Marzia Nardi CERN – Th. Div.

38
Marzia Nardi CERN – Th. Div. Hadronic multiplicity Hadronic multiplicity at RHIC and LHC at RHIC and LHC Korea-EU ALICE Collab Korea-EU ALICE Collab . . ct. 9, 2004, Hanyang Univ., Seoul ct. 9, 2004, Hanyang Univ., Seoul

description

Korea-EU ALICE Collab . Oct. 9, 2004, Hanyang Univ., Seoul. Hadronic multiplicity at RHIC and LHC. Marzia Nardi CERN – Th. Div. Outline. Introduction on the Color Glass Condensate and results on hadron multiplicity for: Au-Au and d-Au collisions at RHIC, √s NN =20÷200 GeV - PowerPoint PPT Presentation

Transcript of Marzia Nardi CERN – Th. Div.

Page 1: Marzia Nardi CERN – Th. Div.

Marzia NardiCERN – Th. Div.

Hadronic multiplicity Hadronic multiplicity at RHIC and LHC at RHIC and LHC

Hadronic multiplicity Hadronic multiplicity at RHIC and LHC at RHIC and LHC

Korea-EU ALICE CollabKorea-EU ALICE Collab..Oct. 9, 2004, Hanyang Univ., SeoulOct. 9, 2004, Hanyang Univ., Seoul

Page 2: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

OutlineOutlineOutlineOutline

Introduction on the Color Glass Condensate and

results on hadron multiplicity for:

• Au-Au and d-Au collisions at RHIC, √sNN=20÷200 GeV

• Pb-Pb and p-Pb collisions at LHC, √sNN= 5500 GeV – total multiplicity– centrality dependence – rapidity dependence

Page 3: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Hadron scattering at high energyHadron scattering at high energyHadron scattering at high energyHadron scattering at high energy

A new phenomenonis expected in these conditions: parton saturation

hadron

tconstituen

E

Ex

Small-x problemSmall-x problem

New regime of QCD: New regime of QCD: ss is small is small

but perturbative theory is not but perturbative theory is not valid, due to strong non-linear valid, due to strong non-linear

effectseffects

Page 4: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Gluon density in hadronsGluon density in hadronsGluon density in hadronsGluon density in hadrons

McLerran, hep-ph/0311028

Page 5: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Color Glass CondensateColor Glass CondensateColor Glass CondensateColor Glass Condensate

Classical effective theory originally proposed by McLerran and Venugopalan to describe the gluon distribution in large nuclei.

The valence quarks of the hadrons (fast partons) are treated as a source for a classical color field representing the small-x (slow) gluons. The classical approximation is appropriate since the slow gluons have large occupation numbers.

The theory implies a non-linear renormalization group equation [JIMWLK]

Page 6: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Color Glass CondensateColor Glass CondensateColor Glass CondensateColor Glass Condensate

• Color : gluons are colored• Glass : the gluons at small x are emitted from

other partons at larger x. In the infinite momentum frame the fast partons are Lorentz dilated, therefore the low x gluons evolve very slowly compared to their natural time scale.

• Condensate : balance between gluon emission and gluon recombination : ~ s2 , or ~ 1/s,

(Bose condensate)

Page 7: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Color Glass CondensateColor Glass CondensateColor Glass CondensateColor Glass Condensate

• Universal form of matter controlling the high energy limit of all strong interactions

• First principle description of

– high energy cross-sections

– parton distribution functions at small x

– initial conditions for heavy ion collisions

– distribution of produced particles

Page 8: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Mathematical formulation of the CGCMathematical formulation of the CGCMathematical formulation of the CGCMathematical formulation of the CGC

Effective theory defined below some cutoff X0 : gluon field in the presence of an external source . The source arises from quarks and gluons with x ≥ X0

The weight function F[] satisfies renormalization group equations (theory independent of X0).

The equation for FJIMWLK reduces to BFKL and DGLAP evolution equations.

Z =

Page 9: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Bibliography on CGCBibliography on CGCBibliography on CGCBibliography on CGC

MV Model• McLerran, Venugopalan, Phys.Rev. D 49 (1994) 2233,

3352; D50 (1994) 2225• A.H. Mueller, hep-ph/9911289

JIMWLK Equation• Jalilian-Marian, Kovner, McLerran, Weigert, Phys. Rev.

D 55 (1997) 5414;• Jalilian-Marian, Kovner, Leonidov, Weigert, Nucl. Phys.

B 504 (1997) 415; Phys. Rev. D 59 (1999) 014014

Page 10: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Saturation scaleSaturation scaleSaturation scaleSaturation scale

There is a critical momentum scale Qs which separates the two regimes : Saturation scale

• For pT < Qs the gluon density is very high, they can not interact independently, their number saturates

• For pT > Qs the gluon density is smaller than the critical one, perturbative region

The CGC approach is justified in the limit Qs >>QCD :

• ok at LHC• ~ ok at RHIC

Page 11: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Saturation scaleSaturation scaleSaturation scaleSaturation scale

QQ

• Boosted nucleus Boosted nucleus interacting with an interacting with an external probeexternal probe• Transverse area of a parton ~ 1/QTransverse area of a parton ~ 1/Q• Cross section parton-probe : Cross section parton-probe : ~ ~ ss/Q/Q22

• Partons start to overlap when SPartons start to overlap when SAA~N~NAA• The parton density saturatesThe parton density saturates

• Saturation scale : QSaturation scale : Qss2 2 ~ ~ ss(Q(Qss

22)N)NAA//RRAA2 2 ~A~A1/31/3

• At saturation NAt saturation Npartonparton is proportional to 1/ is proportional to 1/ss

• QQss22 is proportional to the density of participating is proportional to the density of participating

nucleons; larger for heavy nuclei.nucleons; larger for heavy nuclei.

Page 12: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Saturation scaleSaturation scaleSaturation scaleSaturation scale

[A.H. Mueller Nucl. Phys. B558 (1999) 285]

• QS2 depends on the impact parameter and on the nuclear

atomic number through npart(b)

• Self-consistent solution:

QS2 = 2 GeV2 xG(x, QS

2) =2 x=2QS/√s s=0.6 b=0 √s = 130 GeV ||<1

Page 13: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

We assume that the number of produced particles is :

or

c is the “parton liberation coefficient”;xG(x, Qs

2) ~ 1/s(Qs2) ~ ln(Qs

2/QCD2).

The multiplicative constant is fitted to data (PHOBOS,130 GeV, charged multiplicity, Au-Au 6% central ): c = 1.23 ± 0.20

Parton productionParton productionParton productionParton production

centrality dependence !centrality dependence !

Page 14: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

First comparison to dataFirst comparison to dataFirst comparison to dataFirst comparison to data

√s = 130 GeV

Page 15: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Number of participants: Number of participants: variablesvariables

Number of participants: Number of participants: variablesvariables

AA

BB

bbbb--ss

ss

yy

xx

yy

zz

bb

AA

BB

Side view Front view

Page 16: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Number of participants: Number of participants: definitionsdefinitions

Number of participants: Number of participants: definitionsdefinitions

• Nuclear profile function (cilindrical coordinates)

•Thickness function :

norm. :

• Overlap function :

)(d)(-

,zzT AA ss

zz

SS

)()(d)( sbssb BAAB TTTbb

1)( d ss AT

Page 17: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Number of participants: Number of participants: calculationcalculation

Number of participants: Number of participants: calculationcalculation

• Eikonal approximation: interacting nucleons do not deviate from original trajectory (early stages of A-B collision)• Pointlike nucleons•The number of participants (wounded nucleons) is:

•The density is:

A

ANB

BBNA

Bpart

Apart

ABpart

TTsB

TTsA

NNN

)(11)(d

)(11)(d

)()()(

2

2

ssb

sbs

bbb

A nucleon of B at A nucleon of B at bb--ss At least one At least one interaction interaction

Probability of no interactionProbability of no interaction AANB

BBNA

ABpart TBTTAT,n )(11)()(11)()( ssbsbssb

Page 18: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Energy dependenceEnergy dependenceEnergy dependenceEnergy dependence

We assume the same energy dependence used to describe HERA data;

at y=0:

with HERAThe same energy dependence was obtained in

Nucl.Phys.B 648 (2003) 293; 640 (2002) 331; with [Triantafyllopoulos , Mueller]

Page 19: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Energy dependence/ HERAEnergy dependence/ HERAEnergy dependence/ HERAEnergy dependence/ HERA

HERA data exhibit scaling when plotted as a function of the variable

= Q2/Qs2

where

Qs2=Qs0

2(x0/x)

and~0.288[Golec-Biernat, Wuesthoff, Phys. Rev. D59 (1999) 014017; 60 (1999) 114023]

Page 20: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Energy dependence : pp and AAEnergy dependence : pp and AAEnergy dependence : pp and AAEnergy dependence : pp and AA

D. Kharzeev, E. Levin, M.N.D. Kharzeev, E. Levin, M.N.hep-ph / 0408050hep-ph / 0408050

Page 21: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

PHOBOSPHOBOS PHENIXPHENIX

Energy and centrality Energy and centrality dependence / RHICdependence / RHIC

Energy and centrality Energy and centrality dependence / RHICdependence / RHIC

Page 22: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Rapidity dependenceRapidity dependenceRapidity dependenceRapidity dependence

Formula for the inclusive production:

[Gribov, Levin, Ryskin, Phys. Rep.100 (1983),1]

Multiplicity distribution:

S is the inelastic cross section for min.bias mult. (or a fraction corresponding to a specific centrality cut)

A is the unintegrated gluon distribution function:

Page 23: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Perturbative region: Perturbative region: ss//pT2

Saturation region: SSaturation region: SAA//ss

Simple form of Simple form of AASimple form of Simple form of AA

Page 24: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Rapidity dependence Rapidity dependence in nuclear collisionsin nuclear collisions

Rapidity dependence Rapidity dependence in nuclear collisionsin nuclear collisions

x1,2 =longit. fraction of momentum carried by parton of A1,2

At a given y there are, in general, two saturation scales:

Page 25: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Results : rapidity dependenceResults : rapidity dependenceResults : rapidity dependenceResults : rapidity dependence

PHOBOS W=200 GeV

Au-Au Collisions at RHICAu-Au Collisions at RHIC

Page 26: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Au-Au Collisions at RHICAu-Au Collisions at RHIC

PHOBOS, Phys. Rev. Lett. 91 (2003) 052303PHOBOS, Phys. Rev. Lett. 91 (2003) 052303

BRAHMS (200 GeV)BRAHMS (200 GeV)Phys.Rev. Lett. 88 (2002)202301Phys.Rev. Lett. 88 (2002)202301

Page 27: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Parton saturation at lower energies?Parton saturation at lower energies?Parton saturation at lower energies?Parton saturation at lower energies?

Is the CGC theory applicable at SPS energy ?

Condition of validity : Qs2»QCD

2 .

At (normal) RHIC energies: Qs2 ~ 1÷2 GeV2

Central Pb-Pb at √sNN=17 GeV : Qs2~1.2 GeV2,

comparable to peripheral (b~9 fm) Au-Au at √sNN=130 GeV.

RHIC: run at √sNN~ 20 GeV, comparable to SPS energy:test of saturation at low energy.

Page 28: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Test of CGC :Test of CGC :

d-Au collisionsd-Au collisions

Test of CGC :Test of CGC :

d-Au collisionsd-Au collisions

Page 29: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Deuteron wave functionDeuteron wave functionDeuteron wave functionDeuteron wave function

where [Huelthen, Sugawara, “Handbuck der Physik”, vol.39 (1957)]:

is derived from the experimental binding energy:

Page 30: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Predictions for d-AuPredictions for d-AuPredictions for d-AuPredictions for d-Au

Predictions in Predictions in disagreementdisagreement

with with PHOBOS data !!!PHOBOS data !!!

Page 31: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Problems and solutionsProblems and solutionsProblems and solutionsProblems and solutions

• Present approximation not accurate for deuteron

– we use Monte Carlo results for Npart

• proton saturation momentum more uncertain

– we use the same Qsat as in the Golec-Biernat, Wuesthoff model

[dashed line, next plot]

• CGC not valid in the Au fragmentation region

– we assume dN/d=NpartAu dNpp/d in the Au

fragmentation region [solid line, next plot]

Page 32: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

After the corrections…After the corrections…After the corrections…After the corrections…

BRAHMS, nucl-ex/0401025BRAHMS, nucl-ex/0401025 PHOBOS, nucl-ex/0311009PHOBOS, nucl-ex/0311009

Page 33: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Predictions for LHCPredictions for LHCPredictions for LHCPredictions for LHC

Our main uncertainty : the energy dependence of the saturation scale.

• Fixed s :

• Running s :

we give results for both cases…

Page 34: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Centrality dependence / LHCCentrality dependence / LHCCentrality dependence / LHCCentrality dependence / LHC

Solid lines : constant Solid lines : constant ss

dashed lines : running dashed lines : running ss

Pb-Pb collisionsPb-Pb collisionsat LHCat LHC

Page 35: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Pseudo-rapidity dependencePseudo-rapidity dependencePseudo-rapidity dependencePseudo-rapidity dependence

Page 36: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Other models…Other models…Other models…Other models…

Central Pb-Pb collisionsCentral Pb-Pb collisionsat LHC energyat LHC energy

from: N. Armesto, C.Pajares,from: N. Armesto, C.Pajares,

Int.J.Mod.Phys. A15(2000)2019Int.J.Mod.Phys. A15(2000)2019

Page 37: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

ConclusionsConclusionsConclusionsConclusions The parton saturation model gives a reasonnable description of hadron multiplicity at RHIC for high energies (130, 200 GeV), centrality and rapidity dependence Lower energy collisions and different interacting systems (d-Au) useful to define its limits of applicabilityLHC will provide the best opportunity to study CGC

Thank you !

Page 38: Marzia Nardi CERN – Th. Div.

Seoul, 9 Oct. 2004, Korea-EU ALICE Coll. Marzia Nardi

Bibliography Bibliography Bibliography Bibliography D.Kharzeev, M.N.

Hadron production in nuclear collisions at RHIC and high density QCD

Phys.Lett.B507: 121, 2001

D.Kharzeev, E.Levin

Manifestation of high density QCD in the first RHIC data

Phys.Lett.B523: 79, 2001

D.Kharzeev, E.Levin, M.N.

The onset of classical QCD dynamics in relativistic heavy ion collisions

hep-ph/0111315

D.Kharzeev, E.Levin, L.McLerran

Parton saturation and Npart scaling of semi-hard processes in QCD

Phys.Lett.B561: 93, 2003

D.Kharzeev, E.Levin, M.N.

QCD saturation and deuteron-nucleus collisions

Nucl.Phys.A73: 448, 2004 + Errata Corr.

D.Kharzeev, E.Levin, M.N.

Color Glass Condensate at the LHC: hadron multiplicity in pp,pA and AA coll.

hep-ph/0408050