Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis...

34
Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ ısica corpuscular (IFIC), Universidad de Valencia-CSIC COSMO 2013 Mass bounds for thermal baryogenesis from particle decays – p.1/34

Transcript of Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis...

Page 1: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Mass bounds for thermal baryogenesis from particledecays

Juan Racker

Instituto de Fı́sica corpuscular (IFIC), Universidad de Valencia-CSIC

COSMO 2013

Mass bounds for thermal baryogenesis from particle decays – p.1/34

Page 2: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Outline of the talk:

� Brief Introduction

� Problems for having baryogenesis at low energy

� Some solutions and bounds

– p.2/34

Page 3: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

The matter-antimatter asymmetry of the UniverseObservations:

(a) The Universe is globally asymmetric: the amount of antimatter isnegligible with respect to the amount of matter.� Cosmic rays from the sun.� Planetary probes.� Galactic cosmic rays.

� BESS-Polar experiment −→ HeHe

< 1 × 10−7.� Absence of strong γ−ray flux from nucleon-antinucleon

annihilations in clusters of Galaxies (like Virgo cluster).

=⇒ Matter and antimatter domains should be larger than 20 Mpc.[Steigman, 1976]

Actually they must be larger than ∼ the visible Universe ( cosmicdiffuse γ-ray background ) . [Cohen, De Rújula, Glashow, 1998]

– p.3/34

Page 4: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

(b) Baryon density� Big Bang Nucleosynthesis.

The abundances of the light elements D, 3He, 4He, and 7Lidepend mainly on one parameter, nB/nγ.

� CMB anisotropies.

YB ≡ nB − nB̄s

=nBs

≃ 8,5 × 10−11

– p.4/34

Page 5: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

The annihilation catastrophe

Nucleons and antinucleons remain in chemical equilibrium untilΓann < H, which occurs at

Tfo ∼ 22 MeV

If the Universe was locally-baryon-symmetric, then

YB fo ∼ 7 × 10−20 !!!

Conclusion: There was a baryon asymmetry at T ∼ O (102) MeV.

Origin?↓

initial conditions��� or dynamic generation

– p.5/34

Page 6: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Sakharov’s conditionsBasic requirements to dynamically generate a baryon asymmetry:

� Baryonic number ( B) violation

� C and CP Violation

� Departure from thermal equilibrium

In thermal baryogenesis from the decay of a particle with mass M :

H(T = M)

Interaction rates∝ f(Mi/M, couplings)

M

MPl

– p.6/34

Page 7: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Is baryogenesis possible in the SM?� B violation: Yes → sphalerons (violate B + L but conserveB − L).

� C violation: Yes

� CP Violation: Not enough → JCP/T12c ∼ 10−18

� Departure from thermal equilibrium: No → mH > 114GeV

implies that the EW phase transition is not strongly first order.

Conclusion: physics beyond the SM is needed to explain the origin ofthe cosmic asymmetry.

– p.7/34

Page 8: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Problems for thermal Baryogenesis at low energy

Example: Type I Leptogenesis

The singlet Majorana neutrinos of the type I seesaw can generate a

lepton asymmetry when decaying in the primitive Universe.

Y fB = −κ ǫ η (constant ǫ)

� κ =28

79Y eqN (T ≫M1) ∼ 10−3

� ǫ =∑

α

ǫα =∑

α

γ(N1 → Hℓα) − γ(N1 → H̄ℓ̄α)∑

β γ(N1 → Hℓβ) + γ(N1 → H̄ℓ̄β)

� η = efficiency ∼ 1

strength of interactions

– p.8/34

Page 9: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

CP violation in decays

Ni

h

ℓα

(a) Tree

Ni

ℓ̄β

Nj

h

ℓα

(b) Vertex

�Ni

ℓβ, ℓ̄β

h, h̄

Nj

h

ℓα

(c) Wave

– p.9/34

Page 10: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

– p.10/34

Page 11: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Two problems to lower the energy scale

ǫ ∼ 3

16π

λ2α2

M2M1 (hierarchical)

� Connection with light neutrino masses:Type I seesaw: ǫ ∼ 3

16πmiv2M1 (type I seesaw)

|ǫ| ≤ ǫDImax =

3

16π

M1

v2(m3 −m1) =⇒ M1 & 109 GeV (η ≤ 1)

Some alternatives: Inverse seesaw, radiative seesaws, ...

� Even with no connection to neutrino masses:Washout processes inherent to the existence of CP violation

washouts ∝(

λ2α2

M2

)2

large ǫ → large λα2 → too much washout at LE → How low?

– p.11/34

Page 12: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Ways to have Baryogenesis at low energy scales

� Mass degeneracy:

when M2 −M1 ∼ΓN2

2, |ǫ| ∼ 1

2

Im[

(λ†λ)221

]

(λ†λ)11(λ†λ)22≤ 1

2

Note: However in the type I seesaw the mixing between active and sterile neutrinos is:

mixing ∼mD

M∼

r

M≪ 1.

� Three body decays: It’s more easy to satisfy the o.e.c.

� Hierarchy of couplings:� Take λα1 as small as necessary.

E.g. λα1 ∼ 10−7 to have Γ ∼ H(T = M1) for M1 = 1 TeV.� Take λα2 much larger to have enough CP violation.

[T. Hambye, 2002]

– p.12/34

Page 13: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Other ways and bounds

L-violating CP asymmetry

ǫ ∝ λ2α2

M1

M2, washouts ∝

[

λ2α2

M1

M2

]2

50

500

100

1000

3 5 30 50 10

Bou

nd o

n M

1 [T

eV]

M2/M1

[JR, arXiv:1308.1840]– p.13/34

Page 14: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

L-conserving CP asymmetry

ǫα ∝ λ2β2

(

M1

M2

)2

, washouts ∝[

λ2β2

(

M1

M2

)2]2

.

Inverse seesawParticle content: SM + νRi , sLi (singlet fermions).The mass matrix of the neutral sector in the basis νL, νcR, sL is

M =

0 mD 0

mTD 0 M

0 MT µ

mν = mDMT−1

µM−1mTD ∼ mD

( µ

M

) (mD

M

)

(mD, µ≪M)

νRi , sLi combine to form quasi-Dirac fermions with mass ∼M .

mixing ∼ mD

M∼

µ – p.14/34

Page 15: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

1e+06

1e+07

1e+08

1e+09

2.5 3 5 30 10

Bou

nd o

n M

1 [G

eV]

M2/M1

— µ2 ≫ ΓN2— µ2 ≪ ΓN2

[JR, M. Peña, N. Rius, 2012]

Note: This is for 2 flavors. The bound can be up to a factor ∼ 4 smaller for 3 flavors.

– p.15/34

Page 16: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

100000

1e+06

1e+07

1e+08

2.5 3 5 30 10

Trh

[GeV

]

M2/M1

— µ2 ≫ ΓN2— µ2 ≪ ΓN2

Note: The Upper bound on Trh from gravitino overproduction can be satisfied

– p.16/34

Page 17: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Massive decay productsIn baryogenesis from annihilations, χχ→ ψu, it is possible to takemψ > mχ =⇒ Boltzmann suppression ∝ e−mψ/T of the washoutswithout reducing the CP asymmetry.[Y. Cui, L. Randall, B. Shuve, 2012],

[N. Bernal, S. Colucci, F-X. Josse-Michaux, JR, L. Ubaldi, 2013]

In decays, e.g. taking a massive H2 in N1 → H2ℓ, like in the inertdoublet model, there are two opposite effects:

- Boltzmann suppression of the washouts (but not as much as forannihilations, since mH2

< M1).

- Phase space suppression of the CP asymmetry

⇓ SM + H2 + Ni, with H2 and Ni odd under a Z2

– p.17/34

Page 18: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

2

345

20

50

1

10

100

0.98 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Bou

nd o

n M

1 [T

eV]

Mh/M1

Tsfo=140

Tsfo=80

[JR, arXiv:1308.1840]

– p.18/34

Page 19: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Initial thermal densityIf the N1 are produced at T ≫M1 by a process different from theYukawa interactions, then λα1 can be chosen small enough to havethe N1 decay at T ≪M2.⇒ It is possible to have large λα2 and consequently a big ǫ, but atthe same time small washouts at the moment the N1 start to decayand produce the BAU.

M1min ∼ 2500 (2000) GeV for Tsfo = 140 (80) GeV.

In this way the small neutrino masses, DM, and BAU can besimultaneously explained at the TeV scale in the inert doublet model,without degenerate heavy neutrinos or fine tuning among phases.

Note: The interaction that creates the N1 must decouple before they decay.

– p.19/34

Page 20: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Almost degenerate neutrinos

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

250 1000 10000

∆ M

/M1

M1 [GeV]

r > 10-5

r > 10-3

r > 10-1

δ ≡ M2−M1

M1

, r = smallest Yukawa couplinglargest Yukawa coupling

δ × r . 10−8 , for 250 GeV . M1 . 4 TeV and

δ × r . 3 × 10−9 , for 250 GeV . M1 . 1 TeV .– p.20/34

Page 21: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Additional slides ...

– p.21/34

Page 22: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Relevant processes for N1–Leptogenesis

�N1

ℓj

H

�ℓjH

N1

(a) Decay and inverse decay (production) of N1.

ΓN1=

1

8π(h†h)11M1 .

– p.22/34

Page 23: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

�Hℓ

ℓ̄

N1,2,3 �Hℓ

ℓ̄

N1,2,3

�ℓℓ

N1,2,3

(b) ∆L = 2 scatterings mediated by N1,2,3.

ℓ t̄

N1 H̄ Q3

Q3

N1

t

H

�N1

Q̄3t̄

H

(c) ∆L = 1 scatterings mediated by the Higgs.

– p.23/34

Page 24: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

ǫNiℓα = ǫNiℓα (vertex) + ǫNiℓα (wave)

ǫNiℓα (vertex) =1

j

f(yj)Im

[

λ∗αjλαi(λ†λ)ji

]

(λ†λ)ii

ǫNiℓα (wave) = − 1

j 6=i

Mi

M 2j −M 2

i

Im[(

Mj(λ†λ)ji +Mi(λ

†λ)ij)

λ∗αjλαi]

(λ†λ)ii

with yj ≡M 2j /M

2i and f(x) =

√x(1 − (1 + x) ln[(1 + x)/x]).

[Covi, Roulet, Vissani, 1996]

– p.24/34

Page 25: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Boltzmann equationsSimple unflavored version:

dYNdz

= − 1

zHs

(

YNY eqN

− 1

)

γD

dYLdz

=1

zHs

{

ǫ

(

YNY eqN

− 1

)

γD − YLY eqL

γD2

}

with Yx ≡ nxs

and z ≡ M1

T.

�dYNdz

= −K(z)

z(YN − Y eq

N ) with K(z) ∼ ratesH

.

�dYLdz

= source - washouts

Source = CP violation × L violation × departure from eq.

Washouts = asymmetries (YL) × rates (γ).

– p.25/34

Page 26: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

The role of m̃1

It determines the amount of departure from eq. and the intensity ofthe washouts.Reference value given by the equilibrium mass m∗ :

ΓN1

H(T = M1)=m̃1

m∗

,

with m∗ ≃ 1,08 × 10−3 eV .

� m̃1 ≫ m∗ → strong washout regime:

• Independence from initial conditions.

• η ∝ m̃−11 (YL ∼ source/wo ∼ ( ǫ dY eq

N /dz)/wo ) .

� m̃1 ≪ m∗ → weak washout regime:

• Very dependent on initial conditions.

• If Y iN = 0 → η ∝ m̃1

1� m̃21 .

– p.26/34

Page 27: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Is leptogenesis possible with ǫ = 0?

Flavor effects

N1 → ℓd H

� T & 1012 GeV: The Yukawa interactions of the charged leptonsare out of equilibrium→ ℓd is the only relevant “direction” in flavor space.

� T . 1012 GeV: The Yukawa interactions of the τ (and eventuallythe µ) are in equilibrium→ they project ℓd into the flavor eigenstates (ℓτ , ℓµ, ℓe) →decoherence

Note: similarly for the antileptons, with N1 → ℓ̄′d H̄

– p.27/34

Page 28: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Boltzmann equations

Define Y∆α≡ 1

3YB − YLα (B/3 − Lα is conserved by sphalerons)

dY∆α

dz≈ f(z)ǫα − Y∆α

Kαw(z) (α = e, µ, τ),

with z ≡M1/T , Kα ≡ |〈ℓα|ℓd〉|2

The asymmetries Y∆αevolve (approximately) independently.

– p.28/34

Page 29: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Two types of CP violation

Γ(N1→ℓµh)Γ(N1→ℓ̄µh̄)

Γ(N1→ℓτh)

Γ(N1→ℓ̄τ h̄)

Γ(N1→ℓdh)

Γ(N1→ℓ̄′dh̄)

-�

6

?

��

���3

���+

(a) ℓ′d = ℓd, ǫ 6= 0

Γ(N1→ℓµh)Γ(N1→ℓ̄µh̄)

Γ(N1→ℓτh)

Γ(N1→ℓ̄τ h̄)

Γ(N1→ℓdh)

Γ(N1→ℓ̄′dh̄)

-�

6

?

��

���3

(b) ǫ = 0, ℓ′d 6= ℓd, ǫα 6= 0

– p.29/34

Page 30: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

1e-05

0.0001

0.001

0.01

0.1 1 10

|Y∆ i

|/|ε|

, |

YB

-L|/|

ε|

Z = M1/T

— |Y∆τ/ǫτ | —

∣Y∆µ/ǫµ

∣ — |YB−L/ǫµ|ǫτ = −ǫµ Kτ = 0,1 Kµ = 0,9 m̃1 = 0,01 eV

– p.30/34

Page 31: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

The relevant set of BE for the case µ2 ≫ ΓN2is

dYN1

dz=

−1

sHz

(

YN1

Y eqN1

− 1

)

γD1,

dY∆α

dz=

−1

sHz

{

(

YN1

Y eqN1

− 1

)

ǫα1 γD1−

i

γNiℓαhyℓα

−∑

β 6=α

(

γℓβh

ℓαh+ γ

ℓβ h̄

ℓαh̄+ γhh̄ℓαℓ̄β

)

[yℓα − yℓβ ]

}

,

where z ≡M1/T , YX ≡ nX/s, yX ≡ (YX − YX̄)/Y eqX , and

Y∆α≡ YB/3 − YLα.

– p.31/34

Page 32: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Instead, for µ2 ≪ ΓN2

dYN1

dz=

−1

sHz

(

YN1

Y eqN1

− 1

)

γD1,

dYN2−N̄2

dz=

−1

sHz

α

γN2

ℓαh[yN2

− yℓα] ,

dY∆α

dz=

−1

sHz

{(

YN1

Y eqN1

− 1

)

ǫα1 γD1− γN1

ℓαhyℓα + γN2

ℓαh[yN2

− yℓα]

−∑

β 6=α

(

γℓβh

ℓαh+ γ

ℓβ h̄

ℓαh̄+ γhh̄ℓαℓ̄β

)

[yℓα − yℓβ ]

}

.

– p.32/34

Page 33: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

0.01

1

100

10000

1e+06

1e+08

1e+10

10000 100000 1e+06 1e+07 1e+08 1e+09

γ τ /

γ N2 ,

γ

τ / |

γ Σ F

CI|

T [GeV]

M2 = 107 GeV , (λ✝ λ)22 = 10-4

— γτ/γN2— γτ/ |γΣ FCI|

– p.33/34

Page 34: Mass bounds for thermal baryogenesis from particle decays · Mass bounds for thermal baryogenesis from particle decays Juan Racker Instituto de F´ısica corpuscular (IFIC), Universidad

Light neutrino masses:

mi ∼λ2

21v2

M1

+ µ2λ2

22v2

M 22

+ λ′22λ22v

2/M2 .

Taking mi ∼ matm ∼ 0,05 eV, we get

λα1 ∼ 10−5 − 10−4, µ2/M2 ∼ 10−8 − 10−6, λ′α2 ∼ 10−8 − 10−7 .

Moreover,

ΓN2/M2 ∼ 5 × (10−4 − 10−2) ⇒ (typically) µ2 ≪ ΓN2

Note: For M1 & 5 × 106 GeV, and still not considering large finetunings related to phase cancellations, it is also possible to haveµ2 & ΓN2

.

– p.34/34