon-­‐Fri   60  

Work  areas  4.3.3.2There  are  10  work  areas  in  MWH  and  8  in  WEC-­‐1.  These  areas  range  from:    

• Unloading  trucks    • Preparing  GSPs    • Picking    • Packing    • Loading    

 The  amount  of  workers  in  each  area  is  highly  dependent  on  the  current  workload.  It  is  therefore   difficult   to   generalize   how   many   workers   are   suitable   for   each   area.   As   a  result,   the   staff   is   cross-­‐trained   and   supervisors   keep   a   detailed   schedule   over   every  workers  skills  and  capabilities  in  order  to  assess  what  competence  is  available  each  day.    Certain   positions   require   more   or   finer   skills,   which   means   that   some   operators   are  more  frequently  used  in  certain  areas.  These  areas  are  for  example  loading  of  trucks,  as  this  task  requires  certain  skills  about  how  to   load  a  truck  and  make  the  weight  evenly  distributed  in  the  trailer.    Operators  are  further  not  rotated  between  the  different  shifts  and  there  is  also  a  limited  rotation   between   the   warehouses.   There   are   approximately   only   10-­‐15   operators  trained  in  the  other  warehouses  operations,  but  these  tasks  are  fairly  limited  and  linked  to  routine  tasks.  

Page 73: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  61  

Changing  capacity  4.3.3.3The  environment  in  EDC  is  different  and  less  predictable  compared  to  Gothenburg  and  Schweinfurt.   As   a   result   they   have   become   very   flexible   in   terms   of   increasing   or  decreasing  capacity.  This  is  possible  due  to  the  use  of  temporary  workers  hired  through  an  agency  pool.  By  using  the  agency  pool,  they  have  the  ability  to  change  their  outbound  capacity  by  30%  within  48  hours.      Every  Thursday  morning  there  is  a  resource  meeting  with  the  warehouse  manager,  the  supervisors,  the  planners  and  a  representative  from  the  agency  pool  deciding  how  many  workers  will   be  needed  during   the  next  week.  The  desired  amount  of  workers   is   first  determined   by   checking   how  many   regular   operators   are   absent   due   to   e.g.   sickness,  holiday  and  study-­‐leaves.  The  group  then  analyzes  the  net  change  in  order  lines  for  the  previous  week:  number  of  picked  order-­‐lines  vs.  number  of   incoming  order-­‐lines.  The  change  is  then  compared  to  last  year’s  data.    On   Tuesday   mornings   there   is   a   follow-­‐up   meeting   where   the   previous   Thursday   is  evaluated  to  see  if   there  is  a  need  for  adjustments   in  the  schedule.  They  then  have  the  possibility   to  make  changes   in   this  week’s  capacity  depending  on   the  amount  of  order  lines.    The  work  schedule  for  the  next  day  is  created  in  the  afternoon,  confirming  the  amount  of  operators   needed   for   tomorrow.   However,   this   is   not   a   fixed   schedule   and   planners  evaluate  the  actual  capacity  on  each  workstation  every  30  minutes  to  level  out  capacity.  Operators  are   informed  about   these  rotations  via  messages  sent   to   their  computers   in  the  forklifts.      There  are  two  additional  tools  used  to  change  the  capacity:  order  pulling  and  less  than  fulltime  staff.    When  an  order  is  placed  in  WASS,  depending  on  the  order  type  it  is  scheduled  a  certain  number  of  days  ahead.  If  there  is  excess  in  capacity,  it  is  possible  to  pull  an  order  from  a  later   date   to   increase   the   workload.   By   doing   this   they   can   use   the   available   excess-­‐capacity  right  now  and  decrease  the  demand  for  operators   in  the  next  days   i.e.  reduce  the  number  of  temp  workers  or  allow  more  holidays.    The  “less  than  full  time”-­‐staff  is  SKF  employees  that  work  a  certain  number  of  days  each  week.  They  are  people  who  either  go  to  school  or  have  other  businesses,  working  mainly  Mondays  and  Thursdays.  

4.3.4 Equipment  The   equipment   used   in   EDC   is   similar   to   the   equipment   used   in   Schweinfurt   and  Gothenburg.  There  is  however  a  larger  amount  of  picking  equipment,  as  the  order-­‐lines  per  order  is  higher  and  the  volume  of  each  order  is  lower.  

Page 74: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  62  

 Due   to   the   need   for   flexibility   and   ability   to   move   operators   from   one   work   area   to  another,  if  the  amount  of  a  certain  type  of  order-­‐line  increases,  they  need  more  forklifts  than  operators.  This  fact  lowers  the  equipment  utilization  rate  but  increases  their  agility  to  changes  in  short-­‐term  demand.    

4.4 Tracking  and  control  systems  This  section  covers  the  information  technology-­‐systems  used  at  SKF.  It  will  go  through  the  primarily  systems  used,  which  are  directly  connected  to  the  warehouse  operations.    

4.4.1 IT-systems The  same  warehouse  management  system,  WASS  is  used  for  all  three  of  the  warehouses  that   are   a   subject   of   this   thesis.   Gothenburg   and   Schweinfurt   has   a   common   order  handling  system  while  Tongeren  uses  a  separate  system.  WASS  and  the  order  handling  system  ICSS  will  be  described  in  the  next  two  sections.  

International Customer Service System 4.4.1.1The  interface  between  sales-­‐,  production-­‐  and  warehouse  systems  is  called  the  ICSS.  The  systems   main   purposes   are   to   bring   orders   together   for   both   external   and   internal  replenishment,   check   orders   against   availability,   and   allocate   stock   and   delivery-­‐time  fixing.   ICSS   also   determines   from   what   warehouse   the   product   should   be   shipped  depending   on   what   the   stock   availability   is   and   where   the   customer   is   located.   This  means   that  a  product   can  be  picked   from  one  warehouse  and  routed   through  another  before  it  is  delivered  to  the  customer.  

Warehouse Administration Service System (WASS) 4.4.1.2The  control   system  that  all   larger  warehouses  within  SLS  use   is   called   the  Warehouse  Administration   Service   System   (WASS).   Its   purpose   is   to   control   the   flow   through   the  warehouse  and  help  reduce  friction  in  the  various  activities  executed  in  the  warehouse.  The  system  supports  all  necessary  activities  and  functions  needed  in  a  large  warehouse:  inbound  goods,  replenishment,  picking  and  packing,  loading  and  inventory  control.  The  system   operates   in   real-­‐time   and   has   the   capability   of   communicating   with   other  systems  e.g.  customer  order  handling,  transport  arrangements,  production  planning  etc.  WASS  also  has  the  ability  to  communicate  with  other  internal  control  systems  within  the  warehouse  such  as  conveyors,  AGVs  and  automated  storage  and  retrieval  systems.      Forklifts  within  the  warehouse  are  equipped  with  computers  and  scanners  connected  to  WASS.   It   is   therefore  possible   for  operators   to  directly  receive  assignments  created  by  the   customer   order   handling   system.   Picking   lists   are   arranged   and   released   so   that  goods  are  picked  as  short  in  time  as  possible  before  the  transport  leaves.  The  real-­‐time  capability  also  allows  supervisors  to  have  a  continuous  control  over  how  much  is  picked  and  if  they  are  according  to  schedule.    

Page 75: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  63  

WASS  also  helps  putting  away  inbound  goods  by  suggesting  where  the  best  location  for  storing  a  unit  is,  both  in  terms  of  establishing  a  smooth  flow  but  also  in  terms  of  size  and  physical  similarity.  

Release of orders 4.4.1.3In   Gothenburg,   the   transport   department   is   the   gatekeeper.   They   are   responsible   for  creating   trips   according   to   the   agreed   throughput-­‐time   and  maximize   the   utilization-­‐rate.   They   consolidate   orders   into   one   transport   consignment   to   reduce   the   handling  activities  for  shipments  sent  to  the  same  destination.    Customer   orders   are   first   received   through   ICSS   and   then   checked   against   stock  availability.  If  there  are  enough  goods  in  stock,  a  pick-­‐list  is  created  in  WASS  and  planed  onto  a  transportation  unit.  All  truck-­‐transports  are  generally  planned  24  hours  prior  to  departure.   In   general,   orders   scheduled   in   the   afternoon   are   released   in  WASS   in   the  morning  and  picked  soon  after.  Orders  sent  in  the  morning  are  however  not  released  by  the  transportation  department  but  by  the  team-­‐leaders.      Due  to  the  short  picking-­‐time,  the  transport  department  has  more  time  to  move  and  re-­‐arrange  orders.  They  can  also  pull  order  from  a  later  date  onto  an  earlier  transport.  This  is   not   done   to   optimize   resource   utilization   but   rather   the   fill-­‐rate,   which   is   of   great  importance.  As  a  result,  the  picking  time  is  shorter  and  the  fill-­‐rate  is  almost  100  %.      In  Schweinfurt,  the  supervisors  release  the  orders  in  a  similar  manner  as  the  transport  department   in   Gothenburg.   Orders   are   released   the   day   before   being   scheduled   on   a  truck.  This   is  done   to  hedge  against  variability  and  secures  handling-­‐capacity   for   rush  orders.  In  Tongeren,  the  planners  release  the  orders’  as  they  are  the  personnel  with  best  understanding  of  the  flow  and  current  workload.  

Planned  RTW  lead-­‐time  4.4.1.4The  planned  RTW   lead-­‐time  differs  between   the  warehouses.  The  SKF  Poznan-­‐flow   in  Gothenburg  has  4  days  from  receiving  goods  until  being  available  in  storage  and  ready  for   picking,   whilst   Factory-­‐D   and   SKF   Mekan   has   3   days.   Schweinfurt   does   have   an  agreed  RTW  lead-­‐time  for  their  inbound  goods,  but  it  is  not  monitored  since  the  agreed  lead-­‐time  is  far  below  the  goal.  Tongeren  has  2  hours  to  empty  a  truck  but  no  fixed  RTW  lead-­‐time  for  when  it  is  supposed  to  be  available  in  storage.        The   planned   RTW   lead-­‐time   for   outbound   orders   from   Gothenburg   with   destination  Schweinfurt  or  Tongeren  is  15  hours.  The  orders  are  released  06:48  when  the  morning  shift  starts  and  the  orders  must  be  executed  before  the  cut  of  time  at  22:00.  Schweinfurt  and   Tongeren   do   not   plan   around   the   same   throughput-­‐time,   as   they   instead   apply  backwards   scheduling.   From   the   cut-­‐off   time,   2   hours   before   the   departure   time   it   is  calculated   how   much   time   the   operators   will   need   to   pick   all   assignments   in   a   trip,  package  them  and  load  them  onto  the  truck.  The  characteristics  and  size  of  the  trip  will  then  determine  how  much  time  the  operators  will  need  to  finish  the  assignment.  

Page 76: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  64  

 Table  19  -­‐  Summary  of  the  internal  planned  RTW  lead-­‐times  

Throughput-­‐time   Gothenburg   Schweinfurt   Tongeren  Inbound   72  hours   N/A   2  hours  to  empty  a  

truck  Outbound   15  hours  

 N/A   N/A  

   

Page 77: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  65  

5 Analysis  and  results  This   chapter   presents   the   analysis   and   results   of   the   inbound   flow   in   Gothenburg.   The  analysis  was  conducted  by  combining  the  model  for  analysis,  presented  in  chapter  2.5,  and  the   empirical   findings.   The   chapter   will   end   with   answering   the   research   questions  presented  in  chapter  1.3.  

5.1 Process  design  This  section  analyzes  the  flow  with  regard  to  how  the  inbound  processes  are  designed  and   performing   to   identify   specific   activities,   routines   and   standards   that   are   not  designed  to  fit  the  flow.  

5.1.1 Goods  Receiving  From  what  has  been  seen  in  figure  10  it  is  clear  that  there  is  a  low  level  of  coordination  of  inbound  transports  except  for  the  continuous  flow  from  Factory-­‐D.  Several  interesting  aspect   has   been   found   in   the   empirical   data   from   the   three   flows.   Noted   in   empirical  findings   of   this   report,   section   4.1.1.2.1,   there   are   regulations   for  when   trucks   should  arrive,  e.g.   the  trucks  from  SKF  Mekan  should  arrive   in  the  evening,  but  as  the  arrival-­‐times   is   not   evaluated   by   the   warehouse   department,   a   high   level   of   uncertainty   is  possible.  

Factory-­‐D  5.1.1.1Bearings  manufactured  in  Factory-­‐D  are  sent  to  the  warehouse  by  forklift  and  conveyor  belts,   which  make   it   unnecessary   to   apply   slot-­‐times.   Looking   at   the   variation   in   the  inbound  flow  from  the  Factory-­‐D  (figure  10)  it  is  a  stable  and  smooth  flow  that  is  easy  to  predict,   with   an   average   inbound   11   GSPs/hour   and   a   standard   deviation   of   4   (see  appendix   K   for   calculation).   Further   examination   of   figure   10  makes   it   clear   that   the  incoming  GSPs  from  the  factory  fluctuate  between  2  –  16  GSPs  on  average  per  hour.  This  flow  would  become  subject  of  investigation  as  the  relative  fluctuation  between  2  –  16  is  about  800%,  but  seeing  to  absolute  numbers,  this  flow  is  rather  even  compared  to  SKF  Poznan  and  SKF  Mekan.  

SKF  Poznan  5.1.1.2Trucks  arriving  with  goods  from  SKF  Poznan  have  greater  fluctuations  than  Factory-­‐D.  The  trucks  have  been  observed  to  arrive  in  the  morning  around  08:00  and  until  16:00,  with  most  goods  arriving  after  15:00.  Comparing  this  with  Factory-­‐D,   it  becomes  clear  that   this   flow   is   prone  with   heavier   fluctuations   in   arrival   times,  making   it   harder   to  predict  as   they  occur  more   in  a  random  manner.  The  average   inbound   flow  of  GSPs   is  5/hour  with  a  standard  deviation  of  12  (see  appendix  K  for  calculation).  The  uncertainty  in   the   flow   together   with   randomness   in   the   arrival   of   the   trucks   increases   the  importance  of  strictly  controlling  the  flow  in  order  to  coordinate  these  transports  with  the  other  warehouse  activities.      

Page 78: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  66  

Two   main   reasons   have   been   found   in   the   empirical   data   as   to   what   causes   the  uncertainty:   a   lack   in   internal   control   and   the   distance   between   SKF   Poznan   and  Gothenburg.  The  route  includes  ferries,  which  has  an  impact  on  the  lead-­‐time  since  they  only  depart  on  specific  times,  making  it  critical  to  not  miss  the  scheduled  time,  and  the  long  distance  makes  the  timing  more  difficult.  

SKF  Mekan  5.1.1.3The   inbound   flow   from  SKF  Mekan   contains   larger   volumes   than   the   trucks   from  SKF  Poznan  (as  can  be  seen  in  figure  10),  and  even  though  the  standard  deviation  higher,  it  is  less  volatile  than  the  goods  from  SKF  Poznan  (see  appendix  K  for  calculation).  As  seen  in  figure   10,   the   major   part   of   the   total   inbound   volume   occurs   between   15:00-­‐22:00,  where  SKF  Mekan  is  overrepresented.   It   is   important  to  note  that  the  trucks   from  SKF  Mekan  are  advised  when  departed,  which  makes  it  easier  to  estimate  arrival-­‐time,  hence  there   should  be  a  better  possibility   to   coordinate.  However,   although  being  advised,   a  lack  in  information  sharing  has  been  observed  as  the  forklift-­‐operators  on  floor-­‐1  claims  to  have  no  information  about  when  the  trucks  are  supposed  to  arrive.  The  information  is  available   but   not   sent   to   the   operators   handling   the   goods.   This   is   clearly   a  matter   of  communication   discrepancy   and   goes   against   what   (Stefansson   and   Lumsden,   2009)  says  about  the  flow  of  information;  that  it  must  be  complete  through  the  flow  in  order  to  reduce  uncertainty.    Besides  this,  trucks  are  occasionally  re-­‐scheduled  to  the  next  morning  if  there  is  a  lack  in  resources  available  to  offload  the  goods  in  the  evening.  By  this  action  the  total  lead-­‐time  increases  roughly  12  hours.   It  seems  that   there   is  a  design  error   in  the  process,  which  causes   a  mismatch  between   the   supply   and  demand   for   capacity   as   a   result   of   lack  of  planning  tools  for  how  the  flow  should  be  managed.    

5.1.2 Handling  GSPs  in  buffer  Examining   figure   16   proves   that  most   of   the   total   RTW   lead-­‐time   is   spent   inside   the  buffer   since   the   time   from   the   GSPs   are   fetched   from   the   buffer   to   storage   is   much  shorter  than  the  total  RTW  lead-­‐time.  It  is  interesting  to  see,  especially  in  figure  13,  that  almost  40%  of  the  GSPs  are  received  within  5  hours  and  still  the  average  RTW  lead-­‐time  is   41   hours.   This   is   a   clear   argument   that   the   FIFO-­‐principle   is   not   followed   and   that  there  are  GSPs  left  in  the  buffer  as  a  result  of  discrepancies  in  the  handling  process.  The  two   reasons   that   have   been   found   as   to   why   GSPs   are   left   in   the   buffer   are:   goods  blocked   by   new   GSPs   put   in   front   and   that   there   are   too   many   GSP   in   the   buffer,  resulting  in  the  GSPs  closest  to  the  conveyor  belt  is  moved  first.  As  a  result,  if  all  zones  are  filled  and  new  goods  are  placed  in  the  middle  of  the  buffer  outside  of  the  zones,  they  will  likely  be  picked  as  it  becomes  easier  to  handle  them  first.  This  clearly  goes  against  what   Farhani,   et   al.   (2011)   states   about  materials   handling   activities:   the   purpose   of  materials  handling  activities   is   to  provide   the  right  goods   in   the  right   time,   something  that  is  clearly  not  done  in  the  warehouse.    

Page 79: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  67  

A  gap  in  the  standard  for  how  operators’  work  has  been  observed,  as  they  do  not  work  in   the   same  way,  which   contributes   to   the   increased   uncertainty   regarding   the   goods  receiving   process.   The   same   structure   and   discipline   experienced   in   Schweinfurt   and  Tongeren  is  not  present  in  Gothenburg.  The  great  emphasis  on  “one  touch”  has  helped  them   to   improve   their   goods   receiving-­‐area,   which   can   be   seen   in   how   they   work.  Especially   in   Schweinfurt,   the   well-­‐defined   processes   have   given   them   a   robustness  allowing  them  to  handle  variations  and  identify  problems  very  quickly.  As  noted  during  the  visit  to  Schweinfurt,  everyone  had  a  clear  focus  on  eliminating  waste  and  always  try  to  optimize  the  output,  from  management  to  ground  staff.  Besides  this,  the  information  transparency   makes   it   possible   to   elevate   problems   right   away.   A   reason   for   the  Gothenburg  warehouse  being  less  efficient  is  the  layout.  There  are  several  floors,  which  make   coordination   more   difficult,   and   as   several   of   the   automated   processes   in  Schweinfurt  and  Tongeren  are  manually  executed  in  Gothenburg,  it  becomes  even  more  important  to  coordinate  activities  and  personnel.    Due  to  the  fact  that  WASS  assigns  a  storage-­‐location  for  every  GSP  by  distributing  them  equally  over  floor-­‐1,  floor-­‐3  and  floor-­‐4,  creates  a  need  to  sort  and  re-­‐arrange  the  GSPs,  depending  on  their  storage  location  when  they  arrive  to  the  buffer.  With  this  in  mind  the  deep-­‐stacking  method  used  in  the  buffer  in  combination  with  GSPs  stacked  against  walls  is   a   clear   problem   to   the   performance.   As   been   observed   in   Schweinfurt,   the   goods  receiving-­‐area   is   designed   to   never   stack   GSPs   against  walls,   in   order   for   them   to   be  accessible  from  several  directions.  This  method  is  hard  to  apply  in  Gothenburg  due  to  its  layout  constraints.  It  could  be  possible  if  the  buffer  constantly  was  emptied  and  that  the  only  GSPs   in   the  buffer  were   the  ones   just  offloaded,  as   it  otherwise  would  be  hard   to  navigate  in  the  goods  receiving-­‐area.  This  would  also  make  it  easier  for  the  operators  to  sort  the  GSPs  directly  at  arrival.    The  shift  rotations  together  with  the  deep-­‐stacking  principle  cause  further  challenges  to  the   performance   in   the   buffer.   If   the   operator   handling   the   goods   receiving-­‐operation  has  emptied  some  GSPs  in  one  zone,  but  hasn’t  had  time  to  send  everything  up  there  will  be   some   GSPs   left   in   that   storage   zone.   There   is   a   chance   that   the   next   operator  will  continue   somewhere   else   and   leave   that   half   empty   zone   blocked   for   new  GSPs.   This  creates   situations  where   it   is   important   for   the   next   operator   to   empty   the   half   filled  zones  and  continue  where   the  previous  operator   stopped   for   two   reasons;   first   it  will  prevent   the   possibility   of   newer   GSPs   blocking   old   ones   and   secondly   it   will   free   up  space  for  future  inbound  goods.    One  situation  has  been  observed  where  the  FIFO-­‐principle  is  deliberately  set  aside.  GSPs  from  Vehicle  Parts  are  taken  in  on  the  first  floor  and  almost  immediately  sent  up.  Those  GSPs  do  not  occupy  the  same  capacity  as  the  GSPs  going  to   floor-­‐3  and  floor-­‐4  as  they  are  sent  up  in  another  elevator.  However,  the  goods  receiving-­‐operator  still  has  to  load  them  in  the  elevator.  The  ideal  situation  would  be  if  the  GSPs  could  be  prepared  when  they  are  first  inbound  in  storage  area-­‐E  and  then  taken  directly  to  the  outbound  dispatch  

Page 80: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  68  

area  on  floor-­‐2,  instead  of  being  loaded  once  again  onto  a  truck  to  be  taken  in  on  floor-­‐1.  It  would  save  capacity   from   the  goods   receiving-­‐operator   if   the  GSPs   instead  could  be  driven  straight  away  from  storage  area-­‐E  to  floor-­‐2,  which  is  physically  possible.  There  is   however   some   challenges   that   needs   to   be   resolved   in   order   for   this   to   be  implemented.  The  GSPs  needs  to  be  merged  into  the  outbound  conveyor  system,  as  they  need  to  be  weighted  and  given  a  transport  label.  If  this  could  be  achieved,  capacity  and  space   could  be   freed-­‐up  and   relieve   the  operators  on   floor-­‐1   from  goods   that   are   just  cross-­‐docked.    In  the  current  flow,  GSPs  arriving  at  the  vertical  elevator  should  be  sent  to  the  buffer  at  floor-­‐1   directly.   However,   when   the   buffers   breakpoint   is   reached,   GSPs   sent   to   the  vertical   elevator   are   kept   in   the   buffer   zone   next   to   the   vertical   elevator.   As   a   result,  GSPs   tend   to  be  kept   there  even  after  capacity   is   freed  up.  This   results   in  newer  GSPs  being   handled   earlier,   which   contradicts   with   the   FIFO-­‐principle.   The   reason   for   this  could  be  that  they  do  not  measure  how  long  these  GSPs  have  been  in  the  buffer  and  that  other  GSPs  that  are  marked  on  the  white  board  are  sent  up  first.    As  can  be  seen  in  appendix  L,  there  is  on  average  957  GSPs  located  in  the  buffer.  Since  the   distribution   of   the   three   inbound   flows   are   17%   for   SKF   Poznan,   43,5%   for   SKF  Mekan  and  39,5%  for  Factory-­‐D  (appendix  K),  the  average  GSPs  located  in  the  buffer  can  be   segmented   in   these   three   categories.   As   noted   in   appendix   N,   the   percentage   of  overdue  GSPs   are   9%,   14%  and  7%   respectively   for   the   three   flows   SKF  Poznan,   SKF  Mekan   and   Factory-­‐D.   By   analyzing   these   numbers,   there   is   on   average   97   GSPs  (14+58+25)   overdue   in   the   buffer,  with   an   estimated   total   value   of   1  MSEK.   As   these  products  should  be  located  in  storage  and  be  available  to  customers,  it  is  1  MSEK  worth  of  stock  that  is  tied  up  in  unnecessary  capital.    

 Table  20  -­‐  Unnecessary  tied-­‐up  capital  

  SKF  Poznan  

SKF  Mekan  

Factory-­‐D  

Distribution  of  inbound  flow/24h  (%)   17%   43,5%   39,5%  Distribution  of  inbound  flow/24h  (GSPs)   163   416   361  Distribution  of  overdue  GSPs  (%)   9%   14%   7%  Distribution  of  overdue  GSPs     14   58   25    

Organization  and  identification  of  GSPs  in  the  buffer  5.1.2.1At  the  start  of  the  thesis  there  were  no  visible  standard  for  identifying  GSPs  in  the  buffer  and   sheets   of   paper  were   used   to   identify  which   floor   the   GSPs   should   be   sent   to.   In  order  to  determine  how  long  the  GSPs  had  been  in  the  buffer,  the  operator  had  to  look  at  the   GSP-­‐label.   This   action   supports   what   has   been   seen   in   the   lead-­‐time   graphs,   that  some  GSPs  are  forgotten  or  lost  in  the  buffer  due  to  lack  in  visible  control.  It  is  evident  that   the   identification   system  was   not   sufficient   to   handle   the   day-­‐to-­‐day   operations,  

Page 81: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  69  

which   goes   against   what   Arnold,   Chapman   and   Clive   (2008)   argue;   there   must   be   a  location-­‐system   for   how   and   where   goods   are   place   in   order   for   the   warehouse   to  function.      During   the   execution   of   this   thesis,   a   new   standard   for   identifying   goods   was  implemented  in  the  buffer.  It  was  a  whiteboard  showing  when  GSPs  arrived  and  to  what  location   they   were   designated.   This   method   has   made   it   easier   for   the   operators   to  follow   the   FIFO-­‐principle   and   given   the   team-­‐leaders   a   better   picture   over   how  many  GSPs  are  designated  to  a  certain  storage  area,  as  it  will  help  in  planning  resources,  e.g.  if  there  is  an  overrepresentation  of  GSPs  to  floor-­‐4,  the  personnel  should  be  redistributed  accordingly.  However,  due  to  the  fact  that  they  only  mark  what  date  the  GSPs  arrive  and  not  the  hour,  theoretically  it  could  differ  up  to  24  hours  between  the  arrival  times  of  two  GSPs,   since   goods   are   received   from   Factory-­‐D   24/7.   Furthermore,   only   GSPs   in   the  marked  zones  are  listed  on  the  whiteboard,  which  means  that  GSPs  in  the  center  of  the  buffer   is  not   listed,  nor   are   the  GSPs   from  Factory-­‐D,   located   in   the  buffer  next   to   the  vertical  elevator  marked.  This  means  that  there  is  a  gap  in  the  standard  that  could  lead  to  those  GSPs  being  left  in  the  buffer  longer  than  three  days.    Due  to  the  fact  that  the  system  was  recently  implemented,  it  is  too  early  to  evaluate  the  result   of   the   implementation,   as   there   is   a   potential   learning   curve.   It   will   however  eliminate  the  risk  of  having  overdue  GSPs  in  the  buffer,  as  the  operators  knows  how  long  the   GSPs   have   been   in   the   buffer.   Then   it   is   a   question   of   how   well   the   standard   is  followed  so  that  the  oldest  GSPs  actually  are  taken  first  and  not  the  ones  that  are  closest  to  the  elevator.    Today   it   is   still   allowed   to   place   GSPs   in   any   zone   as   long   as   it   is   marked   on   the  whiteboard.  It  creates  flexibility  to  adapt  the  size  of  the  zone  according  to  the  size  of  the  inbound  shipment.  However,  GSPs  designated  for  the  same  storage  location  are  then  not  always  grouped  together,  hence  could  be  scattered  in  several  zones.  By  assigning  a  fixed  amount  of  buffer  space  to  a  storage  location  (e.g.  floor-­‐3)  will  make  it  easier  to  see  how  many  GSPs  are  designated  to  a  certain  storage  area.  If  the  space  for  a  storage  area  is  full,  GSPs  will   then  either  have   to  be  put   outside   the   zones,   or   older  GSPs  have   to  be   sent  away.   It   could  give   incentives   to  disregard   the  FIFO-­‐principle   as  GSPs  placed   in   zones  causes  movement   challenges   for   the   forklifts.  However,   it   elevates   the  problem  of   too  many  GSPs  in  the  buffer,  and  that  an  area  in  the  warehouse  is  lagging  or  falling  behind.  This  restriction  of  flexibility  can  be  seen  as  contradictory  but  it  is  in  line  with  Liker  and  Meier’s  (2006)  findings:  problems  need  to  be  elevated  and  taken  care  of  immediately.  

Handling  of  accumulating  GSPs  5.1.2.2As  been  seen  and  confirmed  by  the  team-­‐leaders,  there  is  a  critical   limit   in  the  volume  that  divides   the   inbound  processes  even   further,  which   is   assumed   to  occur  when   the  amount  of  GSPs  reach  about  800,  as  stated  by  the  team-­‐leaders.  As  long  as  the  number  of  GSPs  is  kept  below  this  limit  the  operators  has  the  necessary  space  to  sort  the  incoming  

Page 82: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  70  

goods  with  respect  to  its  designated  storage  location.  When  the  number  of  GSPs  reaches  this   breaking   point,   the   operators   start   to   loose   control   and   cannot   perform   the  activities  as   they  are  meant   to,  due   to   the   lack  of  space  and  coordination.   It   is  evident  that  there  are  no  routines  for  how  to  act  when  this  limit  is  reached,  and  incoming  goods  are   handled   by   “in   the   moment   solutions”.   This   goes   against   what   Spear   and   Bowen  (1999)   argues.   There  must   be   clear   routines   and   agreements   for   how   to   conduct   the  work,  as  can  be  seen  in  Schweinfurt  and  Tongeren.    When  the  buffer  reaches  the  break  point,   the  GSPs  are   first  off-­‐loaded   in  any  available  space   and   then   sorted,   adding   an   extra   handling   activity.   If   the   goods   receiving-­‐area  were   constantly  empty   it  would  be  easier   to   sort   an  entire   inbound  shipment  directly  after  which  floor  the  GSPs  are  going.  This  is  only  possible  by  continuously  making  sure  that  the  elevator  is  moving  and  sending  GSPs  up  to  storage.    When   the   amount   of   GSPs   reaches   above   800,   there   the   challenge   of   where   to  temporarily  store   the  GSPs  becomes  evident.  This   is  not  only  a  coordination  challenge  but  more  important  a  safety  issue  as  GSPs  are  put  in  the  driving  lanes  and  walking  isles.  The  problem  must  be  triggers  in  the  process  that  elevates  the  problem  earlier  and  gives  the  ability  to  work  proactive  instead  of  being  reactive  and  apply  overtime.  

5.1.3 Put  away  The  lead-­‐time  from  elevator  to  storage  is  on  average  2  hours  and  42  minutes,  where  the  longest  observed  time  was  approximately  24  hours.  According  to  the  team-­‐leaders,  this  is  beacaue  of  GSPs  sent  to  the  wrong  floor,  which  then  are  put  to  the  side  until  someone  brings  it  to  the  right  floor.  This  is  possible  since  the  operator  manually  press  a  button  to  guide  the  GSP  to   the  designated   floor.  As   there  are  human  errors   this   is  one  reason  to  why  some  GSPs  are  sent  to  the  wrong  storage  location.  Both  Schweinfurt  and  Tongeren  have  fully  automated  conveyor-­‐systems  all   the  way  to  the  automated  storage  facilities,  making  it  less  prone  to  human  errors,  such  as  misguided  GSPs.    The  operator  on  the  first  floor  is  capable  of  putting  two  GSPs  on  the  conveyer  belt  but  the  workers  on  floor-­‐3  and  floor-­‐4  can  only  take  off  one  GSP  at  a  time.  This  makes  the  storage-­‐process   more   time-­‐consuming   than   the   process   of   putting   them   on   the   belt.  Furthermore  the  operators  putting  away  goods  must  also  register  the  GSP  in  the  storage  location.     With   this   in   mind,   the   current   bottleneck   in   this   process   is   the   forklift-­‐operators   (Jankulovski   2012)   taking   the   GSPs   from   the   belt   to   its   designated   final  storage   location.   In  order  to  cope  with  the  high  amount  of  GSPs  on  floor-­‐1,   it  becomes  clear  that  the  warehouse  personnel  on  floor-­‐3  and  4  have  to  offload  the  incoming  GSPs  at  a  steady  pace  in  order  for  the  workers  on  the  first  floor  to  send  up  more  GSPs.      The  operators  are  told  to  use  multi-­‐cycle  (one  in-­‐one  out),  which  means  that  every  time  one   GSP   is   put   on   the   outbound   belt   on   floor-­‐3   or   4,   one   GSP   is   also   taken   from   the  inbound  belt  to  storage.  But  as  everyone  does  not  follow  this  principle  there  is  a  gap  in  

Page 83: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  71  

how  the  routines  are  designed  compared  to  how  the  routine   is  actually  executed.  This  concludes  that  the  warehouse  personnel  are  working  in  different  ways,  which  makes  the  processes  less  robust  and  more  difficult  to  control.  One  of  the  arguments  presented  was  operators’  did  not  have   the   time   to  apply   this  principle  due   to   the  heavy   focus  on   the  outbound   flow  and   the   sometimes   long  driving  distances  between  where   the   inbound  GSP  should  be  placed  and  where  the  outbound  GSP  were  to  be  pick.    It  has  been  suggested  that  the  current  ABC-­‐analysis  need  to  be  re-­‐examined  and  updated  to   the   current   flow.   If   there   was   a   functioning   ABC-­‐analysis,   the   driving   distances  between  picking  and  put  away  assignments  could  be  reduced.  This  would  then  make  it  more  feasible  for  the  drivers  to  use  the  one-­‐in  one-­‐out-­‐principle.    There  is  furthermore  no  sense  of  urgency  regarding  the  inbound  flow.  If  there  were,  the  operators  would  take  one-­‐in  one-­‐out.  There  should  not  be  dips  in  the  put  away  graph  if  everyone  worked  after  the  same  standards  and  routines.  The  forklifts  must  be  moving  continuously,  as  they  are  the  bottleneck.  Every  minute  they  are  idling  is  a  minute  lost  in  the   system.  Furthermore   there  must  be   an  emphasize  on   that   inbound  operations   are  the  focus  during  the  night,  as  there  is  less  outbound  activities,  to  make  sure  that  the  flow  is  continuously  moving  and  that  the  they  at  least  reach  27  GSPs  put  away  per  hour.      The   put   away   capacity   is   estimated   to   52   GSPs/hour   on   a   regular   day,   which   in  comparison   with   the   actual   put   away   frequency   of   23   GPSs/hour,   gives   an   average  efficiency   of   44%.   It   is   clear   that   for   a   large   part   of   the   day   there   should   be   excess  capacity   to   handle   the   three   peeks   (figure   10),   but  with   an   average   efficiency   of   44%  that   results   in   9   times   during   the   day   where   the   inbound   volume   is   larger   than   the  current   put   away   frequency.   This   shows   that   there   are   factors  within   the  warehouse  processes  that  disrupt  the  flow,  preventing  it  from  reaching  the  maximum  capacity,  e.g.  sorting  and  stacking  pallets   in  buffer   for   later  handling.   It   is   therefore  a   fact   that   they  cannot  handle   the   inbound  volume  by   the   current   routines   and   activities   to  put   away  enough  goods,  which  then  results  in  accumulating  GSPs.  In  order  to  reach  a  state  where  GSPs  are  not  accumulating  the  warehouse  must  reach  a  put  away  frequency  of  at   least  27  GSPs/hour  equivalent  to  an  increase  of  about  17%.    

Table  21  -­‐  Inbound  volume  vs.  put  away  frequency     Inbound   Put  away   Average  increase  GSPs/hour   27   23   4  GSPs/24h   645   552   93    As   the   multi-­‐cycle   not   is   continuously   used,   the   required   ramp-­‐up   of   17%   will   be  possible  if  the  forklift-­‐drivers  handling  the  put  away  operations  on  floor-­‐1,   floor-­‐3  and  floor-­‐4  would  apply  this  principle  two  more  times  every  hour.  This  will  result   in  a  put  away  frequency  of  an  additional  6  GSPs,  which  is  above  the  required  amount  of  27  GSPs  every  hour.  

Page 84: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  72  

 This   ramp-­‐up   will   be   possible   by   doing   one   of   two   things:   increase   productivity   or  increase   the   number   of   operators.   As   can   be   seen   in   appendix   J,   the   amount   of   GSPs  being   put   away   fluctuates   during   the   day.   By   adding   4   GSPs   to   the   put   away-­‐amount  each   hour,   hence   increasing   the   put   away-­‐frequency   to   27   GPSs/hour,   the   needed  increase   in   productivity   becomes   4%,   11%   and   13%   respectively   for   the   day   shift,  evening  shift  and  night  shift.        Looking   into   the   amount   of   operators   instead,   an   increase   of   4%,   11%   and   13%  respectively   for   the   day   shift,   evening   shift   and   night   shift   suggests   one   additional  operator  within  the  day  shift,  one  additional  operator  during  the  evening  shift  and  one  additional  operator  during  the  night  shift.  See  table  22  for  a  summary  of  the  calculations.      

Table  22  -­‐  Desired  increase  in  productivity  or  operators     Day   Evening   Night  Current  productivity  (assignments/man-­‐hour)   4,11   3,11   6.26  Needed  productivity  (assignments/man-­‐hour)   4,26   3,44   7,06  Current  capacity  (amount  of  operators)   26   12   5  Needed  capacity  (amount  of  operators)   27   13   6  Increase   4%   11%   13%  

   

 Figure  20  -­‐  The  current  put  away  frequency  compared  to  the  required  

 There  is  a  spoken  agreement  that  inbound  goods  should  be  prioritized  during  the  night.  Looking   at   absolute   numbers,  more   GSPs   are   put   away   during   the   day,   but   taken   the  supply  of  capacity  into  consideration  the  productivity  during  the  night  is  actually  higher  than  during  the  day  (see  appendix  J).  This  proves  the  prioritization  of  the  inbound  flow  during   the   night.   With   a   capacity   of   52   pallets/hour   it   is   possible   to   store   440   GSPs  

0  10  20  30  40  50  60  

0.00  

1.00  

2.00  

3.00  

4.00  

5.00  

6.00  

7.00  

8.00  

9.00  

10.00  

11.00  

12.00  

13.00  

14.00  

15.00  

16.00  

17.00  

18.00  

19.00  

20.00  

21.00  

22.00  

23.00  

GSPs  put  away/hour  

Time  

Put  away  frequency  Sampling  period:  1/3-­‐8/4    

Average  put  away  frequency  

Required  put  away  frequency  

Page 85: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  73  

between  22:00  –  06:00,  but   they  only  manage   to  put   away  200  GSPs  during   this   time  interval.  The  average  put  away-­‐frequency  is  believed  to  be  at  the  same  level  during  the  night  even   though   there  are   fewer  workers  present,   since   there   is  an  explicit   focus  on  the   inbound   flow,   hence   the   workers   should   only   conduct   activities   within   this   flow,  sending  goods  to  storage.    The   put   away   frequency   decreases   between   14:00   and   16:00,   although   this   is   when  there   are  most   operators   in   the  warehouse.   Stretching   this   further,   it  means   that   the  new  shift   starting  at  14:00   is  not  working  with  put  GSPs   in   storage,   as   can  be   seen   in  figure   20.   This   shows   that   the   coordination   of   work   does   not   function,   as   it   should.    When  the  evening  shift  starts  at  14:00  and  the  maximum  supply  of  capacity  is  reached  (figure   20),   The   amount   of   put   away-­‐GSPs   are   constantly   declining.   This   could   be   a  result  of  that  the  operator  in  the  buffer  has  to  prioritize  other  activities  instead,  which  then  would  be  a  discrepancy  in  the  process  design  that  puts  work  out  of  synch.    When  the  operators  have  a  break  between  02:00  and  02:20  it  is  obvious  that  the  average  number  of  put  away  GSPs   should  decline  between  02:00  and  03:00,   as   can  be   seen   in  figure  20.  However,  there  is  a  remarkable  dip  in  the  put  away-­‐frequency  between  05:00-­‐07:00  although   the  same  capacity   is  available  during   this   time  as  during  04:00,  where  the  frequency  is  more  than  twice  as  high.  No  alternative  activities  have  been  identified  that  would  make  up  for  the  loss  in  the  amount  of  put  away  GSPs  at  this  time.  

5.1.4 Taking  on  a  holistic  view  Summarizing  the  bars  of  the  put  away  frequency  graph  (figure  17),  the  average  number  of  GSPs  put  in  storage  is  23  GSPs/hour.  With  an  average  amount  of  GSPs  in  the  buffer  of  957  (appendix  L),   the   throughput   time   for   the  buffer  will  be  42  hours.  This  correlates  with  the  calculated  RTW  lead-­‐times  that  were  extracted  from  WASS.    The   process   of  managing   inbound   transportation   is   a   clear   challenge   for   the   inbound  flow.  There  is  a  great  level  of  uncertainty,  which  makes  it  hard  for  the  operators  to  plan  their  work.  This  proves  that  the  element:  Measurement,  presented  by  Wei  et  al.  (2006),  is  missing   in   the   inbound  process.  The  coordination  between   the  buffer   to   floor-­‐3  and  floor-­‐4  has  also  proven  to  be  a  problem  for  the  warehouse.  Finally,  no  routines  has  been  found  for  how  they  should  work  proactively  with  the  operations  and  everything  is  done  by   reacting   to   what   is   coming   in.   If   the   warehouse   had   the   possibility   to   plan   the  inbound  transports  with  slot  times  and  coordination  with  the  3PL-­‐companies,  it  would  be   easier   to   level   out   capacity   and   coordinate   the   work   between   the   floors.   By  coordinating   arrival   times   and   level   out   the   inbound   flow  by  matching   the  number  of  inbound   GSPs/hour   with   the   put   away-­‐frequency,   will   reduce   the   accumulating   GSPs  even  without  any  improvements  in  the  put  away  frequency.    Due   to   the   fact   that   floor-­‐1,   floor-­‐3   and   floor-­‐4   are   connected   via   elevators,   the  personnel   on   these   floors   have   to   communicate   in   order   for   their  work   to   be   leveled.  

Page 86: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  74  

However,  during  the  observations  it  seemed  as  they  worked  separately  with  little  or  no  communication.   The   only   information   the   goods   receiving-­‐operator   gets   is   from   two  monitors   on   the   first   floor   displaying   the   conveyor   belts   on   the   other   floors.   The  operators   on   floor-­‐1   cannot   be   sure   when   the   operators   will   take   GSPs   from   the  conveyer,   as   the   conveyors   are   emptied   when   the   operators   driving   the   side-­‐loaded  forklifts  has  time.  It  shows  that  there  is  as  a  gap  in  the  put  away-­‐processes,  making  the  inbound  flow  unstable  and  unreliable.  In  order  to  stabilize  the  inbound  flow  there  must  be  better  communication  between  the  operators  and  standards  for  how  they  work.    Examining   this  on  a  more  detailed   level,   there   is   a  need   for   coordination  between   the  floors.  The  personnel  on  the  first  floor  needs  to  be  synchronized  with  the  personnel  on  the  other  floors  to  make  sure  they  do  not  work  with  activities  that  are  not  aligned.  When  prioritizing   the   outbound   flow   during   the   day,   the   personnel   on   floor-­‐1   must   be  informed  about  how  this  is  done  to  adapt  their  work  after  how  much  they  can  send  up  and  to  what  floor.    The  status  on  the  outbound  operations  is  clearly  displayed  on  a  monitor  presenting  an  overall   picture   of   the   current   situation.   Remarkably,   nothing   is   displayed   for   the  inbound   flow.   To   increase   the   sense   of   urgency   for   the   inbound   flow   there   should   be  indicators  displaying  the  actual  condition  on  the   inbound  flow.  This  could   for  example  be   articulated   through   displays   measuring   the   inbound   flow   with   respect   to   the   put  away  frequency  to  assess  if  GSPs  are  accumulating  in  the  buffer.  Such  a  tool  will  help  in  giving   transparency   in   the   inbound   flow-­‐performance,   which   will   help   in   making  proactive  decisions  before   chaos  has   occurred   and   as   a   result   reduce   the   throughput-­‐time.  

5.2 Capacity  matching  This   section   analyzes   the   flow   with   regard   to   how   well   the   available   resources   are  adapted  and  distributed  to  fit  the  flow.    

5.2.1 Matching  inflow  with  resources  Seen   in   figure  10  and  mentioned  earlier,   the   inbound   flow   increases  between  15:00  –  22:00.  The  total  flow  fluctuates  from  20  to  75  GSPs/hour,  which  is  a  ramp-­‐up  of  400%.  This  makes  it  evident  that  there  should  be  a  different  distribution  of  personnel  between  15:00-­‐22:00   compared   to   before   15:00.   Looking   at   amount   of   operators   during   an  ordinary   day   (figure   19),   the   distribution   is   clearly   focused   on   operations   during   the  daytime,  as   there  are  more  people  present  during   the  day   than  during   the  night,   even  though  the  largest  inbound  volume  occurs  in  the  evening.    There   are   26  workers   between   07:00   –   13:30,   concluding   that   this   is  when   the  most  activities   take  place.  At  14:00,  one   shift-­‐team  ends,   and  at   the   same   time   the  evening-­‐employees   start   (one   team  with   ordinary  workers   and  one   shift-­‐team).   This   creates   a  spike  in  amount  of  workers  in  the  warehouse,  and  between  14:30  to  15:30  there  are  33  people  present,  making  it  the  highest  amount  of  working  personnel  during  the  day.  This  

Page 87: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  75  

finding   is   rather   interesting   as   the   number   of  workers   decreases   drastically   at   15:30,  which  is  when  the  number  of  inbound  GSPs  has  the  highest  increase.  As  can  be  seen  in  appendix  J,  the  overall  productivity  is  3,85  GSPs/man-­‐hour.  Since  there  are  12  operators  present  at  this  time,  they  can  together  put  away  45  GSPs/hour,  and  as  the  inbound  flow  is  on  average  50  GSPs  at  this  time,  there  will  be  a  5  GSP-­‐accumulation.  To  cope  with  this,  it   becomes   evident   to   either   make   the   processes   more   efficient   or   redistribute   the  number   of   operators.   It   is   a   clear  misalignment   between   the   supply   and   demand   for  capacity  for  inbound  transports.    Further  analysis  of  figure  10  show  that  most  GSPs  from  SKF  Poznan  arrives  at  15:30,  the  same  time  as  the  regular  day-­‐shift  ended  its  working  day.  This  postpones  the  offloading-­‐activity  since  there  are  no  personnel  due  to   the  shift  rotations.  During  the  most  hectic  inbound   flow,   there   are   just   12   employees   present,   concluding   that   either   there   is   a  mismatch   in   how   people   are   distributed,   or   that   there   are   too   few   workers   at   the  inbound  operations  on  floor-­‐1.  It  is  however  important  to  note,  which  will  be  analyzed  in  greater  depth  later,  that  the  outbound  operations  on  floor-­‐2  demands  more  operators,  and  this  is  potentially  the  one  reason  to  why  it  sometimes  is  a  lack  of  personnel  at  floor-­‐1.      Comparing   the   amount   of   workers  with   the   utilization-­‐rate,   one   can   conclude   that   in  general,   there   is   a   10%   absent-­‐rate,   there   is   no   trend   on   either   absents   increasing   or  decreasing.  This  in  addition  to  the  above  discussion  shows  that  it  is  possible  to  say  that  the   problem   is   not   absent   personnel   from   the   regular   workforce,   but   rather   that   the  entire  workforce   could   be   potentially   too   small,   or   that   there   are   people   are  working  inefficiently.    Although  the  team-­‐leaders  plan  so  that  there  should  be  workers  present  at  the  different  workstations,   sometimes   there   was   not   anyone   present   in   the   goods   receiving   area  when  a  truck  arrived.  As  most  trucks  arrived  late  in  the  afternoon,  one  possible  answer  for  an  empty  dock  could  be  wrongly  distributed  people  within  the  warehouse.  This  is  a  subject  of  poor  communication,  as  there  is  no  one  that  expedites  the  drivers  when  they  arrive   if   the  operator  handling   the  goods-­‐receiving  work  area   is  not   there,  making   the  offloading-­‐process   delayed.   This   is   quite   different   from   Schweinfurt   and   Tongeren,   as  they  have  clear  routines  for  what  person  the  drivers  should  contact  when  they  arrive.      Within  the  outbound  flow,  there  were  sometimes  too  much  goods  to  be  sent  out,  making  the  conveyor  belts  on   floor-­‐3  and   floor-­‐4   full  of  GSPs,  which  hinders   the  operators  on  floor-­‐3  and  floor-­‐4  to  send  additional  goods  out.  Instead  of  focusing  on  the  inbound  flow  some  operators  waited   for   the   flow  to  start   to  move  again.  With   this   in  mind,  appears  that   the  workstations   are   static  with   a   lack   in   information   transparency   between   the  operators.   This   results   in   poor   communication,   which   in   turn   creates   inertia   and   a  division   of   processes.   According   to   Johansson   and   Öjmertz   (1996),   a   division   of  processes   leads   to   an   increase   in   throughput   time.   This   leads   to   lower   utilization   of  

Page 88: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  76  

workstations,  which  becomes  an  issue,  as  the  labeling  and  weighting-­‐machine  could  be  idle  when  responsible  operators  have  their  breaks.  In  this  case  the  team-­‐leaders  try  to  cover   this   work   area   if   they   have   time   to   do   so.   It   is   a   matter   of   matching   capacity  according  to  actual  demand  in  the  different  processes.  

5.2.2 Coordination  between  work  areas  The  focus  on  outbound  goods  causes  problems  in  the  buffer.  If  the  operators  on  floor-­‐3  and   floor-­‐4   do   not   empty   the   conveyors,   no   GSPs   can   be   sent   up,   which  makes   GSPs  accumulating   in   the   buffer.   The   opposite   situation   has   also   been   observed.   If   the  operators  on  floor-­‐3  and  floor-­‐4  focus  on  putting  goods  in  storage  and  at  the  same  time  several  trucks  arrive  at  floor-­‐1,  the  operator  managing  the  inbound  goods  on  floor-­‐1  will  experience   lack   in   capacity   as   he   needs   to   offload   the   transports   at   the   same   time   as  sending  goods  up.  It  is  a  situation  of  shortage  in  capacity,  as  the  operator  cannot  handle  all  activities  at  the  same  time.  If  there  is  a  shortage  of  capacity  and  the  team-­‐leaders  do  not  have  the  resources  to  put  two  operators  in  goods  receiving,  they  should  help  out.  As  been  presented  in  the  previous  chapter  there  is  an  uncertainty  for  when  trucks  arrive.  This  might  not  correlate  to  when  the  team-­‐leaders  have  the  time  to  help  out,  therefore  the  utilization  of   this   resource   could  be  very   shifting.  These   two   situations  prove   that  there  is  a  low  level  of  coordination  between  the  floors.    Mentioned   in  4.2.4,   the  different  warehouse-­‐processes  become  static  and   there  are  no  clear  routines  for  how  the  operators  should  help  out  even  though  they  are  encouraged.  This   becomes   particularly   problematic   when   the   operator   responsible   for   the   goods  receiving-­‐process  is  on  a  break,  as  there  is  no  one  replacing  him  during  this  time.  This  results  in  an  uneven  flow,  as  there  is  no  one  else  that  loads  the  elevator  with  new  GSPs  during  the  operators  break.  Goods  designated  to  storage  area-­‐E  and  floor-­‐1  could  still  be  put  away  as  other  operators  are  handling  these  areas.  So  even  though  the  elevator  has  the   capacity   of   sending   goods,   the   speed   of   the   inbound   flow   is   dependent   on   that  operator.   This   operator   has   to   handle  multiple   tasks   and   balance   the   flow.   If   several  trucks  arrive  at  the  same  time  there  is  still  only  one  operator  responsible  for  emptying  them.   As   a   result,   the   operator   has   to   both   send   goods   up   and   empty   incoming  transports  simultaneously.      During  the  empirical  data  gathering,  the  authors  have  observed  operators  handling  the  vertical  elevator  work  area  standing  still  doing  nothing.  The  suggested  reason,  as  been  observed,   is   that   some  of   the  employees  are   static   in   their  work,  not  helping   their   co-­‐workers.  Instead,  the  personnel  should  have  a  free  flow  of  communication  between  the  different  processes  to  help  each  other  in  order  to  get  the  products  through  as  frictionless  as   possible.   Having   a   free   flow   of   communication   between   the   buffer   at   the   vertical  elevator  and  the  inbound  operations  at  floor-­‐1  will  help  to  even  out  the  utilization  of  the  goods-­‐receiving-­‐operator  as   the  vertical  elevator-­‐operator  will  help  whenever   there   is  time  to  spare.  According  to  Liker  and  Meier  (2006),  a  high   level  of  variance  and  a   low  recognition  of  standardized  work  are  two  significant  signs  on  problematic  conditions  in  

Page 89: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  77  

any  work-­‐environment,  which  will  lead  wrongfully  decision  about  the  environment  and  how  it  should  be  handled.      The  outbound  flow  is  better  monitored  than  the  inbound  flow  due  to  the  fact  that  they  have   more   touch   points   and   monitor   how   many   picking   assignments   they   have   to  manage   every   hour.   There   are   several   reasons,   the   most   important   being   the  significance   of   keeping   customer   promises   and   to   secure   departure   on   time.   The  throughput  time  from  storage  to  an  outbound  transport  is  roughly  14  hours  (table  15)  for  goods  designated  to  Tongeren  and  Schweinfurt.      As  noted  in  several  interviews,  there  is  an  explicit  prioritization  on  the  outbound  flow.  It  seems  logical,  as  the  customers  should  not  wait  longer  than  the  agreed  delivery  time  and  as   a   result   the   inbound   flow   is   always   a   second   priority.   The   study   in   Tongeren   and  Schweinfurt   has   shown   that   their   outbound   flow   is   organized   in   another  way   as   it   is  handled   by   a   separate   group   of   operators.   In   Gothenburg,   the   inbound   flow   and   the  outbound  flow  are  interrelated  as  the  same  operators  handle  both  flows.  The  operations  in   Schweinfurt   and   Tongeren   are   working   with   less   friction   and   it   seems   that   two  separate  flows  are  easier  to  handle.    

 Figure  21  -­‐  Amount  of  conducted  work  compared  to  the  number  of  operators  available  for  work  

 Figure  21  shows  the  amount  of  work  conducted  in  the  warehouse  every  hour  compared  to  the  number  of  operators  working  during  those  hours.   It   is  clear  there   is  no  positive  correlation   between   available   man-­‐hours   in   the   warehouse   and   how   much   work   is  conducted.  In  absolute  numbers,  more  work  is  conducted  per  hour  (GSPs  put  away  plus  picked   GSPs)   during   the   day   than   during   the   night,   110   assignments/hour   vs.   31  assignments/hour   (see   appendix   J).   However,   adjusting   for   the   available   capacity,   the  

0  5  10  15  20  25  30  35  

0  20  40  60  80  100  120  140  160  

00.00  

01.00  

02.00  

03.00  

04.00  

05.00  

06.00  

07.00  

08.00  

09.00  

10.00  

11.00  

12.00  

13.00  

14.00  

15.00  

16.00  

17.00  

18.00  

19.00  

20.00  

21.00  

22.00  

23.00  

Num

ber  of  working  operators  

Amount  of  assignm

ents  

Time  

Picking  assignments  +  put  away  frequency  vs.  supply  of  capacity  

Picking  assignments   Put  away  frequency   Operators  

Page 90: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  78  

night  shift  is  more  productive  with  6.5  performed  assignments  per  available  man-­‐hour  vs.  4.1  performed  assignments  per  available  man-­‐hour  during  the  day  (see  appendix  J).      From  this  graph  it  is  evident  that  the  same  amount  of  work  is  conducted  in  the  evening  as   during   the   night   (37   assignments/man-­‐hour   during   evening,   31   assignments/man-­‐hour  during  night)  even  though  the  number  of  operators  are  fewer  in  the  night  shift  (see  appendix   J).   This   results   in  more   than   doubling   the   productivity   (6.3   vs.   3.1)   for   the  night  shift  compared  to  the  evening  shift.  This  drop  in  productivity  is  most  likely  due  to  operators  have  to  handle  the  increased  volume  of  inbound  GSPs  to  the  buffer,  by  sorting  and  organizing  the  area.  

5.2.3 Resource  distribution  The   planning   situation   in   Gothenburg   is   complex   since   both   inbound   and   outbound  operations  share  the  same  resources,  and  that  there  is  a  low  level  of  transparency  in  the  when  goods  arrive  to  the  warehouse.  As  the  outbound  flow  is  prioritized  during  the  day,  the  sufficient  resources  must  be  secured  to  that  flow.  At  the  same  time  the  inbound  flow  must  not  be   forgotten,  and  even  though  the  goods  must   leave   in  time,  goods  has  to  be  received   and   made   available   for   picking   as   soon   as   possible   after   its   arrival   to   the  warehouse.    Further  challenges  are  caused  by  the  organization  of  the  work  groups  and  the   fact   that   they   are   very   autonomous.   As   a   result   it   is   hard   for   the   team-­‐leaders   to  control  the  operators  in  detail,  due  to  the  fact  that  decisions  related  to  how  and  where  the  operators  work  is  made  together  on  the  morning  meeting.    Re-­‐prioritizations   in   the   processes   have   only   been   observed   for   the   outbound   flow  where  the  operators  can  be  moved  between  the  different  floors.  As  this  flow  should  be  prioritized   this   action   is   only   logical.   However,   through   this   action   there   is   no  consequence   analysis   for   how   the   reprioritizations   affect   the   inbound   flow.   When  personnel  are  moved  to  another   floor,  no   information   is  given   to   the  operators  on   the  first  floor,  making  the  coordination  difficult,  as  there  is  lack  in  information  transparency.      Furthermore,   there   is  no  need   to  distribute  more  operators   to   the   inbound   flow   if   the  forklifts  on  floor-­‐3  and  floor-­‐4  do  not  empty  the  conveyors.  So  from  an  inbound  planning  point  of  view  the  best  decision  is  to  secure  resources  to  the  side-­‐loaded  forklifts,  which  are  the  bottlenecks,  to  make  sure  that  they  are  always  running  so  that  GSPs  can  be  sent  up.  It  is  therefore  important  that  the  team-­‐leaders  continuously  follow  up  and  make  sure  that  the  inbound  conveyors  are  moving.    As  been  observed,  supervisors  sometimes  did  not  know  why  the  operators  were  not  in  their  designated  work  areas.  Since  this  phenomenon  has  been  observed  close  to  breaks  and  shift  endings,  it  seems  as  some  of  the  operators  stretch  their  breaks.  Due  to  the  fact  that  it  is  hard  for  the  warehouse  to  temporarily  change  capacity,  it  is  important  that  the  capacity  is  utilized  as  much  as  possible.  The  team-­‐leaders  have  a  great  responsibility  to  make  sure  that  the  flow  is  running  smoothly  and  coordinate  personnel  depending  on  the  

Page 91: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  79  

current   capacity.   This   implies   that   they   always   should   know  where   the   operators   are  and  who   is  working  where.   This   is   a   difference   from   both   Schweinfurt   and   Tongeren  where  work  ethics  is  of  high  standard.  Both  the  warehouses  make  sure  that  the  workers  are  where  they  are  supposed  to  be  and  that  they  are  on  time.  

Adapting  capacity  5.2.3.1Adapting  the  capacity  to  the  current  situation  is  a  crucial  factor  (Leitch,  2001).  Tongeren  has  proven  to  be  extremely  agile  as  they  can  ramp  up  or  down  capacity  by  30%  within  24   hours.   The   warehouse   in   Gothenburg   could   benefit   greatly   from   use   of   a   similar  function   to   handle   the   peaks   or   eliminate   short-­‐term   disturbance.   This   has   not   been  possible  in  the  same  sense  as  before  since  there  is  less  temporary  staff  available.    Even   though   it   is   hard   to   use   an   agency   pool   there   are   still   other   alternatives  worth  evaluating.  One  possible  solution,  which  is  presented  by  Jonsson  and  Mattson  (2009),  is  to  borrow  personnel  from  another  work  area,   in  this  case  an  operator  from  Factory-­‐D.  However,   there   is   still   a   learning   curve   in   order   to   handle   the   tasks,   which   could  eliminate   the  short-­‐term  gain.  This   leads   to   the   fact   that   it   is  even  more   important   for  the   team-­‐leaders   and   managers   to   work   with   internal   coordination   and   how   the  resources  are  used.    The  new  shift  rotation  launched  April  1st  2013  was  believed  to  improve  the  situation  in  the  warehouse,  as  it  would  provide  them  with  an  estimated  10  additional  working  hours  (see   appendix  M)   and   a   smoother  distribution  of   capacity.   It   is   too   early   to  make   any  conclusions   regarding   the   new   rotation,   but   from   the   graphs   in   figure   11   and  12   it   is  clear  that  it  has  contributed  to  improvements,  but  there  is  still  a  large  amount  of  GSPs  in  the   buffer   on   floor-­‐1.   This   is   further   proof   that   the   disturbances   experienced   in   the  inbound   flow   are   not   mainly   a   capacity   issue   but   rather   a   coordination   and   process  design   challenge.   From   what   has   been   seen   in   the   empirical   data,   it   is   however   not  possible   to   conclusively  determine   that   there   are   too   few  operators   in   the  warehouse  from  time  to  time  due  to  the  high  variance  in  the  inbound  processes.  In  order  to  answer  this  statement  there  has  to  be  process  stability.      The  bottleneck  in  the  outbound  flow  is  as  presented  the  weighting  and  labeling  stations,  and   it   is   therefore   important   that   these   stations   are   operating   at   all   times.   The   team-­‐leaders  should  therefore  make  sure  that  when  operators  on  the  weighting  and  labeling  station   takes   a   break,   someone   else   covers   for   them.   If   there   is   no   one   available,   the  team-­‐leader  should  cover  that  work  area  during  the  break.  

Resource  meeting  5.2.3.2What  makes  Tongeren   so   efficient   is   how   they  plan   their   resources   by  having   a   great  transparency  within  the  warehouse.  The  resource  meetings  allow  different  parties  to  be  involved   and   decide   how   many   operators   they   will   need   and   how   they   should   be  distributed.   Having   the   same   kind   of   meetings   in   Gothenburg   will   be   beneficial   for  several  reasons.  

Page 92: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  80  

 Better   coordination   –   Discussing   the   current   situation   in   the   warehouse   together.   By  having   the   inbound  volume   compared   to   amount  of   released  order-­‐lines  will   result   in  easier   decision-­‐making   for   how   activities   should   be   coordinated.   When   GSPs   are  accumulating  on  floor-­‐1  should  be  discussed  and  how  it  could  be  resolved  before  it  is  a  subject  of  planning  overtime.   If   this  can  be  evaluated  on  a  regular  basis,   in  addition  to  create   an   action   plan   for   how   both   flows   should   be   managed   will   prevent   sub-­‐optimizations.   Johansson  and  Öjmertz   (1996)   supports   this   as   all   processes   should  be  examined  at  once  and  not  process  by  process,  which  will  lead  to  sub-­‐optimizations.    Increased  transparency  –  Representatives  from  different  levels  of  the  organization  takes  part   and   shares   their   work.   This   will   increase   the   transparency   of   everyone’s   work,  which   will   improve   the   understanding   of   each   other.   Situations   where  misunderstandings   occur   can   now  much   easier   be   eliminated   e.g.   that   trucks   are   re-­‐scheduled  without  informing  other  departments,  as  it  affects  their  work  too.  A  meeting  where   also   top   management   participates   and   shares   their   insights   about   the   current  situation  is  also  important  for  the  motivation  and  progress  of  the  operational  units.  This  would   then  be   aligned  with  what   Lloyd   (1994)   says   about  management   commitment:  that  managers  must  set  a  good  example  for  the  workers  to  motivate  them.    A   forum  for  discussion  –  The  meeting  would  also  act  as  a   forum  where  current   issues  can  be  dealt  with.  Not  only  will  problems  come  to  the  attention  of  top  management  but  also  to  personnel  in  other  departments,  which  could  have  a  solution  to  the  problem.  This  would  especially  be  good  for  the  inbound  flow  as  problems  here  would  for  the  first  time  be  elevated  over  the  entire  organization.    The  participants  in  the  resource  meeting  are  preferably  the  same  people  that  take  part  in   the   meetings   in   Tongeren:   warehouse   manager,   operational   managers   and   team-­‐leaders.   Since   the   organizations   do   not   look   the   same,   a   representative   from   the  transport  department  in  Gothenburg  should  preferably  also  take  part  in  the  meeting  to  support  with  insights  about  order  releasing  and  inbound  transports.  

5.3 Measuring  and  follow  up  inbound  performance  What   has   been   seen   in   Tongeren   and   Schweinfurt   is   that   these   warehouses   do   not  measure   the   inbound   RTW   lead-­‐time.   The   first   scanning   is   conducted   automatically  when  it  is  put  on  the  conveyor  belt,  making  it  difficult  to  assess  the  “real”  time  from  the  inbound   truck   to   storage.   It   is   no   use   in   measuring   this   time   since   it   is   so   short,  according  to  the  warehouse  personnel.  It  is  a  matter  of  minutes  from  the  offloading-­‐dock  to  put  in  storage,  concluding  this  step  is  unnecessary  to  measure.      In  Gothenburg  the  inbound  GSPs  should  be  scanned  manually  when  offloaded,  making  it  possible  to  measure  the  actual  time  from  entering  the  dock  to  being  put  in  storage.  This  

Page 93: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  81  

step   is   more   important   in   Gothenburg   as   the   process   of   handling   the   GSPs   is   done  manually  and  the  fact  that  the  variance  is  so  high.      As   the  warehouse   is   largely  measured  on  broken  promises   to   customers,   the  KPIs  are  focused  on  the  outbound  part  of   the   flow.   It  results   in  the   fact   the   inbound  flow  is  not  getting  measured  and  improvements  here  are  not  getting  any  traction.  If  there  would  be  internal  KPIs  providing  more   transparency  on  how   the   inbound   flow   is  performing,   it  would  help  warehouse  personnel  to  easier  detect  when  the  inbound  flow  is  getting  out  of   control.   This   will   help   them   to   work   more   proactive   to   reduce   the   “fire-­‐fighting”-­‐solutions  and  overtime.        What   is   quite   remarkable   are   the   non-­‐standardized  measuring   points   used.   As   SLS   is  responsible   for   the  warehouses  and  measuring   the  performance   in  each  warehouse,   it  seems  logical  to  measure  the  warehouses  within  the  same  points  in  the  flow.  Without  a  transparent  comparison  it  seems  difficult  to  understand  which  warehouse  is  performing  best   and   which   warehouse   is   performing   worst.   One   could   argue   that   the   most  important  thing  is  to  look  at  the  big  picture  and  the  overall  lead-­‐time  for  a  warehouse  to  understand   how   they   are   performing,   but   this   does   not   help   in   assessing  weak-­‐spots  within  the  warehouse.    By  measuring  the  warehouses   in  the  same  points  within  the  flow  will  provide  a  better  understanding   about   how   the   flows   are  working   in   detail.   This  will  make   it   easier   to  understand  which  warehouse  has   the  most  efficient  processes   in  different  parts  of   the  flow.  By  knowing  this,  other  warehouses  can  study  “best-­‐practice”  and  replicate  it.  

5.3.1 Suggested  KPIs  to  increase  transparency  and  assess  performance  As  a  result  of  the  gap  in  the  KPIs  measuring  the  inbound  flow-­‐performance,  it  becomes  hard  for  management  to  implement  improvements  that  will  make  a  difference.  Stated  by  Liker  and  Meier  (2006):  “what  gets  measured  gets  done”,  meaning  that  change  will  only  be  possible  if  decisions  and  actions  are  based  on  the  actual  situation.  Three  new  KPI  will  therefore   be   presented   as   a   tool   to   increase   the   transparency   in   the   inbound   flow   to  better   understand   its   performance   over   time.   The   suggested   KPIs   will   as   a   first   step  increase  awareness  and   the  actual  performance   in   the   inbound   flow  by  measuring   the  suggested   touch-­‐points.   When   understanding   how   the   flow   is   functioning,   it   will   be  easier  to  control  and  redirect  the  flow  in  order  to  be  more  efficient.    KPI  1:  Measure  amount  of  GSPs  in  buffer  In  order  to  increase  the  transparency  in  the  inbound  flow,  which  is  critical  according  to  the  empirical  data,   there   is  a  need  for   implementing  new  KPIs.  As  been  noted,  most  of  the  inbound  time  occurs  in  the  buffer  on  floor-­‐1,  making  this  part  of  the  flow  important  to   monitor   to   avoid   overtime   and   overdue   GSPs.   A   suggestion   is   therefore   to   start  counting   the   actual   number   of   GSPs   within   the   buffer   each   day.   By   doing   this   it   is  

Page 94: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  82  

possible  to  sooner  detect  when  the  amount  of  GSPs  in  the  buffer  reaches  a  critical  point  and  easier  to  take  actions  to  avoid  an  escalating  situation.    KPI  2:  Measure  incoming  transports  and  amount  of  GSPs  on  each  transport  By  measuring  how  many   transports   arrive  each  day,   and   the  amount  of  GSPs  on  each  transport   will   make   it   understandable   for   how   the   inbound   flow   fluctuates.   As   been  noted,   slot-­‐times   are   about   to   be   implemented,  which  will   help   greatly   to   understand  how   the   flow   fluctuates,   and  plan   capacity   accordingly.  This   is  however   a   first   step   to  assess  for  when  it  is  appropriate  for  trucks  to  arrive  to  take  out  peeks  in  the  work  load.    KPI  3:  Amount  of  GSPs  put  on  the  inbound  conveyor  belt  each  hour  As  mentioned  earlier  in  the  analysis,  it  is  important  that  the  inbound  elevator  is  utilized  as   much   as   possible   to   never   let   the   forklifts   on   floor-­‐3   and   floor-­‐4   become   idle.   By  measuring   amount   of   GSPs   sent   each   hour   it   will   make   it   possible   to   assess   the  performance   of   the   flow   from   the   buffer   and   onwards.   Benchmarking   the   maximum  capacity  (22  GSPs/hour)  with  the  actual  GSPs  sent  up  will  provide  transparency  in  how  the  coordination  and  prioritization  is  working.    

5.4 Answer  to  research  question  This  section  provides  the  answers  to  the  research  questions.  

5.4.1 Research  question  1  Which   routines,   standards   and   activities   within   the   warehouses   increase  the  RTW  lead-­‐time  when  they  are  not  designed  to  fit  the  flow,  and  does  the  structural  warehouse  layout  influence  the  performance?  

 There  are  factors  that  have  been  found  to  have  a  negative  impact  on  the  RTW  lead-­‐time.  The   lack   of   information   transparency   and   coordination   between   workstations   has   a  direct   negative   impact.   As   decisions   are   made   without   assessing   the   overall   product  flow,   the   personnel   is   continuously  working  with   fire   fighting,   hence   structured  work  methods  with   standardized   routines  does  not   occur,  which   impedes   the  product   flow,  e.g.  the  FIFO-­‐principle  is  not  followed.    The   identification  method   used   to   organize   the   buffer   has   also   been   found   to   have   a  negative   impact   on   the   RTW-­‐lead   time   as   GSPs   are   forgotten   and   newer   GSP   are   put  away  before.    As  highlighted  throughout  this  report,  the  Gothenburg  warehouse  is  unique  with  its  five  floors   of   operations.   As   the   layout   makes   it   more   difficult   to   have   information  transparency,  it  becomes  difficult  to  coordinate  activities.  Therefore,  it  is  concluded  that  the   layout   design   impacts   the   performance,   and   having   one   floor   with   all   operations  should   be   considered   a   better   alternative,   as   the   warehouses   in   Schweinfurt   and  Tongeren.  

Page 95: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  83  

5.4.2 Research  question  2  What   routines,   standards   and   activities   can   be   changed   to   decrease   the  RTW  lead-­‐time?    

Given  the  current  situation  with  a  flow  of  high  variation  within  the  warehouse  processes  and  unreliable  RTW   lead-­‐time,   the   first   step   should  not  be   to  decrease   the  RTW   lead-­‐time,  but  to  improve  the  standards  to  stabilize  the  inbound  flow.  When  a  standard-­‐level  is   reached   it   will   be   possible   to  make   improvements,   hence   reduce   the   lead-­‐time.   To  assess   a   stable   flow,   all   operations   need   to   be   standardized   as   to   sequence   and  work  method.  This  is  important  to  know  the  maximum  capacity,  and  to  plan  the  inbound  flow  on  correct  decisions  created  to  fit  the  flow.      As  most  of  the  RTW  lead-­‐time  is  located  in  the  buffer,  it  becomes  evident  that  the  biggest  potential  for  improvement  is  located  in  this  part  of  the  flow.  To  create  a  reliable  flow,  all  GSPs  put  in  the  buffer  needs  to  be  noted  with  date  and  time  of  arrival  in  order  to  apply  the  FIFO-­‐principle.  This  makes  sure  the  same  standard  is  followed  by  all  workers,  which  would  secure  a  stable  inbound  process.      The  accumulating  GSPs  in  the  buffer  is  not  only  because  of  a  lack  in  coordination  within  floor-­‐1,  but  also  a  matter  of  utilizing   the   forklifts  on   floor-­‐3  and   floor-­‐4,  which  are   the  bottlenecks.  As   for  now,   the   forklifts  are  not  maintaining   the  one   in-­‐one  out-­‐principle,  which   leads   to   a   clogged   inbound   conveyor   belt   on   floor-­‐1.   There   is   no   actual  prioritization  on  always  sending  inbound  goods  to  storage,  leading  to  longer  lead-­‐time-­‐to  storage  than  necessary.    

5.4.3 Research  question  3  Could   these   solutions   reduce   the   RTW   lead-­‐time   for   the   other   two  warehouses,  which  has  not  been  in  focus?    

The   proposed   solutions   are   tailor  made   for   the  warehouse   in  Gothenburg,   as   this   has  been  the  focal  area  in  the  thesis.  It  must  be  noted  that  the  improvements  can  be  applied  in  similar  warehouses  at  other  SKF-­‐sites.  However,  as   the   improvements  mainly  has  a  focus   on   stabilizing   processes   and   level   out   the   inbound   flow,   the   solutions  will   only  have   a   positive   effect   on   warehouses   struggling   with   this.   As   both   Schweinfurt   and  Tongeren   have   a   stable   flow   of   inbound   goods,   and   processes   being   conducted   in   a  standardized  way,  the  provided  solutions  will  not  reap  any  significant  benefits  for  these  warehouses.    

Page 96: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  84  

   

Page 97: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  85  

6 Recommendations  This  chapter  presents  the  recommendations,  stemming  from  the  analysis  and  the  frame  of  reference.   The   recommendations   are   presented   and   organized   according   to   where   they  take   place,   but   they   have   been   developed   from   an   overall   perspective   to   avoid   sub-­‐optimizations.  The  analysis  has  proved  that  the  inbound  flow  and  its  processes  are  prone  with   heavy   fluctuations,   concluding   that   the   recommendations   will   be   aimed   towards  reducing  the  variance  rather  than  to  reduce  the  RTW  lead-­‐time.  

6.1 Goods  receiving  1)   Measure   arrival   time   to   assess   performance   (Tomorrow)   –   It   is   necessary   to  measure   arrival   time   in   order   to   monitor   the   inbound   flow.   To   do   this,   an   extended  whiteboard   should  be   installed   in   the  buffer.  On   this   the  operator  offloading   the  GSPs  should  note  when  the  transport  arrived  and  its  amount  of  GSPs.  The  team-­‐leader  is  then  responsible  for  assessing  this  information  and  documents  it  into  an  Excel-­‐file,  available  for  all  team-­‐leaders.  By  doing  this,  the  inbound  flow  will  be  continuously  monitored  and  easier  to  understand    2a)   Establish   fixed   transportation   lead-­‐times   for   external   transports   (Within  three  months)  –  To  further  increase  the  transparency  in  the  inbound  flow  exact  goods-­‐in-­‐transit  lead-­‐times  should  be  established  in  negotiation  with  the  3PL  companies.  This  means  that  the  time  a  truck  is  advised  can  differ  but  from  the  time  it  leaves  it  is  certain  that   it   will   arrive   at   a   specific   time.   This   will   create   a   better   planning   environment,  where  activities  can  be  matched  to  when  trucks  arrive.      2b)  Level  out  arrival  time  for  SKF  Poznan  and  SKF  Mekan  (Within  three  months)  In  order  to  avoid  a  chaotic  situation  in  the  inbound  flow  and  to  be  able  to  cope  with  the  incoming  GSPs,   it   is  necessary   to   level  out   the   incoming  goods.   It   is   suggested   to  keep  focus  on   the  afternoon  and  evening,  and  to  keep  the   transports  separated  with  one  or  two  hours.  This  is  important  to  keep  the  work  structured  and  plan  for  the  next  transport  before  it  is  arriving.    2c)  Tighten  time-­‐window  (Within  six  months)  Assuming   the   trucks   are   leveled-­‐out   during   the   afternoon   and   evening,   a   next   step  would  be  to  tighten  the  time-­‐windows  for  when  they  should  arrive.  Instead  of  allowing  a  60-­‐minute   time-­‐window,   an   even   shorter   time-­‐span  will   improve   the   planning   in   the  warehouse  since  the  inbound  flow  is  controlled  in  more  detail  by  doing  this.    3)  Install  a  whiteboard  with  estimated  time  of  arrival  and  amount  of  GSPs  being  inbound   on   floor-­‐1   (Within   three   months)   –   The   expected   arrival   time   and   the  amount   of   GSPs   inbound   at   a   certain   time   will   be   noted   on   this   whiteboard.   The  transport  department  should  do  this  as  soon  as  they  receive  the  advised  e-­‐mail  from  the  respective   location   (SKF   Poznan/SKF  Mekan).  When   implementing   this,   the   transport  department  will   communicate   the   expected   arrival   time   to   the   staff   on   floor-­‐1,  which  

Page 98: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  86  

will  increase  the  information  transparency,  with  the  possibility  of  planning  the  activities  more   efficiently.   By   assessing   the   expected   lead-­‐time   and   also   monitoring   the   actual  lead-­‐time   makes   it   possible   to   benchmark   these   numbers   to   assess   the   3PL-­‐performance.    

6.2 Buffer  1)   Evaluate   whiteboard   performance   (Tomorrow)   –   To   secure   that   the   FIFO-­‐principle   is   followed   the   whiteboard,   presenting   the   current   situation,   must   be  continuously  updated.  The   team-­‐leaders   should  be   responsible   to   follow-­‐up  and  make  sure   that   the   whiteboard   represents   the   current   situation.   The   performance   of   the  whiteboard  should  be  discussed  and  evaluated  on  the  morning  meetings,  to  emphasize  on  the  importance  of  the  standard.      2)   Extend  whiteboard   (Tomorrow)   –  GSPs   located   in   the  buffer  next   to   the  vertical  elevator   are   today   not   listed   on   the  whiteboard.   By   extending   the  whiteboard   so   that  also  these  GSPs  are  included,  would  lower  the  risk  that  they  are  left  here  due  to  favor  of  the  ones  listed  on  the  whiteboard  in  the  main  buffer.    3)   Establish   handover-­‐meetings   (Three   weeks)   –   To   improve   the   coordination  between  shifts  and  secure  that  no  activities  are  left  half  done.  The  operator  whose  shift  ends,  goes  through  which  GSPs  should  be  taken  first,  where  there  are  half  emptied  zones  and   if   there   are   any   special   circumstances,   with   the   new   operator   whose   shift   just  begun.      4a)  Assign  goods  from  Vehicle  Parts  to  a  specific  zone  (Three  months)  –  The  GSPs  from  Vehicle  Parts  occupies  today  a  large  area  of  the  center  of  the  buffer,  which  hinders  the  forklifts  from  moving  around.  By  assigning  the  zone  to  the  right  of  the  loading  docks,  the  GSPs  would  be  removed  from  the  center  and  create  more  room  for  moving  around.      4b)   Lock   buffer   zones   to   specific   storage   locations   (Six  months)   –  By   locking   the  zones   to   a   specific   storage   location,   GSPs   are   naturally   grouped   together,  which   in   an  easy  way  will  display  how  much  goods  are  going  to  a  specific  storage  location.  It  would  also   elevate   performance   problems,  which  would   result   in   accumulating   GSPs,   before  they  cause  stress  on  other  processes.  This  method  would  however  make  the  buffer  static  but   if   the  put  away  performance  can  be   improved,   so   that  GSPs  are  not  accumulating,  will  results  in  a  more  logic  flow  in  the  buffer.  

6.3 Put  away  1)   Establish   a   standard   for   “One   in-­‐One   out”   (Tomorrow)   –   Due   to   fact   that   the  forklifts   on   floor-­‐3   and   floor-­‐4   are   the   bottlenecks   for   the   inbound   flow   but   not   the  outbound   flow,   it   is   of   greatest   importance   that   the   “One   in-­‐One   out”   principle   is  followed.   In   order   to   secure   that   everyone  works  with   this   principle,   there  must   be   a  standard  that  explains  that  this  is  a  part  of  the  work  and  that  there  is  not  an  option  to  

Page 99: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  87  

drive  only  one  way  with  GSPs.   It   is   furthermore   important  to  educate  the  operators  of  the   importance   of   the   principle   and   how   it   affects   the   flow.   A   simple   method   to  continuously   remind   the   operators   of   the   standard   is   to   put   up   a   sign   next   to   the  conveyer  belts  that  says  “one  in-­‐one  out”.    2)   Measure   put   away-­‐frequency   performance   (Three   weeks)   –  When   everyone  works  according  to  the  “One  in-­‐One  out”  principle,  the  put  away  performance  across  all  three  floors  should  be  measured.  The  results  should  be  evaluated  and  discussed  with  the  operators  to  see  what  were  the  causes  for  good  or  bad  performance.  This  will  allow  the  team-­‐leaders   to   understand   in   greater   depth   where   waste   is   located   and   in   greater  depth  go  in  analyze  specific  time  intervals.  Stretching  this  further,  it  will  be  necessary  to  segment  the  floors  in  the  specific  storage  locations  in  order  to  get  a  more  detailed  view  on  the  performance  in  the  warehouse.    3)  Communicate  workload  between  floors  (Three  months)  –  To  understand  how  the  workload  varies  and  how  resources  should  be  distributed   in  consideration  of  both  the  in-­‐   and   outflow.   The   team-­‐leaders   should  monitor   the  workload   of   inbound   goods   on  floor-­‐1  and  the  volume  of  assignments  on  floor-­‐3  and  floor-­‐4.  When  there  is  a  need  for  redistributing  between  the  higher  floors  it  is  communicated  to  floor-­‐1  to  let  them  know  where  operators  are  so  that  they  only  can  send  goods  up  to  that  floor.  Communication  the  other  way  is  done  from  floor-­‐1  to  floor-­‐3  and  floor-­‐4,  when  there  is  a  considerable  amount  of  goods  designated  to  one  of  the  floors,  to  see  if  it  is  possible  to  send  an  extra  operator  to  that  floor.    4)  Resource  meetings  (Six  months)  When  the  above  suggestions  have  been  implemented,   it   is  of  great   importance  to  keep  monitoring   the   warehouse   performance   and   the   capacity   matching   in   order   to   work  proactively  and  understand  the  actual  warehouse  performance.    On   a  weekly   basis   there   should   be   a   resource  meeting  where   the   performance   of   the  warehouse   is   discussed,   including   the   amount   of   incoming   GSPs,   the   development   of  GSPs   in   the   buffer   and   the   put   away-­‐performance.   These   points   represent   the   input,  execution   and   output   of   the   inbound   process   and   will   determine   the   overall  performance  of  the  warehouse  regarding  the  inbound  flow.  Key  people  that  suggested  to  attend   are;   the   General   Manager   of   SLS   Sweden,   Warehouse   Manager   Sweden,  Warehouse   supervisor   and  Team-­‐leaders,   to   get   a   transparent  view  on   the  operations  from  management  to  operational  employees.      

Page 100: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  88  

 Figure  22  -­‐  Implementation-­‐matrix  

!"#$%&'()'#*+,(+"$)%*'

-$.*'(,'/"#0*"*)&$1()'

2$'

3'

4'

25'

2%'

4'

2'3'6$'

65'

4'

2'

3'

6'

•  !""#$%&'(')*)+,%•  -./'&%•  0.1%2324%

Page 101: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  89  

7 Discussion This  chapter  presents  a  discussion  of  the  results  found  in  the  analysis  and  put  them  into  the  two  concepts  presented  in  the  model  used  for  the  analysis.  The  chapter  also  discusses  the  limitations  of  the  results  as  well  as  a  generalization  of  them  to  whether  Schweinfurt  and  Tongeren  can  reap  benefits  from  findings.    

7.1 Process  design  This   section   discusses   how   the   process   design   contributes   to   the   RTW   lead-­‐time   and  what  implications  the  result  from  the  analysis  has  on  the  design  of  the  processes.  

7.1.1 How  do  the  results  contribute  to  reducing  RTW  lead-­‐time?  The  warehouse   inbound  processes  have  proven  to  be  not  optimally  designed  to   fit   the  flow,  which  has  caused  the  inbound  RTW  lead-­‐time  to  fluctuate  greatly.  This  originates  from  the  fact  that  the  inbound  flow  previously  has  been  handled  secondly  in  favor  of  the  outbound  flow.  The   inbound  process  has  therefore  been  divided   in  two  sub-­‐processes,  with  additional  materials  handling  activities  in  between,  resulting  in  that  GSPs  first  have  to  be  placed  in  the  buffer  and  then  either  placed  in  the  elevator  or  placed  in  storage  on  floor-­‐1.  GSPs  spend  most  of  the  RTW  lead-­‐time  inside  the  buffer  waiting  to  be  taken  to  its  storage  location,  since  the  put  away  process  is  not  optimally  designed.  This  is  in  line  with   Johansson   and   Öjmertz   (1996)   argument:   sub-­‐processes   are   needed   when   the  input   to   a  main  process  has   to  be   executed  at   several  places   and/or  with   idle   time   in  between.    Due  to  the  high  variance  and  instability  in  the  inbound  processes,  that  has  been  shown  in  the  empirical  findings  and  later  proven  in  the  analysis,  the  recommendations  should  therefor  be  aimed  at  first  reducing  variance  and  eliminate  the  tail,  rather  than  reducing  RTW   lead-­‐times.   This   is   in   line   with   what   Liker   and   Meier   (2006)   states:   “Processes  fraught  with  randomness  and  chaos  tend  to  lead  us  to  incorrect  conclusions  about  what  is  real,  what  is  possible  and  what’s  not.”  (The  Toyota  Way).  If  the  tail  could  successfully  be  eliminated  would  also  result   in   that   the  97  overdue  GSPs   that  on  average  sit   in   the  buffer  will  disappear.  

7.1.2 Implications  from  the  result  A   high   degree   of   uncertainty   has   been   found   in   the   inbound   flow.   The   arrival   of   SKF  Mekan-­‐transports  fluctuates  greatly  in  the  evening  and  although  they  are  advised  before  they  departure   it   still  does  not   reduce   the  uncertainty,  as   this   is  not  communicated   to  the  operators.  The  arrival  time  for  trucks  from  SKF  Poznan  fluctuates  but  not  as  much.  Without   proper   routines   regarding   how   to   handle   arriving   goods   provides   the   next  processes   with   difficult   prioritization   in   how   they   should   work.   Although   Factory-­‐D-­‐products   have   a   short   distance   to   the   warehouse,   the   empirical   data   shows   great  fluctuations   in   the   RTW   lead-­‐time,   which   is   interesting.   This   is   results   from   that   the  buffer  do  not  divide  product  flows,  hence  handle  all  incoming  goods  in  the  same  way.    

Page 102: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  90  

The   great   uncertainty   in   arrival   time   for   inbound   goods   strengthens   the   fact   that   the  KPIs  are  not  aligned  with  the  inbound  flow,  as  the  warehouse  is  only  measured  on  the  outbound   goods,   which   have   left   the   inbound   flow   to   be   handled   ad   hoc.   In   order   to  reduce   the   uncertainty,   better   information   transparency   about   incoming   goods   is  needed.   The   first   step   in   improving   information   transparency   is   to   make   sure   the  information  flow  frictionless  (Bayraktar  et  al.,  2009).  The  suggested  KPIs  are  one  step  to  decrease  variability,  as  the  KPIs  will  make  it  possible  to  monitor  how  the  inbound  flow  is  fluctuating,  how  the  amount  of  GSPs  in  the  buffer  is  fluctuating  and  to  which  degree  the  bottleneck  is  utilized.  As  these  factors  have  not  been  measured  before,  they  are  believed  to   increase   transparency  and   raise  awareness   in  how   the   inbound   flow   is  performing.  Schweinfurt  and  Tongeren  have  been  successful  in  this  by  involving  all  employees  in  the  overall  warehouse  performance  through  e.g.  regular  meetings  and  continuously  getting  back  to  employees  about  their  performance  level.    It   is  clear  that  there  are  coordination  problems  between  the  floors  and  between  shifts,  as  there  is  little  understanding  in  how  workers  prioritize  between  the  inbound  and  the  outbound  flow.  This  stems  from  a  lack  of  information  transparency  as  well  as  a  lack  of  sufficient   routines   for   how   the   different  work   areas   should   be   coordinated.   This   goes  against  what  Johansson  and  Öjmertz  (1996)  states  about  process  design:  A  process  must  have  sufficient  conformity  and  posses  such  routines   in  order   to  handle   the  day-­‐to-­‐day  work.  However,  it  must  be  noted  that  the  structure  of  the  warehouse  imposes  challenges  to  the  process  design  due  to  the  multiple  floors.    The  identification  method  used  for  organizing  GSPs  in  the  buffer  has  been  found  to  also  have   gaps   in   its   design.   The   situation   has   improved   since   the   new   routines   were  implemented,   such   as   the   whiteboard   in   the   buffer,   but   there   are   still   room   for  improvements,  as   it  has  been  observed  that  the  whiteboard  was  not  updated  correctly  once  during  the  study.  This  means  that  there  is  still  risk  that  GSPs  are  forgotten  in  the  buffer   and   that   the   FIFO-­‐principle   could   be   set-­‐aside   in   favor   for   GSPs   more   easily  accessible.  Although  the  implementation  of  a  whiteboard  is  a  step  in  the  right  direction,  it  does  not  consider  GSPs  placed  outside   the  buffer  zones,  nor  does   it  elevate  overdue  GSPs.    The  amount  of  GSPs  in  the  buffer  fluctuates  heavily,  ranging  from  approximately  350  to  1800.   Although   there   is   a   general   perception   that   control   is   slipping   away   when   the  buffer  reaches  800  GSPs,  no  explicit  routines  have  been  found  regarding  how  to  handle  the  situation  when  the  800-­‐limit  has  been  reached.  As  for  now,  the  only  way  to  deal  with  such   a   situation   is   by   applying   over-­‐time,   which   is   both   expensive   and   put   further  tension  on   the  workforce.   In  order   to  handle   the  situation,   the  warehouse  supervisors  and   managers   should   work   proactive   and   elevate   problems   as   soon   as   they   are  identified.  

Page 103: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  91  

7.2 Capacity  matching  This  section  discusses  how  the  capacity  matching  contributes  to  the  RTW  lead-­‐time  and  what   implications   the   result   from   the   analysis   has   on   the   matching   of   supply   and  demand  in  capacity.  

7.2.1 How  do  the  results  contribute  to  reducing  RTW  lead-­‐time?  The  lack  in  information  transparency  provides  an  environment  prone  with  friction  and  is   a   result   of   barriers   between   personnel   in   the   warehouse.   This   is   not   directly  connected   to   increased   lead-­‐times   for   RTW   products,   but   they   are   affected   indirectly  through   poor   decision-­‐making,   as   decisions   are   based   on   not   fully   understanding   the  consequences.   Poor   information   sharing   regarding   the   arrival   times   of   incoming  transports  results  in  bad  planning  in  how  to  match  supply  and  demand  of  capacity,  and  as  a  result  a  significant  increase  in  the  RTW  lead-­‐time.  This  is  in  line  with  Leitch  (2001),  who  argues  that   it   is   important  to  match  supply  and  demand  of  capacity  to  reduce  the  throughput-­‐time  and  amount  of  work  in  progress.    

7.2.2 Implications  from  the  result  To  reduce  the  RTW  lead-­‐time,   it   is  evident  to  utilize  the  bottleneck  to  its  maximum,  as  this  is  the  slowest  process  in  the  system,  hence  the  pacemaker.  In  the  inbound  flow,  the  bottleneck  has  been  identified  as  the  side-­‐loaded  forklifts  on  floor-­‐3  and  floor-­‐4,  as  they  have   to   simultaneously   work   with   both   the   inbound   and   outbound   operations.   This  suggests  an  equal  priority  between  the  outbound  and  the  inbound  flow  and  should  not  be   a   problem,   as   been   seen   in   previous   graphs   that   there   can   be   peeks   in   both   the  inbound  and  outbound  flow  at  once.    As   Factory-­‐D   has   a   stable   supply   of   goods,   this   flow   should   be   easy   to   predict   and  therefore  easy  to  match  regarding  supply  and  demand  of  capacity.  SKF  Poznan  and  SKF  Mekan  goods  arrive  after  15:00,   implying  that  a  greater  emphasis  on  the  inbound  flow  during,   the   afternoon   and   evening   than   during   the   morning   and   mid-­‐day   is   needed.  Especially  since  the  staff  is  reduced  significantly  at  15:30.        The   analysis   suggests   a   greater   information   transparency,   which   will   help   in  understanding  where  to  focus  attention  during  certain  time  spans.      Since  the  forklifts  on  floor-­‐3  and  floor-­‐4  are  working  with  both  inbound  and  outbound  operations,  these  operators  need  to  be  coordinated  with  personnel  on  floor-­‐1  regarding  the   inbound   flow,   and   personnel   on   floor-­‐2   regarding   the   outbound   flow.   Instead   of  individually   determining   which   flow   to   focus   on,   it   seems   as   a   better   solution   to  coordinate   everyone   towards   the   same   objective.   A   coordinated   staff   synchronized  throughout  the  warehouse  will  secure  the  same  throughput  time  every  time,  making  it  easier   to   implement   robust   processes,   which   is   a   prerequisite   for   reducing   the   RTW  lead-­‐time,   as   noted   by   Liker   and   Meier   (2006).   This   is   in   line   with   Engström   et   al.  (1996),  arguing  that  well  defined  processes  is  a  prerequisite  to  prevent  deviations  from  set  standards.  

Page 104: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  92  

 As   stated   in  5.2.3.2,   coordinating  employees   is  mostly   about   alignment  and   less   about  implementing   new   high-­‐tech   equipment.   By   continuously   having   check   up-­‐meetings  about   the  warehouse   performance  will   provide   better   information   utilization,  making  people  more  involved  in  what  is  happening,  as  can  be  seen  in  Schweinfurt  and  Tongeren.    There   should   not   be   any   significant   cost   with   this   implementation   as   it   merely   is   a  matter   of   involving   the   right   people   through   e.g.   meetings,   hence   not   any   specific  investments.   As   the   inbound   and   outbound   flow   share   resources,   assessing   when  transports  arrive   is   important  to  plan  and  coordinate  how  to  share  resources,  and  is  a  reasonable  first  step  in  fulfilling  the  purpose  of  decreasing  the  RTW  lead-­‐time.  

7.3 Limitations  The  empirical  data  only  considers  three  largest  flows  (SKF  Poznan,  SKF  Mekan,  Factory-­‐D).   These   flows   do   however   represent   about   80%   of   the   total   inbound   volume,  concluding   they   have   the   most   impact   on   the   warehouse   performance.   However,   the  impact  of  the  goods  from  Vehicle  Parts  has  not  been  considered  and  even  though  they  do  not   occupy   the   same   capacity   in   the   elevator   they   still   require   capacity   from   the  operators  on  floor-­‐1.    Since  the  product  flows  are  complex  to  monitor  in  detail,  there  has  been  generalizations  when   the   capacity   was   estimated.   This   was   necessary   since   there   is   a   lack   in  standardized  routines,  making  it  complex  to  calculate  the  exact  capacity  and  instead  of  using  an  estimation.    It   must   also   be   noted   that   after   the   empirical   data   was   gathered,   a   whiteboard   was  implemented   in   the   buffer,   which   indicates   that   the   performance   has   changed.   This  might  be  the  case  as  the  whiteboard  helps  the  operators  to  follow  the  FIFO-­‐principle  in  a  much  better  way.    Besides   this,   the   focus   has   been   to   investigate   the   inbound   flow   of   goods   in   the  Gothenburg  warehouse;   hence   the   outbound   flow   has   not   been   analyzed   in   the   same  depth.   This   creates   a   risk   that   the   complete   picture   of   how   the   recommendations  provided  will  impact  on  the  outbound  flow.  

7.4 Can   Schweinfurt   and   Tongeren   reap   any   benefits   from  Gothenburg?  

Since   the  warehouse   in   Gothenburg   has   a   rather   unique   layout  with   its   five   floors   of  operations,  the  provided  solutions  are  developed  with  this  in  mind.  However,  there  are  some   findings  possible   to  apply   in   the   context  of  Tongeren  and  Schweinfurt,   the  most  significant   being   the   inconsistent   KPIs   in   the   three   warehouses.   Since   they   are   not  measured  in  the  same  touch  points,  it  is  impossible  to  benchmark  the  warehouses  with  each  other  to  assess  “best  practice”.    

Page 105: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  93  

 The   same   resources   are   shared   for   both   inbound   and   outbound   operations.   This   is  different  compared  to  Schweinfurt  and  Tongeren  since  the  inbound-­‐  and  the  outbound  flow  are  separated  in  these  warehouses.  Besides  this,  Schweinfurt  and  Tongeren  possess  a   highly   advanced   automated   storage   and   retrieval   system,  which   reduces   the   overall  friction   in   the  warehouse.   The   complexity   in   coordination   is   therefore   not   as   great   in  Schweinfurt  and  Tongeren  as  in  Gothenburg.      However,   the   findings   are   still   relevant   for   the   two   warehouses   on   a   general   level.  Regardless  of  the  activities  and  structural  design;  transparency  and  coordination  has  not  only  been  proven  important  in  Gothenburg  but  also  according  to  the  theoretical  data.    

7.5 Area  of  further  investigation  Stated  in  section  7.3,  this  thesis  has  only  focused  on  the  three  largest  flows  (Factory-­‐D,  SKF  Poznan  and  SKF  Mekan).  Since  20%  of  the  inbound  goods  are  not  considered  in  the  design  of  the  recommendations,  it  will  be  necessary  to  investigate  these  flows  as  well.  It  is  not   safe   to   say,   but   the   improvements   are  believed   to  have  a  positive   impact  on  all  flows,  as  the  improvements  are  mainly  focused  on  assessing  stable  processes,  which  is  a  prerequisite  in  all  operations  in  order  to  improve  their  performance.      During  the  thesis  a  new  organizational  system  with  a  whiteboard  was   implemented   in  the   buffer.   It   is   believed   that   these   routines   have   had   a   positive   impact   on   the  performance   of   the   buffer.   The   data   however   was   collected   before   the   system   was  implemented   and   the   result   has   not   been  measured   or   considered.   By  measuring   the  RTW   lead-­‐time   once   again   would   determine   if   this   has   had   has   an   impact   and   if  management  should  continue  to  develop  this  system.    When   the   put   away   frequency   was   calculated   only   the   overall   performance   was  assessed,  hence  no  deeper  segmentation  of  the  different  storage  locations  was  made.  To  further  understand   if   there   are  GSPs  designated   for   specific   storage   locations   that   are  overrepresented  in  the  tails  of  the  RTW  lead-­‐time  graphs,  a  deeper  segmentation  of  the  put   away   frequency   could   prove   this.   E.g.   by   segmenting   the   products   according   to  which  storage-­‐location  they  are  designated  to.      

Page 106: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  94  

8 Conclusion  The   purpose   of   this   thesis   was   to   contribute   to   a   reduction   in   the   RTW   lead-­‐time   in  product  flows  in  the  three  warehouses  in  Gothenburg,  Schweinfurt  and  Tongeren.    During   the   initial  data   gathering   it   became  evident   that   the  biggest  potential   for   lead-­‐time   reductions  was  within   the   inbound   operations   in   the  warehouse   in   Gothenburg,  hence   the   focal   point   became   this   warehouse.   The   warehouses   in   Schweinfurt   and  Tongeren  were  used  to  conduct  a  benchmark  study  to  explore  best  practice  in  order  to  understand  how  efficient  warehouse  processes  were  executed.    The  complexity  of   the  operations   in  Gothenburg   is  unique  as  the  warehouse   is  built   in  five  different  floors  (Schweinfurt  and  Tongeren  only  have  one)  making  processes  more  time  consuming,  as  goods  are  sent  manually  through  elevator  to  the  different  floors.    The  empirical  data  collection  is  comprised  of  the  three  largest   flows  (SKF  Poznan,  SKF  Mekan  and  Factory-­‐D),  together  covering  80%  of  the  total  inbound  volume.  However,  as  it  was  impossible  to  assess  the  RTW  lead-­‐times  within  the  warehouse,  new  touch  points  was  established.      Some  data  could  be  accessed  directly  through  WASS,  which  results  in  that  the  amount  of  observations  varies  greatly  between  the  flows,  and  could  be  a  subject  of  criticism  to  the  validity  of  the  empirical  results.  It  is  however  believed  to  depict  the  environment  in  the  correct   way   as   the   findings   were   discussed   and   approved   by   Six   Sigma   Black   Belt-­‐employees  at  SLS.    The  theoretical  findings  are  aligned  to  first  focus  on  stable  processes.  This  is  believed  to  be   the   basics   in   order   to   reduce   the   lead-­‐time,   as   lead-­‐time   reductions   are   hard   to  achieve  if  having  unreliable  processes.    The  theory  is  conclusive  focusing  on  the  same  two  key  points  to  reduce  lead-­‐time,  which  are  to  match  supply  and  demand  of  capacity  and  to  design  the  warehouse  processes  in  the  right  way.  Within  these  two  aspects,  there  are  three  key  points  to  cover  in  order  for  a  warehouse  to  work  efficiently:  

• Coordination  between  processes  –  Work  need  to  be  synchronized  in  order  for  the  processes  not  to  break  down  and  cause  additional  handling  activities.  

• Standardized   routines   –   Everyone   have   to   work   in   the   same   way   to   reduce  deviations   in   a   process.  Without   standardized   work-­‐routines,   changes   will   not  have  an  effect.  

• Transparency   –   To   understand   the   environment,   and   how   operations   are  interrelated,  there  is  a  need  for  transparency  in  communication.  Otherwise,  sub-­‐optimizations  will  occur,  impeding  the  performance.  

 The   processes   in   the   inbound   flow   experience   great   fluctuations   in   its   performance.  Looking   at   this   from   the   perspective   of   Little’s   law   it   becomes   evident   that   there   is   a  

Page 107: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  95  

problem  with  the  speed  of  the  system  as  the  average  arrival  time  has  on  average  been  higher  than  the  throughput  time  within  the  system.    To   reduce   the   RTW-­‐lead   time   the   obvious   would   be   to   aim   improvements   that   both  would   speed   up   the   system   and   shorten   the   length   of   the   system   to   decrease   the  throughput  time.  As  a  result  of  the  instability  in  the  inbound  flow  it  becomes  impossible  to  reduce  the  RTW  lead-­‐time,  as  strengthen  by  the  theory.  The  first  priority  is  to  achieve  continuous  stability  to  decrease  the  variance.  When  understanding  when  and  how  much  goods  will  arrive,   it  will  be  easier  to  follow  the  standardized  work  routines  for  how  to  handle  these  products  in  a  structured  way.    The   fluctuating   inbound   flow   is   connected   to   the   low-­‐level   of   transparency,   both   in  communication  and  coordination.  Problems  must  be  elevated  immediately,  and  the  right  personnel   have   to   get   access   to   the   right   information   in   order   to   plan   and   carry   out  activities  in  an  efficient  way.    There  is  a  need  to  increase  the  sense  of  urgency  in  the  importance  of  the  inbound  flow.  From  the  fact  that  the  KPIs  used  today  are  directed  towards  to  the  outbound  flow,  there  is  little  knowledge  about  how  the  inbound  flow  actually  performs  on  a  day-­‐to-­‐day  basis.  As  strengthen  by  theory,  what  gets  measured  gets  done,  meaning  that  KPIs  implemented  in  the  inbound  flow  will  increase  awareness  and  the  efficiency.  The  following  three  KPIs  are  suggested,  and  are  the  same  used  when  the  empirical  data  collection  was  conducted:  

o KPI  1:  Amount  of  GSPs  in  buffer    o KPI  2:  Amount  of  GSPs  inbound  at  what  time  o KPI  3:  Amount  of  GSPs  put  on  conveyor/hour  

 

Page 108: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  96  

9 References  Adler,   P.   and  Cole,  R.   (1993)  Designed   for   Learning:  A  Tale   of  Two  Auto  Plants.  Sloan  Management  Review,  Vol.  34,  No.  3,  pp.  85-­‐94.    Arnold,   T.   Chapman,   S.   and  Clive,   L.   (2008)   Introduction  to  materials  management   (6th  edition.  Prentice  Hall,  New  Jersey,  United  states  of  America.    Baker,  B.  (2006)  Observation:  A  Complex  Research  Method.  Library  Trends.  Vol.  55,  No.  1,  pp.  171-­‐179.    Baker,  P.   and  Canessa,  M.   (2009)  Warehouse  design:  A  structured  approach.  European  Journal  of  Operational  Research.  Vol.  193,  No.  2,  pp.  425-­‐436.    Bayraktar,  E.,  Demirbag,  M.,  Koh,  L.,  Tatoglu,  E.  and  Zaim,  H.  (2007)  A  casual  analysis  of  the   impact   of   information   systems   and   supply   chain   management   practices   on  operational  performance:  Evidence   from  manufacturing   SMEs   in  Turkey.   International  Journal  of  Production  Economics,  Vol.  122,  No.  1,  pp.  133-­‐149.    Bergman,  B.  and  Klefsjö,  B.  (2007)  Kvalitet  från  behov  till  användning.  Studentlitteratur,  Lund,  Sweden.    Baudin,  M.   (2004)  Lean  Logistics:  The  Nuts  and  Bolts  of  Delivering  Materials  and  Goods.  Productivity  Press,  New  York,  United  States  of  America.    Bryman,   A.   and   Bell,   E.   (2003)   Business   Research   Methods.   Oxford   university   press.  Oxford,  Great  Britain.    Cavanito,   J.   (1990)  The  Total  Cost  of  Warehouse  Equipment.  Chilton's  Distribution.  Vol.  89,  No.  5,  pp.  132-­‐136.    Christopher,  M.  (2000)  The  Agile  Supply  Chain:  Competing  in  volatile  markets.  Industrial  marketing  management.  Vol.  29,  No.  1,  pp.  37-­‐44.    Christopher,   M.   (2011)   Logistics   &   Supply   Chain   Management   (4th   Edition).   Pearson  Education  Ltd,  London,  Great  Britain.    Dubois,  A.  and  Gadde,  L-­‐E.  (2002)  Systematic  combining:  an  abductive  approach  to  case  research.  Journal  of  Business  Research,  Vol.  55,  No.  7,  pp.  553-­‐550.    Dolgui,  A.  and  Proth,  J-­‐M.  (2010)  Warehouse  Management  and  Design.  Springer,  London,  United  Kingdom.  

Page 109: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  97  

 Engström,  T.,  Jonsson,  D.  and  Medbo,  L.  (1996)  Implication  for  Improving  the  Flexibility  of   the  External  Material  Flow  System  Based  on  Experiences,  Theories  and  Experiences  from  Transforming   the  Assembly  Line.  Freyssenet,  M.,  Boyer,  R.   (Eds.)  GERPISA,  Paris,  1996  (unpublished  book),  pp.  1-­‐33.    Farhani,   R.,   Rezapour,   S.   and  Kardar,   L.   (2011)   Logistics   operations   and  management:  concepts  and  models.  Elsevier,  Massachusetts,  Unites  States  of  America.      Gu,   J.,   Goetschalckx,  M.   and  McGinnis,   L.   (2006)   Research   on  warehouse   operation:   A  comprehensive  review.  European  Journal  of  Operational  Research,  Vol.  177,  No.  1,  pp.  1-­‐21.    Haapaniemi,  P.  (2001)  A  commitment  from  the  top.  Chief  Executive,  February,  pp.  26-­‐27.    Hansen,  P.  and  Gibson,  K.  (2008)  Effective  warehouse  slotting.  National  Provisioner.  Vol.  222,  No.  5,  pp.  90-­‐94.    Jankulovski,   Z.   (2012)  Reduce  number  of  packages  not  received  within  agreed   lead  time  from  11%  to  2%.  Internal  Six  Sigma-­‐project  SLS.  SKF,  Göteborg,  Sweden.    Johansson,   M.   and   Öjmertz,   B.   (1996)   Packaging   as   a   carrier   of   materials   flow  effectiveness.   Selected   proceedings   of   the   7th  World   Conference   on  Transport   Research.  Vol.  4,  pp.  57-­‐71.  Pergamon,  Oxford,  Great  Britain.    Jonsson,  P.  and  Mattson,  S-­‐A.   (2009).  Manufacturing  planning  and  control.  McGraw-­‐Hill  Education,  London,  Great  Britain.    Kappauf,   J.,  Lauterbach,  B.  and  Koch,  M.  (2012)  Logistic  Core  Operations  with  SAP,  Ch  3.  Springer,  Berlin,  Germany.    Lee,   C.   (2006)   Two-­‐warehouse   inventory   model   with   deterioration   under   FIFO  dispatching   policy.  European   Journal  of  Operational  Research,   Vol.   174,  No.   2,   pp.   861-­‐873.      Leitch,  R.  (2001).  Effect  of  stochasticity,  capacity  and  lead  time  cost  drivers  on  WIP  and  throughput  in  a  pull  production  environment.  Management  Accounting  Research,  Vol.  12,  No.  2.  pp.  167-­‐196.    Liker,   J.   and   Meier,   D.   (2006)   The   Toyota   Way   Fieldbook:   A   Practical   Guide   for  Implementing  Toyota's  4Ps.  McGraw-­‐Hill,  New  York,  United  States  of  America.    Little,   J.  (2011)  Little’s  Law  as  viewed  on  its  50th  anniversary.  Operations  research,  Vol.  

Page 110: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  98  

59,  No.  3,  pp.  536-­‐549.    Lloyd  (1994)  Leadership  and   learning.  Leadership  &  Organization  Development  Journal,  Vol.  15,  No.  4,  pp.  19-­‐25.    Lumsden,  K.  (2006)  Logistikens  grunder.  Studentlitteratur,  Lund,  Sweden.    Luton,  D.  (1998)  Warehouse  workhorse  -­‐  the  forklift.  Modern  materials  handling,  Vol.  53,  No.  10,  pp.  37.    Olson,  D.  (2012)  Supply  chain  information  technology.  Business  Expert  Press.  New  York,  United  States  of  America.    Sanders,   N.   and   Ritzman,   L.   (2004)   Using   warehouse   workforce   flexibility   to   offset  forecast  errors.  Journal  of  business  logistics,  Vol.  25,  No.  2.  pp.  251-­‐269.    Schelyer,  M.   and  Gue,  K.   (2011)  Throughput   time  distribution  analysis   for  a  one-­‐block  warehouse.  Transportation  Research  Part  E,  Vol.  48,  No.  3,  pp.  652-­‐666.    Schultz,   K.   McClain,   J.   and   Thomas,   L.   (2003)   Overcoming   the   dark   side   of   worker  flexibility.  Journal  of  Operations  Management,  Vol.  21,  No.  1,  pp.  81-­‐92.    Scott,   B.   and   Brigham,   E.   (2008)  Essentials   of  Managerial   Finance.   Dryden   Press,   New  York,  United  States  of  America.    Spear,   S.   and  Bowen  H-­‐K.   (1999)  Decoding   the  DNA  of   the  Toyota  Production  System.  Harvard  Business  Review,  Vol.  77,  No.  5,  pp.  96-­‐106.    Stefansson,   G.   and   Lumsden,   K.   (2009)   Performance   issues   of   Smart   transportation  Management   systems.   International   Journal   of   Productivity   and   Performance  Management,  Vol.  58,  No.  1,  pp.  54-­‐70.      Swafford,  P.M.,  Ghosh,  D.  and  Murthy,  N.  (2008)  Achieving  supply  chain  agility  through  IT  integration  and  flexibility.  International  Journal  of  Production  Economics,  Vol.  116,  No.  2,  pp.  288-­‐297.    Wayman,   W.   (1995)   Inventory   accuracy   through   warehouse   control.   Production   and  Inventory  Management  Journal,  Vol.  36,  No.  2,  pp.  17-­‐21.    Wei,   C.,   Sheen,   G-­‐J.,   Tai,   C-­‐T.   and   Lee,   K-­‐L.   (2006)   Using   Six   Sigma   to   improve  replenishment   process   in   a   direct   selling   company.   Supply   Chain   Management:   An  international  Journal,  Vol.  15,  No.  1,  pp.  3-­‐9.    

Page 111: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  99  

Tseng,   M-­‐L.   Wu,   K-­‐J.   Nguyen,   T.T.   (2011)   Information   technology   in   supply   chain  management:   a   case   study.  Procedia   -­‐  Social  and  Behavioral  Sciences,   Vol.   25,   pp.   257-­‐272   (http://dx.doi.org/10.1016/S1877-­‐0428(11)02638-­‐3),   Proceedings   of   the   2011  International   Conference   on   Asia   Pacific   Business   Innovation   and   Technology  Management.    Yang,  K-­‐K.  Webster,  S.  and  Ruben,  R.  (2002)  An  evaluation  of  flexible  workday  policies  in  job  shops.  Decision  Sciences,  Vol.  33,  No.  2,  pp.  223-­‐249.    

Page 112: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  I  

Appendix  A  –  Interview  guides  Interview  guide  “Warehousing  supervisor”  –  1/2-­‐2013  Questions  regarding  the  product  flow  in  general  

• When  is  a  product  classified  as  “finished”  in  the  system?  • How  is  this  communicated  to  the  next  part  handled  in  the  flow?  • Are   products   between   the   Factory-­‐D   and   warehouse   here   in   Gothenburg  

classified  as  GIT?  • How  does  forklifts  know  when  they  should  pick  up  the  goods  in  buffer  #1?  

o How  long  can  they  lie  there?  • What  parameters  influence  how  and  where  the  products  are  stored?  • At  what  point  does  the  product  get  a  suggestion  for  storage  space?  • Do   you   have   flow   charts/steering   documents   about   the   production/warehouse  

operations?  • How  does  different  batch  sizes  affect  the  possibility  to  directly  put  products  into  

storage?  • Are  the  warehouse  only  using  WASS,  or  are  there  any  other  IT-­‐systems  working  

with  the  warehousing?    Inbound  area  to  storage  location  

• When  are  articles  reported  as  being  in  the  warehouse?  o How  is  this  done?  [Manually/automated/IT-­‐driven]  

• Are  products  from  other  locations  directly  sent  into  the  warehouse  or  are  there  any  preconditions  before?  

o When  do  these  products  stop  being  GIT  • How  do  you  know  where  to  place  the  GSPs  in  the  warehouse  [warehouse  spot]?  • How  are  they  transported  there?  [Standardized  pathway/automatic  movement]  • What  types  of  storage  methods  are  used?  • How  and  when  are  products  reported  as  being  in  storage?  

 From  storage  location  to  outbound  area  

• How  is  the  picking  of  a  product  in  storage  initiated?  • How  is  it  collected?  [Mode  of  transport/pathway/priority  between  products]  • Where  is  it  buffered?  [Outbound  goods]  • How  is  this  communicated  to  relevant  parties  handled?  [SLS,  customer]  • When  is  the  status  changed  from  “being  in  storage”  to  “pick  up  by  SLS”?  • Who  is  responsible  for  getting  the  product,  and  when  is  the  status  changed  from  

“pick  up  by  SLS”  to  “Goods  in  Transit”?  • Is  responsibility  handed  over?  

 Interview  guide  “Warehousing  supervisor”  –  14/2-­‐2013  General  questions  

• How   are   shifts   and   staff   managed   within   the   warehouse   to   secure   the   service  level?  

• What  service-­‐level  is  SLS  desired  to  operate  within?  • What  service-­‐level  does  SLS  operate  within  today?  

Page 113: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  II  

• Regarding  the  warehouse  operations,  what  type  of  equipment  does  SLS  possess  and  use  on  a  daily  basis?  

o Are  they  working  accordingly?  o Is  the  equipment  capacity  enough  for  SLS  to  deliver  on  time?  

 Interview  guide  “Warehousing  supervisor”  –  21/3-­‐2013  

• What  goods  are  inbounded  on  floor-­‐1  and  sent  directly  to  floor-­‐2  to  cross-­‐dock?  o Internal  goods  only?  o How  often  does  the  internal  transports  arrive?    

• Are  all  Large-­‐products  stored  on  floor-­‐2?  o If   not,   where   are   the   others   stored?   And   where   do   they   arrive   in   the  

warehouse?  • How  does  the  routines  look  like  for  Large-­‐products  arriving  at  floor-­‐2?    

o Can  you  take  us  through  the  steps?  • What  is  the  distribution  of  orders  during  a  typical  week?  

o Same  amount  of  orders  every  day?  o When  is  the  peak?  

• How   are   the   working   shifts   distributed   over   this   week,   and   how   is   personnel  distributed  within  the  shifts?  

o How  are  breaks  taken  by  the  shifts?  • Do   the   inbound   transports   from   SKF   Poznan/SKF  Mekan   have   designated   GSP  

spots  on  floor-­‐1?  Are  there  standardized  spots  for  GSPs  at  all?    Interview  guide  “Manager  inventory  management  process”  –  13/2-­‐13  Questions  regarding  the  Organization  

• Can  you  give  us  a  general  description  of  distribution  network  • Which  countries  is  SLS  operating  in?  • Who  does  SLS  answer  to?  • What  operations  are  SLS  conducting?  • What  kind  of  customers  do  you  have?  (Internal/external)  • What  services  do  SLS  offer?  

 Questions  regarding  the  Resources  

• How  many  people  work  in  Gothenburg?  (1200  globally)  • Do   you   believe   SLS   is   working   as   it   should   today,   or   should   something   be  

changed?  =IF(yes):  What?  • Do  you  see  any  specific  challenges  on  a  global  perspective?  

 Questions  regarding  the  Operations  

• How   are   shifts   and   staff   managed   within   the   warehouse   to   secure   the   service  level?  

• What  service-­‐level  is  SLS  desired  to  operate  within?  • What  service-­‐level  does  SLS  operate  within  today?  • What   do   you   think   is   the   biggest   difference   if   comparing   the   Gothenburg  

International  warehouse  with  other  International  warehouses?  • Which  IT-­‐systems  does  SLS  use?    

Page 114: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  III  

• Regarding  the  warehouse  operations,  what  type  of  equipment  does  SLS  possess  and  use  on  a  daily  basis?  

o Are  they  working  accordingly?  o Is  the  equipment  capacity  enough  for  SLS  to  deliver  on  time?  

 Interview  guide  “Manager  business  Development”  –  28/3-­‐13  

• Can  you  give  us  a  description  of  what  you  do?  • How  are  trips  created?  

o How  are  orders  received  in  WASS?  o How  long  are  the  orders  in  WASS  before  they  are  released  for  picking?  o Is   there   a   difference   in   when   the   orders   are   released   depending   on   the  

transport  mode?  • What   agreements   do   you   have  with   the   3PL   companies   that   handle   the   goods  

from  SKF  Mekan  and  SKF  Poznan?  o When  should  these  transports  arrive  on  a  normal  day,  and  is  this  pre-­‐alerted?  o Is  there  any  follow  up  on  the  performance  of  the  3PL  companies?  

 Interview  guide  for  Schweinfurt  and  Tongeren    Questions  related  to  warehouse  design  

• Can  you  walk  us  through  the  organization  of  the  building  o Are   there   any   temporarily   storage   zones   for   where   goods   are   placed  

before  being  put  into  storage?  E.g.  while  sorted  or  consolidate  o Why  is  it  not  put  away  directly?  

• How  do  workers  identify  where  goods  are  temporarily  stored?  o How  are  signs,  floor  markings  etc.  used  to  identify  where  goods  has  been  

placed  and  how  long  they  have  been  there  • Overall  capacity  

o What  is  the  warehouse  storage  and  handling  capacity?    Questions  related  to  materials  handling  activities  

• What   activities   are   carried  out   throughout   the   flow   from   the  GSPs   loaded  off   a  truck  to  it  is  placed  in  storage?  

o Is   there   a  work   standard   for   how   activities   are   carried   out   and   in  what  sequence?  

o What  priorities  are  there  between  different  activities  • Transportation  

o How  are  slot  times  used  for  inbound  and  outbound?  o What  is  the  frequency  of  inbound  and  outbound  transports?  

 Questions  related  to  resources  

• How  are  resources  coordinated  to  match  supply  and  demand  for  capacity?  o How   are   resources   distributed   or   shared   between   shifts,   groups   and  

areas?  o Are  they  dedicated  to  a  certain  process  or  activity?  

• What  type  of  equipment  is  used?  o How  are  they  used  to  make,  work  easier?  

• How  is  the  personnel  organized?  

Page 115: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  IV  

o What  types  of  shifts  are  there  and  how  do  they  rotate?  o Are  the  shifts  matched  so  that  the  supply  of  capacity   is  matched  up  with  

the  demand  for  labor?  o How  activities  are  divided  within  the  shift  (rotations,  cross-­‐training)  o If   there   is   a   spike   in   outbound   or   inbound   volume,   how   do   you   handle  

this?  o How  are  personnel  distributed  to  match  the  demand?  

 Questions  related  to  IT-­‐systems  

• What  IT-­‐systems  used?  o How  are  they  used  control  the  flow?  

• How   is   information   communicated   between   personnel/forklifts   about  assignments  and  activities?  

 Interview  guide  “Team-­‐leaders”  –  15/4-­‐2013  

• What  are  your  responsibilities?  o Do  you  have  different  responsibilities?  o Do  you  also  help  out  with  operational  activities?  

• How  much  do  you  control  how  the  operators  work?  o How  are  resources  prioritized  between  the  floors?  o Are  there  re-­‐prioritizations  during  the  day?  o What   decides   if   the   operators   work   according   to   “one-­‐in   one-­‐out”-­‐

principle?  o Do  you  have  meetings  where  the  distribution  of  resources  is  discussed?  

• What  information  do  you  get  about  incoming  goods?  • Is  it  you  or  the  transportation  department  who  releases  the  orders?  • If  there  is  a  problem  and  something  breaks  how  is  this  handled?  

o How  is  this  communicated  up  to  management?  • Are  there  occasions  when  the  operators  responsible  for  the  weighing  station  are  

on  break  while  the  rest  of  the  flow  is  still  running?  • When  a  picking  location  is  empty  how  is  it  replenished?  • What  are  your  official  internal  lead-­‐times?  

   

Page 116: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  V  

Appendix  B  –  Layout  Gothenburg  floor-­‐1  

 1:  Main  buffer  2:  Storage  area  3:  Vertical  elevator  and  vertical  elevator  buffer  4:  drive  path  to  storage  area-­‐E  

 

Page 117: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  VI  

Appendix  C  –  Layout  Gothenburg  floor-­‐2  

 1:  Automated  conveyor  belts  connected  to  the  automated  elevators  2:  Temporarily  buffer  for  outbound  goods  3:  Outbound  docks  

Page 118: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  VII  

Appendix  D  –  Layout  Gothenburg  floor-­‐3  

 1:  Automated  elevators  2:  Storage  locations  

Page 119: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  VIII  

Appendix  E  –  Layout  Gothenburg  floor-­‐4    

   1:  Automated  elevators  2:  Storage  locations  

Page 120: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  IX  

Appendix  F  –  Process  map  of  inbound  flow  in  Gothenburg  

Page 121: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  X  

Appendix  G  –  Schweinfurt    

1:  Three  inbound  docks  +  buffer  space  before  conveyor  belts  2:   Three   conveyor   belts   for   inbound   goods   +   quality   check-­‐department   if   GSPs   are  rejected  3:  Automated  storage  system  4:  Packing-­‐station  full  GSPs  5:  Picking-­‐storage  6:  Packing-­‐station  for  picking-­‐assignments  7:  Automated  storage  system  8:  Outbound  area  9:  Outbound  transport  docks  +  buffer  area  for  cross-­‐docking  goods  

Page 122: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XI  

Appendix  H  –  Tongeren  MWH  

 1:  Inbound  docks  2:  Conveyor  belts  for  inbound  goods  3:  High  bay-­‐storage  4:  Replenish-­‐belts  for  picking/packing  storage  +  heavy  picking  station  5:  Picking-­‐storage  6:  Packing-­‐station  for  GSPs  7:  Packing-­‐station  for  carton  boxes  8:  Packing  station  of  carton  boxes  into  GSPs    

Page 123: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XII  

Appendix  I  –  Tongeren  WEC  1  

 1:  Pick/pack-­‐location  for  carton  boxes  and  smaller  items  2:  Area  for  cross-­‐docking  goods  temporarily  stored  when  between  transports  3:  Transportation  docks  4:  High-­‐rack  storage  5:  Pick/pack-­‐location  for  EUR-­‐pallets  (larger  goods)  6:  Storage  for  smaller  items    

Page 124: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XIII  

Appendix  J  –  Productivity  measurements        

!"#$%&'()#*(+,

+-.!/012+*2"3

+456(/012+*2"3

%&'(2378",

.!"#$%&'(9:

(;(<=>

?+3(!"#$5

)#*(+,

+-.?+3(

!"#$

)2@A23B(+552B3?

03*5)2@A23B.?

+3(!"#$

*"*+8(+552B3?

03*5

*"*+8(+55.?

+3(!"#$

C0?+$A

4$0+A(@"$$0@*0/(*"*+8(

+552B3?03*5

.?+3(!"#$

!"!!#$

####

##;D

%&'(#

)#'*!

&&'%+$'%#

$'%#"!!

+,#,

#,#,

;EF%

('###$

&'*!$)'%+

)')#)')

&"!!&(

#&#&

#&;EG

%%'+)

#)+'*!

$%')$)'#)

-./01,'&

+"!!#*

#%#%

#%;D

%+'%%

(#'$!

&$'(%$')%

%'!$"!!

&*#$

#$#$

;EG%

%',+&$

$'*!%&'#,

#!'$+#!'$

%"!!)

#&#&

#&D

%#'(#

!!'!!

*'%,#'(#

#'(,"!!

#++

++

;EH%

&'%%+

!',!#%'(%

+'#%+'&

("!!+,

#)#)

#);EI

&,#'+)

#+%%'#)

#(#'&%,'%)

2345678309:/$'$

*"!!+,

++++

++;D

&,#'$!

#+#%'!$

#,('&*,'$+

,'$)"!!

+!*

**

;JD&,

#'#($%

#'(+(%'$#

&')!-./01

#')#!"!!

$)&#

&#&#

;JK&,

#'**,+

&'$&###')(

$'+#$'+

##"!!&,

#%#%

#%;EJ

&,#'!#

&$!')&

%!'#)#')+

-./01#'+

#&"!!+(

#+#+

#+;JG

&,#'$+

)!+'$,

#&('!,$'*)

$')#+"!!

++&#

&#&#

;EJ&,

#'&*##,

$'$,#$)'&*

%'($%'(

#$"!!#)

((

(;EJ

++!'%,

,(&'!+

*%'%,&'%)

-./01#'(

#%"!!#(

,$,$

,$GI

&)!'%)

+!#'!+

$('#+#',+

2345678309:/#'#

#,"!!#$

+*+*

+*JG

#&#'#*

+&&',(

$,'#,+'*%

+'*#("!!

#!,$

,$,$

LG#&

!'*$+*

+'#($*'!+

$'!!$'!

#*"!!*

$,$,

$,DK

#&!',$

#(#'$&

&$',+&'!%

&'##)"!!

##$,

$,$,

DM#&

!'*)+*

+'#($*'(&

$'!,$'#

&!"!!#%

$+$+

$+JK

#&#'&%

&,&'#(

$#'!!+'$&

+'$&#"!!

%($

($($

MF#&

!'$!&$

&'!!&*'*#

&'$!&'$

&&"!!&$

$!$!

$!EI

#&#'),

!!'!!

&+'%+#'),

2345678309:/#'+

&+"!!+$

#+#+

#+;JE

%,'(#

!!'!!

++'%,,'(#

,'(

!"!#$%#&&'()*

+)!&

!"!#$%#&&,*

#)%-"./

0#12&-'3!!"#$%&

%$!!4'(-!2&-'3!

'!$'(&$(&

56+)')(2&-'3!')$()

'$!!

Page 125: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XIV  

Appendix  K  –  Inbound  distribution  of  GSPs  to  floor-­‐1    

 

!"#$%&'() *%+,", -.!/012", 3%$"4/"51&"61/7-*89:%;&!"## !$%! # #%# !$&"## !'%( # #%# !)'"## !)%! # #%# !))"## !'%* # #%# !)+"## !&%' # #%# !&$"## &%$ # #%# '*"## *%( # !!%$ !(,"## *%* ,%, !$%$ ''("## $%! !%! #%# *!#"## !!%, !#%& #%# &&!!"## !)%* # #%# !+!&"## !'%* # #%# !)!'"## !+%+ *%' #%# &'!)"## $%, # #%# *!+"## *%) +$ #%# $'!$"## !!%# &$ #%# '*!*"## $%* # +$%$ $'!,"## ,%, # '$%& )+!("## !#%) # '+%! )+&#"## !&%( # &(%$ )&&!"## !&%( # $#%* *)&&"## +%' # ')%, )#&'"## !&%) # #%# !&#"## !#%' # #%# !#

3<3=>/7-*8 &++ !#( &,! $)$?/%@/$%$"4 '(%+ !$%( )'%+ !##%#=51&"61 !#%$ )%$ !!%* &$%(-$A)15 ) !& !(

Page 126: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XV  

Appendix  L  –  Number  of  GSPs  in  buffer    

   

!"#$% &'($ )"'*%+,--$. /$.#'0"1%$1$2"#3.%+,--$. &3#"1!"#$"#! #%&#' (() $' *+'!"%)"#! #!&)) *%, #)) $%,!"%#"#! #,&)) #%$, $( #!$#!"%%"#! #'&%) #,*$ %() #('$

!"%'"#! #%&') #!(* %%! #+)#!"%+"#! #%&,) ##*! %!$ #,%%!"%("#! #%&,) #)+) %## #%(#!"%*"#! #%&#% #)'# %%+ #%((

,"%"#! #%&,) ,'! %( ,*),"!"#! #%&') %%( '% %($,","#! #%&#) ,%! %' ,,*,"'"#! #+&!) !*+ #! !$$

'"%"#! #%&#' (*' $, *($'"!"#! #%&)) *'! (, $%(

'"+"#! #!&!) *$) #(' #)+''"("#! #!&,' $') (+ #)%+'"*"#! #%&!) +%( *# ()*'"#)"#! #,&#' #))$ '+ #)+'

'"#!"#! #%&,' '#' !) ',''"#,"#! #%&!) '#% ) '#%'"#'"#! ##&)' +(# ! +(,'"#+"#! #%&,) $+* ) $+*'"#("#! #%&%) #%*$ %% #!##

'"%)"#! #!&)) ($( +, *+#'"%#"#! #%&%) #,(, +' #'!$'"%%"#! #(&!) *%) +% **%'"%!"#! +&') +,( #)( (',

42$."5$ *+' $% $'(

Page 127: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XVI  

Appendix  M  –  Available  capacity  before  and  after  1st  April    

   

!"#$%&'$( !"#$%&)*+,-,. !"#$%&/-.0#1+.2%$3&4+35",,+% 6 0 78697 :;9; ::<0-=#&>+35",,+% 88 0!+$?&%+$@+3 A9; 0!"#$% B7C9A

!"#$%&'$( !"#$%&)*+,-,. !"#$%&/-.0#1+.2%$3&4+35",,+% 6 0 7DB97 E;9; ;D<0-=#&>+35",,+% 6 0!+$?&%+$@+3 A9; 0!"#$% BBC9A

F$G-?2?&H$4$H-#(&I+="3+&85#&J43-%&K0"235L

F$G-?2?&H$4$H-#(&$=#+3&85#&J43-%&K0"235L

Page 128: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XVII  

Appendix   N   –   Overdue   GSPs   for   Factory-­‐D,   SKF   Poznan   and  SKF  Mekan  

 

   

   

     

!"#$%&#'()*+ !, -.'/.#'%01 -.'23/'%01+ -.'24$##'%01+5665 57589 5:587 5;<=7 575897> 9<> ?6> ?9> 9<>

@0A2/$1BC

!"#$%&#'()*+ !,-. -./01 0-1 231 441 351 0-1

),6'*789:9;9'79#'%:< ;9'=>7'%:<+ ;9'=?$##'%:<+ ;9'@7&$'%:<+

43 -A5 --5 -./

!"#$%&#'()*+ !, -.'/.#'%0123 43 35267 857 327 9:7 857

),;'<#=0.-.'>?/'%01+ -.'>@$##'%01+

99 43

Page 129: Masters thesis final version - Chalmers Publication Library (CPL)publications.lib.chalmers.se/records/fulltext/180172/180172.pdf · This’chapter’provides’an’introduction’to’theMaster’s’thesis’bypresenting’thebackground

  XVIII  

Appendix P – Definitions  

• Assignment:  One  assignment  =  one  GSP.  This  is  assumption,  as  one  assignment  could  include  several  GSPs.  However,  when  discussing  this  with  the  warehouse  managers,  this  simplification  was  believed  to  be  accurate  enough  to  support  our  data.    

• Available  capacity:  available  operators  during  a  certain  time  period    

• Effectiveness:  Successful  in  producing  a  desired  or  intended  result    

• Efficiency:  A  level  of  performance  that  describes  a  process  that  uses  the  lowest  amount  of  inputs  to  create  the  greatest  amount  of  outputs  

 • GSP:  A  GSP  is  half  the  size  of  a  EUR-­‐pallet  and  measures  0,8  X  0,6  meters.  

 • One  in-­‐One  out:  The  activity  the  forklifts  use  when  they  move  one  GSP  in  to  

storage  and  at  the  same  time  take  one  GSP  out  of  storage,  so  they  never  drive  empty.      

• Productivity:    !""#$!"#!$%  !"!#$%!&!"#!!!"#$  !"!#$!%$&

     

o Note!  The  productivity  is  calculated  differently  depending  on  what  to  take  into  consideration.  E.g.  the  productivity  for  the  inbound  flow  is  calculated  only  with  respect  to  amount  of  put  away,  whilst  the  total  productivity  is  calculated  with  respect  to  total  assignments  executed.  

o A  generalization  here  is  the  assignments  split  on  all  workers  available  in  the  warehouse,  not  dependent  on  their  specific  task.  This  means  that  even  though  an  operator  has  other  duties  than  just  executing  put  away  or  picking,  those  actions  will  decrease  productivity    

• Put  away  frequency:  The  amount  of  GSPs  being  scanned  as  “in  storage”  during  a  certain  time-­‐span