Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR,...

66
Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems Linz, 10–15 October 2016 Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 1 / 62

Transcript of Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR,...

Page 1: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Corner Singularities

Martin Costabel

IRMAR, Université de Rennes 1

Analysis and Numerics of Acoustic and Electromagnetic ProblemsLinz, 10–15 October 2016

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 1 / 62

Page 2: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

PART I : Motivation

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 2 / 62

Page 3: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in 2D: Some general observations

Dirichlet problem: −∆u = f in Ω, u = g on ∂Ω

Known (for g = 0)

(i) If Ω is any bounded open set in Rd , then

∀f ∈ L2(Ω) ∃1u ∈ H10 (Ω) : −∆u = f in Ω

(ii) If Ω is any open set in Rd , then

∀f ∈ L2(Ω) ∃1u ∈ H10 (Ω) : −∆u + u = f in Ω

H10 (Ω): closure of C∞0 (Ω) in H1(Ω). Norm: ‖u‖2

1 =∫

Ω(|u|2 + |∇u|2)dx .Variational formulations:

(i) u ∈ H10 (Ω) :

∫Ω∇u ·∇v dx =

∫Ω

v f dx ∀v ∈ H10 (Ω)

(ii) u ∈ H10 (Ω) :

∫Ω

(∇u ·∇v + uv)dx =

∫Ω

v f dx ∀v ∈ H10 (Ω)

(Counter-)Example in R2 for (i): Ω = x | |x | > R, f = 0, g = 1No solution in H1(Ω), but two “reasonable” solutions in H1

loc(Ω):u ≡ 1 : “harmonic at infinity” andu(x) = log |x |/ log R (except for R = 1) : “electrostatic potential”.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 3 / 62

Page 4: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Harmonic functions near infinity

Tool: Polar coordinates and separation of variables (Fourier series).Polar coordinates: r ≥ 0, θ ∈ R/(2πZ), (x1, x2) = (r cos θ, r sin θ)Laplace operator in polar coordinates: ∆ = r−2

((r∂r )2 + ∂2

θ

)Fourier series in θ: u continuous in neighborhood of∞ =⇒

u(x) =∑k∈Z

uk (r)eikθ

∆u = 0⇐⇒ r(r u′k )′ = k2uk ⇐⇒ uk (r) =

αk rk + βk r−k if k 6= 0α0 + β0 log r if k = 0

Dirichlet condition u = 1 for r = R: α0 + β0 log R = 1 and αk Rk + βk R−k = 0.

Two particular solutions: u ≡ 1 and u = log r/ log R, but alsoInfinitely many solutions of the homogeneous problem: uk (r) =

((r/R)k − (r/R)−k

)eikθ

Observations for the exterior Dirichlet problem

1 Existence and uniqueness require a-priori assumptions on the asymptotic behavior ofthe solution at infinity.

2 There may be a choice between different “reasonable” a-priori assumptions.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 4 / 62

Page 5: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem on bounded smooth domains

What everybody knows: Existence, uniqueness, regularity

Assume that Ω is a bounded C∞ domain and f ∈ C∞(Ω).Consider the Dirichlet problem ∆u = f in Ω, u = 0 on ∂Ω.Then

1 The solution exists and is unique.2 The solution is regular: u ∈ C∞(Ω).

Right or wrong?Right for the solution u in H1

0 (Ω), for u ∈ C(Ω), or even for u ∈ L2(Ω).But wrong, in general!Example:Let Ω be the half-disk 0 < r < 1, 0 < θ < π = z ∈ C | |z| < 1, Im z > 0.Define

u =(r k − r−k) sin kθ = Im

(zk + z−k) if z = x1 + ix2 = reiθ

Then∆u = 0 in Ω and u = 0 on ∂Ω .

Observations for the Dirichlet problem in a smooth domain

1 Existence, uniqueness and regularity require a-priori assumptions on the behavior ofthe solution near the boundary.

2 There seems to be a unique choice for “reasonable” a-priori assumptions(equivalent: H1, L2, bounded etc.)

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 5 / 62

Page 6: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem on a plane sector

Definition: For 0 < ω < 2π, define

Γω = 0 < r <∞, 0 < θ < ω = z | 0 < arg z < ωAssume f = 0 and g = 0 in a neighborhood of the corner, i.e.∆u = 0 in Γω ∩ B(0,R) and u = 0 on ∂Γω ∩ B(0,R).Fourier series:

u(x) =∞∑

k−1

uk (r) sin kπωθ

Radial differential equation: r(r u′k )′ = ( kπω

)2uk ⇐⇒ uk (r) = αk rkπω + βk r−

kπω

Solutions of the totally homogeneous problem:

sk = rkπω sin kπ

ωθ

s−k = r−kπω sin kπ

ωθ

Regular or singular at the corner?

1 For ω = π, we saw (k ∈ N):sk = Im zk : regular (polynomial, Taylor expansion)s−k = Im z−k : singular (not even in L2)

2 For general ω, derivatives of sk are singular: sk 6∈ C∞ if kπω6∈ N. More precisely:

sk ∈ Hs(Γω ∩ B(0,R)) ⇐⇒ s < kπω

+ 1

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 6 / 62

Page 7: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Singular functions, kπω 6∈ N

sk = Im zkπω ∈ Hs(Γω ∩ B(0,R)) ⇐⇒ s < kπ

ω+ 1

Observations

1 The condition u ∈ H10 (“finite potential energy”) excludes all k < 0.

Same as H1/2; same as boundedness.2 The condition u ∈ L2 does not exclude all s−k :

If ω > π (non-convex corner), then s−1 ∈ L2 near the corner.(⇒ Non-uniqueness, u = s−1− s1 solves the homogeneous problem in Γω ∩B(0, 1)

)3 If ω > π, then s1 has unbounded derivatives, ∇s1 6∈ H1, hence s1 6∈ H2 near the

corner.

Questions

1 Are the singular functions we have seen sufficient to describe the asymptotic behaviornear a corner also for the inhomogeneous Dirichlet problem?

2 Are they always there?3 What is the best way to describe the a-priori regularity assumptions?4 How to treat more general elliptic boundary value problems?

And finally:5 Why should we care??

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 7 / 62

Page 8: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Exercise: Singular functions for the 2D Neumann problem and mixed D/N

Neumann problem: ∆u = 0 in Γω , ∂nu = 0 on ∂Γω ∂n = −+ 1

r ∂θ on ∂Γω

We look for homogeneous (of degree λ > 0) solutions of ∆u = 0.We find zλ and zλ.Neumann condition in θ = 0 −→ Re zλ = 1

2 (zλ + zλ) = rλ cosλθ.Neumann condition in θ = ω: sinλω = 0 −→ λ = kπ

ω.

Solution: sk = rkπω cos kπ

ωθ (k ∈ Z).

Mixed Dirichlet/Neumann problem:∆u = 0 in Γω , u = 0 for θ = 0, ∂nu = 0 for θ = ω

Homogeneous solution with Dirichlet condition in θ = 0 −→ rλ sinλθ.Neumann condition in θ = ω: cosλω = 0 −→ λ = (k + 1

2 ) πω

.

Solution: sk = r (k+12 )πω cos(k + 1

2 ) πωθ (k ∈ Z).

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 8 / 62

Page 9: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Exercise: Singular functions for a 2D transmission problem

Transmission or interface problem:

div a∇u = 0 in R2, a(x) = µ for |θ| < ω, a(x) = 1 for ω < |θ| ≤ π Angle 2ω

Let Ω1 = −ω < θ < ω, Ω2 = ω < |θ| ≤ π and u1,2 = u∣∣Ω1,2

.

Then this problem, understood in the distributional sense, is equivalent to∆uj = 0 in Ωj , j = 1, 2

u1 = u2 for θ = −+ω

µ∂nu1 = ∂nu2 for θ = −+ω

Algorithm

We write u1,2 = α1,2a1,2(x) + β1,2b1.2(x),where aj , bj are a basis of harmonic functions in Ωj , homogeneous of degree λ.Then the 4 interface conditions give a 4× 4 linear system for the 4 coefficients α1, . . . , β2:

Mω,µ(λ)

(α1α2β1β2

)= 0

The characteristic equation det Mω,µ(λ) = 0 gives the possible singularity exponents λ,depending on ω and µ.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 9 / 62

Page 10: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Exercise: Singular functions for a 2D transmission problem

Transmission or interface problem:

div a∇u = 0 in R2, a(x) = µ for |θ| < ω, a(x) = 1 for ω < |θ| ≤ π Angle 2ω

Let Ω1 = −ω < θ < ω, Ω2 = ω < |θ| ≤ π and u1,2 = u∣∣Ω1,2

.

Then this problem, understood in the distributional sense, is equivalent to∆uj = 0 in Ωj , j = 1, 2

u1 = u2 for θ = −+ω

µ∂nu1 = ∂nu2 for θ = −+ω

Computation: We can split the problem into odd and even problems with respect to θ.For the odd problem, we have a Dirichlet condition on the line θ ∈ 0, π, and we canchoose u1 = rλ sin θλ, u2 = α sin(π − θ)λ.

Two interface conditions at θ = ω:

sinωλ = α sin(π − ω)λ

µ cosωλ = −α cos(π − ω)λ

Elimination of α gives one characteristic equation

tanωλ+ µ tan(π − ω)λ = 0.

For the even problem, we have a Neumann condition on the line θ ∈ 0, π, and we canchoose u1 = rλ cos θλ, u2 = β cos(π − θ)λ.We end up with the second characteristic equation

tanωλ+ 1µ

tan(π − ω)λ = 0.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 10 / 62

Page 11: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Re: Questions

Questions

1 Are the singular functions we have seen sufficient to describe the asymptotic behaviornear a corner also for the inhomogeneous Dirichlet problem?

2 Are they always there?3 What is the best way to describe the a-priori regularity assumptions?4 How to treat more general elliptic boundary value problems?

And finally:5 Why should we care??

Questions 1 to 4 will find systematic answers in the lectures by Monique Dauge.

Here follow some observations to questions 2 and 4 , followed by some storiesconcerning the last question 5 .

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 11 / 62

Page 12: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dual singular function

Ω ⊂ R2 bounded domain, coincides with Γω in a neighborhood of the origin, otherwisesmooth.Dirichlet problem u ∈ H1

0 (Ω), ∆u = f in Ω f ∈ L2(Ω).

Define s∗−1 = 1π

s−1 + s−1, where s−1(x) = r−πω sin π

ωθ

and s−1 ∈ H10 (Ω) satisfies

∆s−1 = 0 in Ω

s−1 = −s−1 on ∂Ω. (Note: s−1 is smooth on ∂Ω)

Example: If Ω = Γω ∩ B(0, 1), we can take s∗−1 = 1π

(s−1 − s1) = 1π

(r−πω − r

πω ) sin π

ωθ.

We consider ω > π (non-convex corner).Then s∗−1 ∈ L2(Ω) and s∗−1 solves the totally homogeneous Dirichlet problem.

Assumption: u(x) = c s1(x) + o(|x |πω ) as |x | → 0.

Let us compute the scalar product (s∗−1, f ) =∫

Ω s∗−1(x)f (x)dx .

δ > 0, Green’s formula in Ωδ = Ω \ B(0, δ):∫Ωδ

s∗−1(x)f (x)dx =

∫Ωδ

s∗−1(x)∆u(x)dx =

∫∂Ωδ\∂Ω

(s∗−1∂nu − ∂ns∗−1 u

)ds

= 1π

∫ ω

0,r=δ

(r−

πω c π

ωrπω−1 − (− π

ω)r−

πω−1 c r

πω + o(r−1)

)sin2 π

ωθ r dθ

= c + o(1) as δ → 0 .

Hence (s∗−1, f ) = c (“dual singular function”) .

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 12 / 62

Page 13: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Why care?

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 13 / 62

Page 14: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Stability, Consistency, and Convergence:A 21st Century Viewpoint

Douglas N. Arnold

School of Mathematics, University of MinnesotaSociety for Industrial and Applied Mathematics

Feng Kang Distinguished Lecture

Institute of Computational Mathematics and Scientific/Engineering ComputingChinese Academy of Sciences

April 7, 2009

1920–1993Feng’s significance for the scientific development of China cannot beexaggerated. He not only put China on the map of applied andcomputational mathematics, through his own research and that of hisstudents, but he also saw to it that the needed resources were madeavailable. . . .Many remember his small figure at international conferences, his eyesand mobile face radiating energy and intelligence. He will be greatlymissed by the mathematical sciences and by his numerous friends.

– Peter Lax, writing in SIAM News, 1993

The failure of the Sleipner A offshore platform

6m

$700,000,000 Richter magnitude 3

3 / 44

Convergence, consistency, and stability of discretizations

L : X ! Y bounded linear operator on Banach spaces.Continuous problem: Given f " Y find u " X such that Lu = f .

Assume it is well-posed: #f $! u s.t. Lu = f , f %! u is continuous

Discrete problem: Lh : Xh ! Yh operator on finite dimensional spaces,fh " Yh. Find uh " Xh such that Lhuh = fh.

The discretization is convergent if uh is sufficiently near u.

The discretization is consistent if Lh and fh are sufficiently nearL and f .

The discretization is stable if the discrete problem is well-posed.

“Fundamental metatheorem of numerical analysis”A discretization which is consistent and stable is convergent.

4 / 44

23 August 1991 Source: D. N. Arnoldhttps://www.ima.umn.edu/~arnold/disasters/sleipner.html

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 14 / 62

Page 15: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Standard finite elements can give bad results

Official cause:

Computations with NASTRAN...

Shear stresses underestimatedby 47%

Loss: ∼ USD 700 million

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 15 / 62

Page 16: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Fractures emerge near corners

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 16 / 62

Page 17: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

PART II : Maxwell singularities

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 17 / 62

Page 18: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Some simple numerical tests

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 18 / 62

Page 19: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Laplace operator: Dirichlet problem in a square (“no corners”)

−∆u = f in Ω = (0, 1)2 ; u = g on ∂Ω

Meshes:

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solution (f = 1, g = 0):

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 19 / 62

Page 20: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in a square (“no corners”)

Error asymptotics (Rel. L2 error vs. d.o.f.)

101 102 103 10410−6

10−5

10−4

10−3

10−2

10−1

P1P2N−2

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 20 / 62

Page 21: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in an L (“one corner”)

−∆u = f in Ω = (−1, 1)2 \ (0, 1)× (−1, 0) ; u = g on ∂Ω

Meshes:

!1 !0.5 0 0.5 1!1

!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Solution:

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 21 / 62

Page 22: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in an L, uniform meshes

Error asymptotics (Rel. L2 error vs. d.o.f.)

101 102 103 104 10510−4

10−3

10−2

10−1

P1P2N−1

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 22 / 62

Page 23: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in an L, refined meshes

−∆u = f in Ω = (−1, 1)2 \ (0, 1)× (−1, 0) ; u = g auf ∂Ω

Meshes:

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 23 / 62

Page 24: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in an L, refined meshes

Error asymptotics (Rel. L2 error vs. d.o.f.)

101 102 103 104 10510−5

10−4

10−3

10−2

10−1

P1P2N−1

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 24 / 62

Page 25: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in an L, hp version

−∆u = f in Ω = (−1, 1)2 \ (0, 1)× (−1, 0) ; u = g auf ∂Ω

Meshes: −1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 25 / 62

Page 26: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Dirichlet problem in an L, hp version

Error asymptotics (Rel. L2 error vs. d.o.f.)

102 103 10410−6

10−5

10−4

10−3

hpN−2

101 102 103 104 10510−6

10−5

10−4

10−3

10−2

10−1

P1 rafP2 rafhpN−2

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 26 / 62

Page 27: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Worse than slow approximation: Good approximation of the wrong object

Time-harmonic Maxwell equations

curl E = iωµH

curl H = −iωεE + J

In this section: Domain Ω ⊂ R3, ε = µ = 1, J = 0.The condition div E = div H = 0 follows if ω 6= 0.

E × n = 0 & H · n = 0 on ∂Ω

Eigenfrequencies of a cavity with perfectly conducting walls.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 27 / 62

Page 28: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Worse than slow approximation: Good approximation of the wrong object

Time-harmonic Maxwell equations

curl E = iωµH

curl H = −iωεE + J

In this section: Domain Ω ⊂ R3, ε = µ = 1, J = 0.The condition div E = div H = 0 follows if ω 6= 0.

E × n = 0 & H · n = 0 on ∂Ω

Eigenfrequencies of a cavity with perfectly conducting walls.Second order system for E : curl curl E − ω2E = 0

Simplest variational formulation

Find ω 6= 0, E ∈ H0(curl,Ω) \ 0 such that

∀F ∈ H0(curl,Ω) :

∫Ω

curl E · curl F = ω2∫

ΩE · F

Energy space: H0(curl,Ω) = u ∈ L2(Ω) | curl u ∈ L2(Ω); u × n = 0= closure in H(curl,Ω) of C∞0 (Ω)3

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 28 / 62

Page 29: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Regularized formulation

Simple variational formulation

E ∈ H0(curl,Ω) \ 0 : ∀F ∈ H0(curl,Ω) :

∫Ω

curl E · curl F = ω2∫

ΩE · F

Galerkin discretization:Restriction to finite-dimensional subspace Vh, h → 0.

Good: Eigenfrequencies are non-negative, discrete.Big Problem: ω = 0 has infinite multiplicityKernel: Electrostatic fields: gradients of all φ ∈ H1

0 (Ω) (+ harmonic forms).

Idea: div E = 0, so we can add a multiple of 0 =∫

Ω div E div F

Regularized formulation: E ∈ X N \ 0 : ∀F ∈ X N :

(RegX )∫

Ωcurl E · curl F + s

∫Ω

div E div F = ω2∫

ΩE · F

Energy space: X N = H0(curl,Ω) ∩ H(div,Ω)Second order system: curl curl E − s∇ div E = ω2E : Strongly elliptic. OK

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 29 / 62

Page 30: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Approximation on the square Ω = (0, π)× (0, π), s = 0

Good approximation: Triangular edge elements (15 nodes per side, P1)

150 160 170 180 190 200 210 2200

2

4

6

8

10

12

14

Eigenvalue ω2k vs. rank k

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 30 / 62

Page 31: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Approximation on the square Ω = (0, π)× (0, π), s = 0

Bad approximation: Nodal triangular elements (15 nodes per side, P1)

0 20 40 60 80 100 120 1400

2

4

6

8

10

12

14

Eigenvalue ω2k vs. rank k

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 31 / 62

Page 32: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Regularized formulation in the square

0 1 2 3 4 5 6 70

2

4

6

8

10

12

14

ω[s]2 vs. s

Blue circles: computed ω[s]2 with curl-dominant eigenfunctions.Red stars: computed ω[s]2 with div-dominant eigenfunctions.div E satisfies s∆ div E = ω2 div EExtra eigenvalues: s times Dirichlet eigenvalues.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 32 / 62

Page 33: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Regularized formulation in the “L”

0 1 2 3 4 50

5

10

15

20

25

30

35

40

45

ω[s]2 vs. s

Gray triangles: computed ω[s]2 with indifferent eigenfunctions.Cyan-Lines: true Maxwell eigenvalues

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 33 / 62

Page 34: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Regularized formulation in the “L”

Error of the first eigenvalue

101 102 10310-1

100

101

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

Interp 1

Interp 2

Interp 3

Interp 4

Interp 5

Valeur propre Maxwell n° 1 pénalisée au bord par λ = 101 ; Maillage 1

Error vs. number of d.o.f.

Error remains largerthan 90%.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 34 / 62

Page 35: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Solution of the source problem, regularized formulation

Exact solution(2nd component E2 = r−

13 cos θ3 )).

Computation with Q3 elements.

curl curl E −∇ div E = 0 in Ω; E × n = E0 on ∂Ω

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 35 / 62

Page 36: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Analysis of Maxwell corner singularities is needed!

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 36 / 62

Page 37: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

An integration by parts formula for Maxwell’s equations

Lemma

Let Ω ⊂ R3 be a bounded smooth domain and u, v ∈ C2(Ω). Then∫Ω

(curl u · curl v + div u div v

)+ c(u, v) =

∫Ω∇u ·∇v + b(u, v)

where c(u, v) =

∫∂Ω

(∇τun · vτ − divτ uτ vn

)b(u, v) =

∫∂Ω

((uτ ·∇n) · vτ ) + div n un vn

)

Corollary 1

If either uτ = vτ = 0 or un = vn = 0, then∫Ω

(curl u · curl v + div u div v

)=

∫Ω∇u ·∇v + b(u, v)

With the help of Corollary 1 one can prove that if Ω is smooth or convex (approximation bysmooth domains with boundaries of positive curvature), then [Saranen 1982, Nedelec 1982]

XN ∪ XT ⊂ H1.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 37 / 62

Page 38: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

An integration by parts formula for Maxwell’s equations

Lemma

Let Ω ⊂ R3 be a bounded smooth domain and u, v ∈ C2(Ω). Then∫Ω

(curl u · curl v + div u div v

)+ c(u, v) =

∫Ω∇u ·∇v + b(u, v)

where c(u, v) =

∫∂Ω

(∇τun · vτ − divτ uτ vn

)b(u, v) =

∫∂Ω

((uτ ·∇n) · vτ ) + div n un vn

)

Corollary 2 [Co 1991]

If Ω is a polyhedron and u ∈ HN ∪ HT , then∫Ω

(| curl u|2 + | div u|2

)=

∫Ω|∇u|2

For the proof one has to show that smooth functions that are zero near the edges andcorners are dense in HN and HT .From Corollary 2 follows that the subspaces HN of XN and HT of XT are closed.This implies that approximation of elements of XN \ HN or XT \ HT by conforming finiteelements is impossible.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 38 / 62

Page 39: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 2D

On a sector Γ = Γω , 0 < ω ≤ 2π, we define spaces of homogeneous functions of degreeλ 6∈ N: Sλ(Γ) = u = rλφ(θ) | φ ∈ C inf([0, ω]) , Sλ(Γ) = Sλ(Γ)2

SλDir(Γ) = u ∈ Sλ(Γ) | u∣∣∂Γ

= 0 , SλN (Γ) = u ∈ Sλ(Γ) | u × n∣∣∂Γ

= 0.We consider homogeneous solutions of the principal part of the regularized Maxwell system

curl curl u − s∇ div u = 0 in Γ

u × n = 0 and div u = 0 on ∂Γ

u ∈ Sλ(Γ)

We rewrite the system by introducing ψ = curl u, q = div u as a triangular system∆q= 0 in Γ, q ∈ Sλ−1

Dir (Γ) (1)

curlψ= s∇q in Γ, ψ ∈ Sλ−1Neu (Γ) = Sλ−1(Γ) (2)

curl u = ψ , div u= q in Γ, u ∈ SλN (Γ) (3)

Solutions: Sums of the followingType 1: q = 0, ψ = 0, u general non-zero solution of (3)Type 2: q = 0, ψ general solution of (2), u particular solution of (3)Type 3: q general solution of (1), ψ and u particular solutions of (2) and (3).

In 2D, Type 2 is easy: curlψ = 0 means ψ = const. This doesn’t exist in Sλ−1(Γ).Type 1: curl u = 0⇒ u = ∇φ, ∆φ = 0 and φ ∈ Sλ+1

Dir (Γ). That is, φ is a Laplace/Dirichletsingular function, λ+ 1 = kπ

ωand

φ = c Im zλ+1 =⇒ u = c(λ+ 1)rλ(sinλθ, cosλθ).

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 39 / 62

Page 40: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 2D

Type 1: q = 0, ψ = 0, u general non-zero solution of (3)Type 2: q = 0, ψ 6= 0 general solution of (2), u particular solution of (3)Type 3: q 6= 0 general solution of (1), ψ and u particular solutions of (2) and (3).

In 2D, Type 2 is easy: curlψ = 0 means ψ = const. This doesn’t exist in Sλ−1(Γ).Type 1: curl u = 0⇒ u = ∇φ, ∆φ = 0 and φ ∈ Sλ+1

Dir (Γ). That is, φ is a Laplace/Dirichletsingular function, λ+ 1 = kπ

ωand

φ = c Im zλ+1 =⇒ u = c(λ+ 1)rλ(sinλθ, cosλθ).

Type 3: (1) means q is a Laplace/Dirichlet singular function, λ− 1 = kπω

andq = c Im zλ−1. From (2) we see that ψ is conjugate harmonic to q, henceψ = −c Re zλ−1. A particular solution of (3) is then

u = c2λ rλ(sinλθ,− cosλθ) .

Theorem

At a polygonal corner of opening ω, the non-integer singular exponents of the principal partof the regularized Maxwell system are of the form

λ = kπω −

+1 , k ∈ Z

The divergence-free Maxwell singular functions are of the form

u = rλ((sinλθ, cosλθ) , λ = kπω− 1 , k ∈ Z .

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 40 / 62

Page 41: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point

Cone in spherical coordinates Γ = (ρ, ϑ) | ρ > 0, ϑ ∈ G ⊂ S2Spaces of homogeneous functions (λ ∈ R \ N)

Sλ(Γ) = u = ρλφ(ϑ) | φ ∈ H1(G), Sλ , SλDir , etc

SλN (Γ) = u = ρλφ(ϑ) ∈ L2loc(Γ \ 0) | curl u, div u ∈ L2

loc(Γ \ 0), u × n = 0 on ∂Γ

SλT (Γ) = u = ρλφ(ϑ) ∈ L2loc(Γ \ 0) | curl u, div u ∈ L2

loc(Γ \ 0), u · n = 0 on ∂Γ

Homogeneous solutions of the principal part of the regularized Maxwell system (s > 0)curl curl u − s∇ div u = 0 in Γ

u × n = 0 and div u = 0 on ∂Γ

u ∈ SλN (Γ), div u ∈ Sλ−1Dir (Γ)

We rewrite the system by introducing ψ = curl u, q = div u as a triangular system∆q = 0 in Γ, q ∈ Sλ−1

Dir (Γ) (1)

curlψ = s∇q in Γ, ψ ∈ Sλ−1T (Γ) (2)

curl u = ψ , div u = q in Γ, u ∈ SλN (Γ) (3)

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 41 / 62

Page 42: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point

Solutions of the triangular system:Type 1: q = 0, ψ = 0, u ∈ SλN (Γ) general non-zero solution of (3): curl u = ψ, div u = qType 2: q = 0, ψ ∈ Sλ−1

T (Γ) general solution of (2) : curlψ = s∇q, (→ s = 1)u particular solution of (3)

Type 3: q ∈ Sλ−1Dir (Γ) general solution of (1): ∆q = 0,

ψ and u particular solutions of (2) and (3).

Lemma Explicit solutions, [Co-Dauge ARMA2000]

λ 6= −1, u ∈ SλN (Γ) =⇒ φ = 1λ+1 u · x ∈ Sλ+1

Dir (Γ) ; curl u = 0 =⇒∇φ = u

λ 6= −1, ψ ∈ Sλ−1T (Γ) =⇒ u = 1

λ+1ψ × x ∈ SλN (Γ) ; divψ = 0 =⇒ curl u = ψ

λ 6= − 12 , q ∈ Sλ−1

Dir (Γ)⇒ u = 2qx+ρ2∇q4λ+2 ∈ SλN (Γ) ; ∆q = 0⇒ curl u = 0, div u = q

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 42 / 62

Page 43: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point

Solutions of the triangular system:Type 1: q = 0, ψ = 0, u ∈ SλN (Γ) general non-zero solution of (3): curl u = ψ, div u = qType 2: q = 0, ψ ∈ Sλ−1

T (Γ) general solution of (2) : curlψ = s∇q, (→ s = 1)u particular solution of (3)

Type 3: q ∈ Sλ−1Dir (Γ) general solution of (1): ∆q = 0,

ψ and u particular solutions of (2) and (3).

Lemma Explicit solutions, [Co-Dauge ARMA2000]

λ 6= −1, u ∈ SλN (Γ) =⇒ φ = 1λ+1 u · x ∈ Sλ+1

Dir (Γ) ; curl u = 0 =⇒∇φ = u

λ 6= −1, ψ ∈ Sλ−1T (Γ) =⇒ u = 1

λ+1ψ × x ∈ SλN (Γ) ; divψ = 0 =⇒ curl u = ψ

λ 6= − 12 , q ∈ Sλ−1

Dir (Γ)⇒ u = 2qx+ρ2∇q4λ+2 ∈ SλN (Γ) ; ∆q = 0⇒ curl u = 0, div u = q

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 42 / 62

Page 44: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point

Solutions of the triangular system:Type 1: q = 0, ψ = 0, u ∈ SλN (Γ) general non-zero solution of (3): curl u = ψ, div u = qType 2: q = 0, ψ ∈ Sλ−1

T (Γ) general solution of (2) : curlψ = s∇q, (→ s = 1)u particular solution of (3)

Type 3: q ∈ Sλ−1Dir (Γ) general solution of (1): ∆q = 0,

ψ and u particular solutions of (2) and (3).

Lemma Explicit solutions, [Co-Dauge ARMA2000]

λ 6= −1, u ∈ SλN (Γ) =⇒ φ = 1λ+1 u · x ∈ Sλ+1

Dir (Γ) ; curl u = 0 =⇒∇φ = u

λ 6= −1, ψ ∈ Sλ−1T (Γ) =⇒ u = 1

λ+1ψ × x ∈ SλN (Γ) ; divψ = 0 =⇒ curl u = ψ

λ 6= − 12 , q ∈ Sλ−1

Dir (Γ)⇒ u = 2qx+ρ2∇q4λ+2 ∈ SλN (Γ) ; ∆q = 0⇒ curl u = 0, div u = q

Corollary, Type 1

If λ 6= −1, thenu solution of Type 1 ⇐⇒ u = ∇φ, φ ∈ Sλ+1

Dir (Γ), ∆φ = 0.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 42 / 62

Page 45: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point

Solutions of the triangular system:Type 1: q = 0, ψ = 0, u ∈ SλN (Γ) general non-zero solution of (3): curl u = ψ, div u = qType 2: q = 0, ψ ∈ Sλ−1

T (Γ) general solution of (2) : curlψ = s∇q, (→ s = 1)u particular solution of (3)

Type 3: q ∈ Sλ−1Dir (Γ) general solution of (1): ∆q = 0,

ψ and u particular solutions of (2) and (3).

Lemma Explicit solutions, [Co-Dauge ARMA2000]

λ 6= −1, u ∈ SλN (Γ) =⇒ φ = 1λ+1 u · x ∈ Sλ+1

Dir (Γ) ; curl u = 0 =⇒∇φ = u

λ 6= −1, ψ ∈ Sλ−1T (Γ) =⇒ u = 1

λ+1ψ × x ∈ SλN (Γ) ; divψ = 0 =⇒ curl u = ψ

λ 6= − 12 , q ∈ Sλ−1

Dir (Γ)⇒ u = 2qx+ρ2∇q4λ+2 ∈ SλN (Γ) ; ∆q = 0⇒ curl u = 0, div u = q

Corollary, Type 2

If λ 6∈ 0,−1, thenu solution of Type 2 ⇐⇒ curl u = ∇φ, φ ∈ SλNeu(Γ), ∆φ = 0 ; u = 1

λ+1∇φ× x

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 42 / 62

Page 46: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point

Solutions of the triangular system:Type 1: q = 0, ψ = 0, u ∈ SλN (Γ) general non-zero solution of (3): curl u = ψ, div u = qType 2: q = 0, ψ ∈ Sλ−1

T (Γ) general solution of (2) : curlψ = s∇q, (→ s = 1)u particular solution of (3)

Type 3: q ∈ Sλ−1Dir (Γ) general solution of (1): ∆q = 0,

ψ and u particular solutions of (2) and (3).

Lemma Explicit solutions, [Co-Dauge ARMA2000]

λ 6= −1, u ∈ SλN (Γ) =⇒ φ = 1λ+1 u · x ∈ Sλ+1

Dir (Γ) ; curl u = 0 =⇒∇φ = u

λ 6= −1, ψ ∈ Sλ−1T (Γ) =⇒ u = 1

λ+1ψ × x ∈ SλN (Γ) ; divψ = 0 =⇒ curl u = ψ

λ 6= − 12 , q ∈ Sλ−1

Dir (Γ)⇒ u = 2qx+ρ2∇q4λ+2 ∈ SλN (Γ) ; ∆q = 0⇒ curl u = 0, div u = q

Corollary, Type 3

If λ 6∈ − 12 , 0, then

u solution of Type 3 ⇐⇒ div u = q, q ∈ Sλ−1Dir (Γ), ∆q = 0.

ψ = 1λ∇φ× x , u = 1

λ(2λ+1)

((2λ− 1)qx − ρ2∇q

)

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 42 / 62

Page 47: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Some formulas from vector analysis

From [Co-Da ARMA 2000]:

260 Martin Costabel & Monique Dauge

1. q = 0,! = 0 andU is a general non-zero solution of (6.3c), respectively (6.4c).2. q = 0, ! is a general non-zero solution of (6.3b), respectively (6.4b) and U aparticular solution of (6.3c), respectively (6.4c).

3. q is a general non-zero solution of (6.3a), respectively (6.4a), ! a particularsolution of (6.3b), respectively (6.4b) and U a particular solution of (6.3c),respectively (6.4c).

6.2. Explicit solutions of first order problems

The Laplace singularities on polyhedral cones were described in Lemma 2.4.They contain Laplace-Beltrami eigenfunctions and have therefore, in contrast tothe two-dimensional case, no analytically known form, in general. But once theseLaplace singularities are known,we are able to provide completely explicit formulasfor the three types of Maxwell singularities.

This section is devoted to the description of solution formulas for the first orderproblems (6.3) and (6.4). All these formulas are based on the scalar product or thevector productwith the vectorx, withxdenoting the vector ofCartesian coordinates(x, y, z), and ρ = |x|.

We begin with three series of formulas. First we give product laws: a and bdenoting vector fields and γ being a scalar function on R3, we have

grad(a · b) = (a · grad) b + (b · grad) a + a × curl b + b × curla, (6.5a)

curl(a × b) = (b · grad) a − (a · grad) b + a div b − b diva, (6.5b)

div(a × b) = b · curla − a · curl b, (6.5c)

curl(γa) = γ curla + grad γ × a, (6.5d)

div(γa) = γ diva + grad γ · a. (6.5e)

Now, using the above formulas for the field x which satisfies

divx = 3, curlx = 0, x · grad = ρ∂ρ and gradx = I,

we obtain for any field a and scalar q

grad(a · x) = (ρ∂ρ + 1)a + x × curla, (6.6a)

curl(a × x) = (ρ∂ρ + 2)a − x diva, (6.6b)

div(a × x) = x · curla, (6.6c)

curl(qx) = grad q × x, (6.6d)

div(qx) = (ρ∂ρ + 3)q. (6.6e)

Finally, with γ = ρ2 and a = grad q, (6.5d) and (6.5e) yield

curl(ρ2 grad q) = −2 grad q × x, (6.6f)

div(ρ2 grad q) = 2ρ∂ρq + ρ2$q. (6.6g)

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 43 / 62

Page 48: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Form of Maxwell singular functions, 3D conical point, Electric b.c.

Theorem Electric Maxwell Singularities

• At a 3D conical point, the singular exponents λ 6= 0, λ > −1 of the principal part of theregularized Maxwell equations are of the form

λDir − 1, λNeu or λDir + 1,where λDir and λNeu are Dirichlet resp. Neumann singular exponents of the Laplacian.• The last type does not appear for the divergence-free Maxwell equations.• The exponents λ = 0 and λ = −1 appear for certain non-Lipschitz topologies.

Similar theorem for Magnetic Boundary Conditions...

Rule of thumb: The main singularity is a gradient.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 44 / 62

Page 49: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Birman-Solomyak decomposition theorems (“Helmholtz-like”)

Decomposition Theorem: Electric b. c. [Birman-Solomyak 1987]

Let Ω be a bounded Lipschitz domain (+ cracks, in R2 or R3). Then

∃KN : XN (Ω)→ HN (Ω) bounded such that curl KN = curl .

That is, for u ∈ XN (Ω) we have

u = ∇φ+ w with w = KN u ∈ HN (Ω), φ ∈ H10 (∆,Ω) .

Decomposition Theorem: Magnetic b. c. [Birman-Solomyak 1987 + Filonov 1997]

Let Ω be a bounded Lipschitz domain (+ cracks, in R2 or R3). Then

∃KT : XT (Ω)→ HT (Ω) bounded such that curl KT = curl ,

that is, for u ∈ XT (Ω) we have

u = ∇φ+ w with w = KT u ∈ HT (Ω), φ ∈ H1Neu(∆,Ω) ,

if and only if∀ v ∈ H1(Ω) ∃ψ ∈ H2(Ω) : n · v = ∂nψ on ∂Ω .

This is satisfied if Ω is piecewise C3/2+ε, ε > 0.

There exists a domain Ω ∈ C3/2 for which it is not satisfied.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 45 / 62

Page 50: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

XN and HN

We have seen: u ∈ XN \ HN ←→∇φ, φ ∈ H10 (∆) \ H2.

Corollary

(i) Let Ω be a Lipschitz polygon in R2. Then HN (Ω) is a closed subspace of finitecodimension of XN . The codimension is equal to the number of non-convex corners of Ω.

(ii) Let Ω be a Lipschitz polyhedron in R3. Then either XN (Ω) = HN (Ω) (when Ω is convex)or HN (Ω) is a closed subspace of infinite codimension of XN (due to non-convex edges).

Consequences of XN 6= HN ?

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 46 / 62

Page 51: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Two variational formulations

Regularized time-harmonic Maxwell boundary value problem (ε = µ = 1)

(BVP)

curl curl u − s∇ div u − ω2u = f in Ω

u × n = 0 and div u = 0 on ∂Ω

u ∈ XN (Ω)

Weak formulation: Integration by parts against v ∈ C1(Ω) with v × n = 0 gives

(P)∫

Ω

(curl u · curl v + s div u div v − ω2u · v

)=

∫Ω

f · v

We assume now that Ω is a Lipschitz polyhedron in R3.Then C∞(Ω) ∩ XN (Ω) is dense in HN (Ω), and we see that

The boundary value problem (BVP) is equivalent to

Find u ∈ XN (Ω) such that (P) is satisfied ∀v ∈ HN (Ω) .

Non-symmetric ! We have two symmetric versions:

(PX ) Find u ∈ XN (Ω) such that (P) is satisfied ∀v ∈ XN (Ω) Maxwell

(PH ) Find u ∈ HN (Ω) such that (P) is satisfied ∀v ∈ HN (Ω) Lamé

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 47 / 62

Page 52: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Two variational formulations

Two unique solutions

For f ∈ L2(Ω) with div f = 0 and all ω > 0 except for a discrete set of frequences, bothproblems (PX ) and (PH ) have unique solutions.If Ω is non-convex, these solutions are, in general, different.The eigenfrequencies are different.The solution of (PX ) satisfies div u = 0 (Maxwell solution),the solution of (PH ) has, in general, div u 6∈ H1(Ω) (Lamé or “pseudo-Maxwell” solution).

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 48 / 62

Page 53: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Different versions of the decomposition

The splitting into a singular and regular part

u = using + ureg

is not unique. Different motivations −→ different splittings.Motivation 1: Numerical approximation by singular function method.The principle:Assume u ∈ V is solution of a variational problem

∀ v ∈ V : a(u, v) =< f, v > .

Consider Galerkin approximation by subspaces Vh ⊂ V : uh ∈ Vh such that

∀ vh ∈ Vh : a(uh, vh) =< f, vh > .

We assume that there holds Céa’s Lemma: ‖u − uh‖ ≤ C inf‖u − vh‖ | vh ∈ Vh.If there is a splitting u = γs + ureg with a known singular function s, one can define theapproximation space as an augmented finite element space

Vh := spans ⊕ V 0h .

Céa’s Lemma now gives

‖u − uh‖ ≤ C inf‖ureg − vh‖ | vh ∈ V 0h .

If V 0h is a regular finite element space, the convergence order is thus determined by the

regularity of ureg ∈ H1+ε, which should therefore be as high as possible.Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 49 / 62

Page 54: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Different splittings in 2D

Assumption:• Ω is a bounded domain, coincides near the origin with Γω , ω > π, and is smoothelsewhere.• u ∈ XN is solution of the regularized Maxwell system (PX ) with ω = 0 and smooth righthand side f, div f = 0.Decomposition 1. “Natural decomposition”. s = χ∇rλ1 sinλ1θ with λ1 = π

ω.

Limit 1 + ε∗ of regularity determined by second singular function: ureg ∈ Hs, s < 1 + ε∗ for1 + ε∗ = λ2 = 2π

ω.

Decomposition 2. Divergence-free singular function: s = χ curl rλ1 cosλ1θ. This is thesame as 1.Decomposition 3. Projection on HN . Let φ ∈ H1

0 (Ω) solve ∆φ = s∗−1 with the dualsingular function s∗−1 of the Dirichlet problem, and define s = ∇φ.Here ureg is computable: It is the “pseudo-Maxwell” or “Lamé” solution of (PH ).

Then s, and hence ureg, contains a term in S−πω

+2−1, hence ε∗ = min 2πω− 1, 1− π

ω.

For π < ω < 3π/2, this is worse than Decomposition 1, worst for ω close to π.Decomposition 4. Orthogonal decomposition in XN , s ∈ H⊥

N . Here ε∗ is the same as inDecomposition 3.Note: In Decomposition 3 & 4, additional (spurious) singular functions appear in both s andin ureg that are absent in u.

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 50 / 62

Page 55: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

“Making convergence possible again”: The WRM

Idee: The problem comes from the fact that the regularized Maxwell bilinear form

a(u, v) =

∫Ω

(curl u · curl v + s div u div v

)defines a space XN = H0(curl) ∩ H(div) in which smooth functions (and piecewisepolynomials) are not dense.The term

∫Ω div u div v was rather arbitrary, because div u = 0 for Maxwell solutions. It can

be replaced by a different bilinear form, that is, the norm ‖ div u‖L2(Ω) can be replaced by anorm ‖ div u‖Y with a space Y satisfying the two requirements:

1 The corresponding space

X YN = H0(curl) ∩ u ∈ L2 | div u ∈ Y

is still compactly embedded in L2(Ω).2 C∞(Ω) ∩ X Y

N is dense in X YN .

This was first proposed in [Co-Dauge NuMa 2002] “Weighted regularization of Maxwellequations in polyhedral domains. A rehabilitation of nodal finite elements”.There, Y is a weighted L2 space:

‖q‖2Y =

∫Ωρ2γ |q|2 , ρ distance to the non-convex edges and corners

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 51 / 62

Page 56: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Weighted regularization

Theorem [Co-Da 2002]

Let Ω be a polygon in R2 or a polyhedron in R3.Define DY (∆) = q ∈ H1

0 (Ω) | ∆q ∈ Y. Then

(i) Decomposition X YN = HN + ∇DY (∆).

(ii) If H2 ∩ H10 (Ω) is dense in DY (∆), then condition 2 is satisfied.

(iii) There exists 0 < γ∗ < 1 such that for weight exponents γ∗ < γ < 1, conditions 1

and 2 are satisfied.γ∗ = max1− π

ωe, 1

2 − λDirc .

As a consequence, for this choice of weights, any conforming finite element Galerkinmethod for the regularized Maxwell system (source problem or eigenvalue problem)converges in X Y

N .

More recently, results with other choices of Y have appeared: e.g.Y = H−s for 0 < s < 1, or a discretized version thereof, ‖ · ‖Y ,h = hs‖ · ‖L2

[Bonito-Guermond MathComp 2011]

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 52 / 62

Page 57: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Weighted Regularization in the “L”

Computations with Q10 elements on refined mesh.

Legend:

Blue circles: computed ω[s]2 with curl-dominant eigenfunctions.Red stars: computed ω[s]2 with div-dominant eigenfunctions.Gray triangles: computed ω[s]2 with indifferent eigenfunctions.Cyan Lines: true Maxwell eigenvalues (calculated from scalar Neumann problem)

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 53 / 62

Page 58: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

The ideal: Computations in the square

0 1 2 3 4 5 6 70

2

4

6

8

10

12

14

ω[s]2 vs. s

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 54 / 62

Page 59: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

The unweighted reality: Computations in the L (γ = 0)

0 1 2 3 4 50

5

10

15

20

25

30

35

40

45

ω[s]2 vs. sThis is Lamé, not Maxwell !

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 55 / 62

Page 60: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Towards the ideal: WRM in the L (γ = 0.35)

0 2 4 6 8 100

5

10

15

20

25

30

35

40

45

ω[s]2 vs. s

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 56 / 62

Page 61: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Towards the ideal: WRM in the L (γ = 0.5)

0 2 4 6 8 100

5

10

15

20

25

30

35

40

45

ω[s]2 vs. s

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 57 / 62

Page 62: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

The ideal recovered: WRM in the L (γ = 1)

0 5 10 15 200

5

10

15

20

25

30

35

40

45

ω[s]2 vs. s

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 58 / 62

Page 63: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

WRM on Fichera’s corner

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 59 / 62

Page 64: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

WRM on Fichera’s corner

1st Maxwelleigenmode onFichera’s corner

Q4 elements

WeightedRegularization

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 60 / 62

Page 65: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

WRM on Fichera’s corner

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 61 / 62

Page 66: Martin Costabel IRMAR, Université de Rennes 1 …Corner Singularities Martin Costabel IRMAR, Université de Rennes 1 Analysis and Numerics of Acoustic and Electromagnetic Problems

Another singularity

Martin Costabel (Rennes) Corner Singularities Linz, 11–14/10/2016 62 / 62