Markov operators, classical orthogonal polynomial ensembles, and

126
Markov operators, classical orthogonal polynomial ensembles, and random matrices M. Ledoux, Institut de Math´ ematiques de Toulouse, France 5ecm Amsterdam, July 2008

Transcript of Markov operators, classical orthogonal polynomial ensembles, and

Page 1: Markov operators, classical orthogonal polynomial ensembles, and

Markov operators, classical orthogonalpolynomial ensembles, and random matrices

M. Ledoux, Institut de Mathematiques de Toulouse, France

5ecm Amsterdam, July 2008

Page 2: Markov operators, classical orthogonal polynomial ensembles, and

recent study of

random matrix and random growth models

new asymptotics

common, non central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

P. Forrester, C. Tracy, H. Widom, J. Baik, P. Deift, K. Johansson

Page 3: Markov operators, classical orthogonal polynomial ensembles, and

recent study of

random matrix and random growth models

new asymptotics

common, non central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

P. Forrester, C. Tracy, H. Widom, J. Baik, P. Deift, K. Johansson

Page 4: Markov operators, classical orthogonal polynomial ensembles, and

recent study of

random matrix and random growth models

new asymptotics

common, non central, rate (mean)1/3

universal limiting Tracy-Widom distribution

random matrices, longest increasing subsequence,

random growth models, last passage percolation...

P. Forrester, C. Tracy, H. Widom, J. Baik, P. Deift, K. Johansson

Page 5: Markov operators, classical orthogonal polynomial ensembles, and

invariant random matrix models

P(dX ) =1

Zexp

(− Tr

(v(X )

))dX , v : R → R

X = XN real symmetric or Hermitian N × N matrix

v(x) = β x2/4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

joint law of the eigenvalues (λN1 ≤ · · · ≤ λN

N) of XN

PN(dx) =1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

∆N(x) =∏

i<j(xi − xj), dµ(x) = e−v(x)dx

Page 6: Markov operators, classical orthogonal polynomial ensembles, and

invariant random matrix models

P(dX ) =1

Zexp

(− Tr

(v(X )

))dX , v : R → R

X = XN real symmetric or Hermitian N × N matrix

v(x) = β x2/4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

joint law of the eigenvalues (λN1 ≤ · · · ≤ λN

N) of XN

PN(dx) =1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

∆N(x) =∏

i<j(xi − xj), dµ(x) = e−v(x)dx

Page 7: Markov operators, classical orthogonal polynomial ensembles, and

invariant random matrix models

P(dX ) =1

Zexp

(− Tr

(v(X )

))dX , v : R → R

X = XN real symmetric or Hermitian N × N matrix

v(x) = β x2/4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

joint law of the eigenvalues (λN1 ≤ · · · ≤ λN

N) of XN

PN(dx) =1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

∆N(x) =∏

i<j(xi − xj), dµ(x) = e−v(x)dx

Page 8: Markov operators, classical orthogonal polynomial ensembles, and

invariant random matrix models

P(dX ) =1

Zexp

(− Tr

(v(X )

))dX , v : R → R

X = XN real symmetric or Hermitian N × N matrix

v(x) = β x2/4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

joint law of the eigenvalues (λN1 ≤ · · · ≤ λN

N) of XN

PN(dx) =1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

∆N(x) =∏

i<j(xi − xj), dµ(x) = e−v(x)dx

Page 9: Markov operators, classical orthogonal polynomial ensembles, and

invariant random matrix models

P(dX ) =1

Zexp

(− Tr

(v(X )

))dX , v : R → R

X = XN real symmetric or Hermitian N × N matrix

v(x) = β x2/4 Gaussian Orthogonal (β = 1) Unitary (β = 2) Ensembles

joint law of the eigenvalues (λN1 ≤ · · · ≤ λN

N) of XN

PN(dx) =1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

∆N(x) =∏

i<j(xi − xj), dµ(x) = e−v(x)dx

Page 10: Markov operators, classical orthogonal polynomial ensembles, and

random growth models

directed last passage percolation

wij , 1 ≤ i , j ≤ N, iid geometric random variables

WN = maxπ

∑(i ,j)∈π

wij

π up/right paths from (1, 1) to (N,N)

K. Johansson (2000)

P(WN ≤ t) =

∫{max xi≤t+N−1}

1

Z∆N(x)2

N∏i=1

dµ(xi )

µ({x}) = (1− q)qx , x ∈ N geometric distribution

Page 11: Markov operators, classical orthogonal polynomial ensembles, and

random growth models

directed last passage percolation

wij , 1 ≤ i , j ≤ N, iid geometric random variables

WN = maxπ

∑(i ,j)∈π

wij

π up/right paths from (1, 1) to (N,N)

K. Johansson (2000)

P(WN ≤ t) =

∫{max xi≤t+N−1}

1

Z∆N(x)2

N∏i=1

dµ(xi )

µ({x}) = (1− q)qx , x ∈ N geometric distribution

Page 12: Markov operators, classical orthogonal polynomial ensembles, and

random growth models

directed last passage percolation

wij , 1 ≤ i , j ≤ N, iid geometric random variables

WN = maxπ

∑(i ,j)∈π

wij

π up/right paths from (1, 1) to (N,N)

K. Johansson (2000)

P(WN ≤ t) =

∫{max xi≤t+N−1}

1

Z∆N(x)2

N∏i=1

dµ(xi )

µ({x}) = (1− q)qx , x ∈ N geometric distribution

Page 13: Markov operators, classical orthogonal polynomial ensembles, and

random growth models

directed last passage percolation

wij , 1 ≤ i , j ≤ N, iid geometric random variables

WN = maxπ

∑(i ,j)∈π

wij

π up/right paths from (1, 1) to (N,N)

K. Johansson (2000)

P(WN ≤ t) =

∫{max xi≤t+N−1}

1

Z∆N(x)2

N∏i=1

dµ(xi )

µ({x}) = (1− q)qx , x ∈ N geometric distribution

Page 14: Markov operators, classical orthogonal polynomial ensembles, and

random growth models

directed last passage percolation

wij , 1 ≤ i , j ≤ N, iid geometric random variables

WN = maxπ

∑(i ,j)∈π

wij

π up/right paths from (1, 1) to (N,N)

K. Johansson (2000)

P(WN ≤ t) =

∫{max xi≤t+N−1}

1

Z∆N(x)2

N∏i=1

dµ(xi )

µ({x}) = (1− q)qx , x ∈ N geometric distribution

Page 15: Markov operators, classical orthogonal polynomial ensembles, and

random growth models

directed last passage percolation

wij , 1 ≤ i , j ≤ N, iid geometric random variables

WN = maxπ

∑(i ,j)∈π

wij

π up/right paths from (1, 1) to (N,N)

K. Johansson (2000)

P(WN ≤ t) =

∫{max xi≤t+N−1}

1

Z∆N(x)2

N∏i=1

dµ(xi )

µ({x}) = (1− q)qx , x ∈ N geometric distribution

Page 16: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 17: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 18: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

large deviation asymptotics (every β)

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 19: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

PN(dx) =1

Zexp

(−

N∑i=1

v(xi ) + β∑i<j

log |xi − xj |)

dx

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 20: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

PN(dx) =1

Zexp

(−

N∑i=1

v(xi ) + β∑i<j

log |xi − xj |)

dx

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi

→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 21: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

PN(dx) =1

Zexp

(−

N∑i=1

v(xi ) + β∑i<j

log |xi − xj |)

dx

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 22: Markov operators, classical orthogonal polynomial ensembles, and

law of (λN1 , . . . , λ

NN) : PN(dx) =

1

Z

∣∣∆N(x)∣∣β N∏

i=1

dµ(xi )

global regime : spectral measure

PN(dx) =1

Zexp

(−

N∑i=1

v(xi ) + β∑i<j

log |xi − xj |)

dx

spectral measure : λNi = λN

i suitably normalized

µN =1

N

N∑i=1

δbλNi→ equilibrium measure

minimizer of 2

∫v dν − β

∫∫log |x − y | dν(x)dν(y)

weighted logarithmic potential theory

Page 23: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 24: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 25: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 26: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

∆N(x) = Cn det(P`−1(xk)

)1≤k,`≤N

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 27: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

∆N(x)2 = C 2n det2

(P`−1(xk)

)1≤k,`≤N

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 28: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

∆N(x)2 = C 2n det2

(P`−1(xk)

)1≤k,`≤N

PN(dx) = 1Z ∆N(x)2

∏Ni=1 dµ(xi )

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 29: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

∆N(x)2 = C 2n det2

(P`−1(xk)

)1≤k,`≤N

PN determinantal random point field structure

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 30: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

∆N(x)2 = C 2n det2

(P`−1(xk)

)1≤k,`≤N

PN determinantal random point field structure

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 31: Markov operators, classical orthogonal polynomial ensembles, and

local regime : individual behavior (spacings, extreme values)

β = 2 orthogonal polynomial method

P`, ` ∈ N orthogonal polynomials for µ

∆N(x)2 = C 2n det2

(P`−1(xk)

)1≤k,`≤N

PN determinantal random point field structure

marginals of PN : determinants of the kernel

KN(x , y) =N−1∑`=0

P`(x)P`(y)

orthogonal polynomial ensemble

Page 32: Markov operators, classical orthogonal polynomial ensembles, and

(common) asymptotics of orthogonal polynomials

universal local regime : spacings and edge behavior

top edge behavior

largest eigenvalue (particle) fluctuates at the rate (mean)1/3

limiting Tracy-Widom distribution FTW

C. Tracy, H. Widom, P. Deift, X. Zhou, J. Baik, K. Johansson,

T. Kriecherbauer, K. McLaughlin, P. Miller, S. Venakides, M. Vanlessen,

D. Gioev, P. Bleher, A. Its, A. Kuijlaars, M. Shcherbina, L. Pastur...

Page 33: Markov operators, classical orthogonal polynomial ensembles, and

(common) asymptotics of orthogonal polynomials

universal local regime : spacings and edge behavior

top edge behavior

largest eigenvalue (particle) fluctuates at the rate (mean)1/3

limiting Tracy-Widom distribution FTW

C. Tracy, H. Widom, P. Deift, X. Zhou, J. Baik, K. Johansson,

T. Kriecherbauer, K. McLaughlin, P. Miller, S. Venakides, M. Vanlessen,

D. Gioev, P. Bleher, A. Its, A. Kuijlaars, M. Shcherbina, L. Pastur...

Page 34: Markov operators, classical orthogonal polynomial ensembles, and

(common) asymptotics of orthogonal polynomials

universal local regime : spacings and edge behavior

top edge behavior

largest eigenvalue (particle) fluctuates at the rate (mean)1/3

limiting Tracy-Widom distribution FTW

C. Tracy, H. Widom, P. Deift, X. Zhou, J. Baik, K. Johansson,

T. Kriecherbauer, K. McLaughlin, P. Miller, S. Venakides, M. Vanlessen,

D. Gioev, P. Bleher, A. Its, A. Kuijlaars, M. Shcherbina, L. Pastur...

Page 35: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 36: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 37: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 38: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

largest eigenvalue λNN

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 39: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

largest eigenvalue λNN/√

N → 2

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 40: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

largest eigenvalue λNN/√

N → 2

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 41: Markov operators, classical orthogonal polynomial ensembles, and

example : Gaussian Unitary Ensemble (GUE)

dµ(x) = e−x2/2 dx√2π, KN Hermite kernel, λN

i = λNi /√

N

spectral measure

µN =1

N

N∑i=1

δbλNi→ 1

√4− x2 dx on (−2,+2)

Wigner semi-circle law

largest eigenvalue λNN/√

N → 2

N1/6[λN

N − 2√

N]→ FTW Tracy-Widom distribution

FTW(s) = exp

(−

∫ ∞

s(x − s)u(x)2dx

), s ∈ R

u′′ = 2u3 + xu Painleve II equation

Page 42: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 43: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 44: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 45: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

largest “particle” λNN ∼ WN

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 46: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

largest “particle” λNN ∼ WN/N → b

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 47: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

largest “particle” λNN ∼ WN/N → b

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 48: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 49: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 50: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 51: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 52: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 53: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 54: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools

for classical orthogonal polynomial ensembles

of random matrix and random growth models

non asymptotic results

• spectral description (universal arcsine law)

• recurrence equations for moments (map enumeration)

• recurrence equations for real symmetric models (GaussianOrthogonal Ensemble)

• non asymptotic tail inequalities for largest eigenvalues(optimal rate)

Page 55: Markov operators, classical orthogonal polynomial ensembles, and

classical orthogonal polynomial ensembles

Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

differential equations and operators

mean spectral measure µN = E(

1N

∑i=1 δλN

i)

〈f , µN〉 =

∫f (x)

1

NKN(x , x) dµ(x) =

∫f

1

N

N−1∑`=0

P2` dµ

example : Gaussian Unitary Ensemble (GUE)

P`, ` ∈ N Hermite polynomials for dµ(x) = e−x2/2 dx√2π

normalized in L2(µ)

Page 56: Markov operators, classical orthogonal polynomial ensembles, and

classical orthogonal polynomial ensembles

Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

differential equations and operators

mean spectral measure µN = E(

1N

∑i=1 δλN

i)

〈f , µN〉 =

∫f (x)

1

NKN(x , x) dµ(x) =

∫f

1

N

N−1∑`=0

P2` dµ

example : Gaussian Unitary Ensemble (GUE)

P`, ` ∈ N Hermite polynomials for dµ(x) = e−x2/2 dx√2π

normalized in L2(µ)

Page 57: Markov operators, classical orthogonal polynomial ensembles, and

classical orthogonal polynomial ensembles

Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

differential equations and operators

mean spectral measure µN = E(

1N

∑i=1 δλN

i)

〈f , µN〉 =

∫f (x)

1

NKN(x , x) dµ(x) =

∫f

1

N

N−1∑`=0

P2` dµ

example : Gaussian Unitary Ensemble (GUE)

P`, ` ∈ N Hermite polynomials for dµ(x) = e−x2/2 dx√2π

normalized in L2(µ)

Page 58: Markov operators, classical orthogonal polynomial ensembles, and

classical orthogonal polynomial ensembles

Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

differential equations and operators

mean spectral measure µN = E(

1N

∑i=1 δλN

i)

〈f , µN〉 =

∫f (x)

1

NKN(x , x) dµ(x) =

∫f

1

N

N−1∑`=0

P2` dµ

example : Gaussian Unitary Ensemble (GUE)

P`, ` ∈ N Hermite polynomials for dµ(x) = e−x2/2 dx√2π

normalized in L2(µ)

Page 59: Markov operators, classical orthogonal polynomial ensembles, and

classical orthogonal polynomial ensembles

Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

differential equations and operators

mean spectral measure µN = E(

1N

∑i=1 δλN

i)

〈f , µN〉 =

∫f (x)

1

NKN(x , x) dµ(x) =

∫f

1

N

N−1∑`=0

P2` dµ

example : Gaussian Unitary Ensemble (GUE)

P`, ` ∈ N Hermite polynomials for dµ(x) = e−x2/2 dx√2π

normalized in L2(µ)

Page 60: Markov operators, classical orthogonal polynomial ensembles, and

classical orthogonal polynomial ensembles

Hermite, Laguerre, Jacobi, Charlier, Meixner, Krawtchouk, Hahn

differential equations and operators

mean spectral measure µN = E(

1N

∑i=1 δλN

i)

〈f , µN〉 =

∫f (x)

1

NKN(x , x) dµ(x) =

∫f

1

N

N−1∑`=0

P2` dµ

example : Gaussian Unitary Ensemble (GUE)

P`, ` ∈ N Hermite polynomials for dµ(x) = e−x2/2 dx√2π

normalized in L2(µ)

Page 61: Markov operators, classical orthogonal polynomial ensembles, and

〈f , µN〉 =

∫f

1

N

N−1∑`=0

P2` dµ

preliminary investigation : measure P2N dµ

Laplace transform : ϕ(t) =

∫etxP2

N dµ, t ∈ R

Hermite operator : Lf = f ′′ − x f ′

Gaussian integration by parts :

∫f (−Lg)dµ =

∫f ′g ′ dµ

−LPN = N PN eigenvectors

Page 62: Markov operators, classical orthogonal polynomial ensembles, and

〈f , µN〉 =

∫f

1

N

N−1∑`=0

P2` dµ

preliminary investigation : measure P2N dµ

Laplace transform : ϕ(t) =

∫etxP2

N dµ, t ∈ R

Hermite operator : Lf = f ′′ − x f ′

Gaussian integration by parts :

∫f (−Lg)dµ =

∫f ′g ′ dµ

−LPN = N PN eigenvectors

Page 63: Markov operators, classical orthogonal polynomial ensembles, and

〈f , µN〉 =

∫f

1

N

N−1∑`=0

P2` dµ

preliminary investigation : measure P2N dµ

Laplace transform : ϕ(t) =

∫etxP2

N dµ, t ∈ R

Hermite operator : Lf = f ′′ − x f ′

Gaussian integration by parts :

∫f (−Lg)dµ =

∫f ′g ′ dµ

−LPN = N PN eigenvectors

Page 64: Markov operators, classical orthogonal polynomial ensembles, and

〈f , µN〉 =

∫f

1

N

N−1∑`=0

P2` dµ

preliminary investigation : measure P2N dµ

Laplace transform : ϕ(t) =

∫etxP2

N dµ, t ∈ R

Hermite operator : Lf = f ′′ − x f ′

Gaussian integration by parts :

∫f (−Lg)dµ =

∫f ′g ′ dµ

−LPN = N PN eigenvectors

Page 65: Markov operators, classical orthogonal polynomial ensembles, and

〈f , µN〉 =

∫f

1

N

N−1∑`=0

P2` dµ

preliminary investigation : measure P2N dµ

Laplace transform : ϕ(t) =

∫etxP2

N dµ, t ∈ R

Hermite operator : Lf = f ′′ − x f ′

Gaussian integration by parts :

∫f (−Lg)dµ =

∫f ′g ′ dµ

−LPN = N PN eigenvectors

Page 66: Markov operators, classical orthogonal polynomial ensembles, and

〈f , µN〉 =

∫f

1

N

N−1∑`=0

P2` dµ

preliminary investigation : measure P2N dµ

Laplace transform : ϕ(t) =

∫etxP2

N dµ, t ∈ R

Hermite operator : Lf = f ′′ − x f ′

Gaussian integration by parts :

∫f (−Lg)dµ =

∫f ′g ′ dµ

−LPN = N PN eigenvectors

Page 67: Markov operators, classical orthogonal polynomial ensembles, and

Laplace transform : ϕ(t) =

∫etxP2

N dµ

second order differential equation

tϕ′′ + ϕ′ − t(t2 + 4N + 2)ϕ = 0

under the GUE scaling : t 7→ t/√

N (λNi = λN

i /√

N)

limiting differential equation

t Φ′′ + Φ′ − 4t Φ = 0

Φ Laplace transform of the arcsine law

dx

π√

4− x2on (−2,+2)

Page 68: Markov operators, classical orthogonal polynomial ensembles, and

Laplace transform : ϕ(t) =

∫etxP2

N dµ

second order differential equation

tϕ′′ + ϕ′ − t(t2 + 4N + 2)ϕ = 0

under the GUE scaling : t 7→ t/√

N (λNi = λN

i /√

N)

limiting differential equation

t Φ′′ + Φ′ − 4t Φ = 0

Φ Laplace transform of the arcsine law

dx

π√

4− x2on (−2,+2)

Page 69: Markov operators, classical orthogonal polynomial ensembles, and

Laplace transform : ϕ(t) =

∫etxP2

N dµ

second order differential equation

tϕ′′ + ϕ′ − t(t2 + 4N + 2)ϕ = 0

under the GUE scaling : t 7→ t/√

N (λNi = λN

i /√

N)

limiting differential equation

t Φ′′ + Φ′ − 4t Φ = 0

Φ Laplace transform of the arcsine law

dx

π√

4− x2on (−2,+2)

Page 70: Markov operators, classical orthogonal polynomial ensembles, and

Laplace transform : ϕ(t) =

∫etxP2

N dµ

second order differential equation

tϕ′′ + ϕ′ − t(t2 + 4N + 2)ϕ = 0

under the GUE scaling : t 7→ t/√

N (λNi = λN

i /√

N)

limiting differential equation

t Φ′′ + Φ′ − 4t Φ = 0

Φ Laplace transform of the arcsine law

dx

π√

4− x2on (−2,+2)

Page 71: Markov operators, classical orthogonal polynomial ensembles, and

common behavior, with the limiting arcsine law

for the classical orthogonal polynomials

of (normalized) measures P2N dµ

continuous variable : Hermite, Laguerre, Jacobi

discrete variable : Charlier, Meixner, Krawtchouk, Hahn

varying parameters (in N)

compact case : A. Mate, P. Nevai, V. Totik (1985)

Page 72: Markov operators, classical orthogonal polynomial ensembles, and

common behavior, with the limiting arcsine law

for the classical orthogonal polynomials

of (normalized) measures P2N dµ

continuous variable : Hermite, Laguerre, Jacobi

discrete variable : Charlier, Meixner, Krawtchouk, Hahn

varying parameters (in N)

compact case : A. Mate, P. Nevai, V. Totik (1985)

Page 73: Markov operators, classical orthogonal polynomial ensembles, and

common behavior, with the limiting arcsine law

for the classical orthogonal polynomials

of (normalized) measures P2N dµ

continuous variable : Hermite, Laguerre, Jacobi

discrete variable : Charlier, Meixner, Krawtchouk, Hahn

varying parameters (in N)

compact case : A. Mate, P. Nevai, V. Totik (1985)

Page 74: Markov operators, classical orthogonal polynomial ensembles, and

common behavior, with the limiting arcsine law

for the classical orthogonal polynomials

of (normalized) measures P2N dµ

continuous variable : Hermite, Laguerre, Jacobi

discrete variable : Charlier, Meixner, Krawtchouk, Hahn

varying parameters (in N)

compact case : A. Mate, P. Nevai, V. Totik (1985)

Page 75: Markov operators, classical orthogonal polynomial ensembles, and

common behavior, with the limiting arcsine law

for the classical orthogonal polynomials

of (normalized) measures P2N dµ

continuous variable : Hermite, Laguerre, Jacobi

discrete variable : Charlier, Meixner, Krawtchouk, Hahn

varying parameters (in N)

compact case : A. Mate, P. Nevai, V. Totik (1985)

Page 76: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

Page 77: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

Page 78: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

Page 79: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

Page 80: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

Page 81: Markov operators, classical orthogonal polynomial ensembles, and

example : last passage percolation WN = maxπ

∑(i ,j)∈π

wij

µ geometric, KN Meixner kernel, λNi = λN

i /N

spectral measure

µN =1

N

N∑i=1

δbλNi→ equilibrium measure on (a, b)

largest “particle” λNN ∼ WN/N → b

N−1/3[WN − bN

]→ FTW Tracy-Widom distribution

K. Johansson (2000)

Page 82: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

1

1− q

(√qU(1 + U) ξ +

[U + q(1 + U)

])

Page 83: Markov operators, classical orthogonal polynomial ensembles, and

spectral measure : averaging procedure

GUE E(〈f , µN〉

)=

1

N

N−1∑`=0

∫f

(√`

N· x√

`

)P2

` dµ

µN =1

N

N∑i=1

δbλNi→

√U ξ

U uniform, ξ arcsine, independent

√U ξ semi-circle law on (−2,+2)

Meixner example (µ geometric) : equilibrium measure

1

1− q

(√qU(1 + U) ξ +

[U + q(1 + U)

])

Page 84: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula

E(et Tr(XN)

)= ψ(t) =

∫etx

N−1∑`=0

P2` dµ, t ∈ R

differential equation

GUE tψ′′ + 3ψ′ − t(t2 + 4N)ψ = 0

U. Haagerup, S. Thorbjørnsen (2003)

recurrence equation on moments

E(Tr

((XN)

p))=

∫xp

N−1∑`=0

P2` dµ, p ∈ N

Page 85: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula

E(et Tr(XN)

)= ψ(t) =

∫etx

N−1∑`=0

P2` dµ, t ∈ R

differential equation

GUE tψ′′ + 3ψ′ − t(t2 + 4N)ψ = 0

U. Haagerup, S. Thorbjørnsen (2003)

recurrence equation on moments

E(Tr

((XN)

p))=

∫xp

N−1∑`=0

P2` dµ, p ∈ N

Page 86: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula

E(et Tr(XN)

)= ψ(t) =

∫etx

N−1∑`=0

P2` dµ, t ∈ R

differential equation

GUE tψ′′ + 3ψ′ − t(t2 + 4N)ψ = 0

U. Haagerup, S. Thorbjørnsen (2003)

recurrence equation on moments

E(Tr

((XN)

p))=

∫xp

N−1∑`=0

P2` dµ, p ∈ N

Page 87: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula

E(et Tr(XN)

)= ψ(t) =

∫etx

N−1∑`=0

P2` dµ, t ∈ R

differential equation

GUE tψ′′ + 3ψ′ − t(t2 + 4N)ψ = 0

U. Haagerup, S. Thorbjørnsen (2003)

recurrence equation on moments

E(Tr

((XN)

p))=

∫xp

N−1∑`=0

P2` dµ, p ∈ N

Page 88: Markov operators, classical orthogonal polynomial ensembles, and

aNp = E

(Tr

((XN)

2p)), XN GUE

three term recurrence equation

(p + 1)aNp = (4p − 2)NaN

p−1 + (p − 1)(2p − 1)(2p − 3)aNp−2

J. Harer, D. Zagier (1986)

map enumeration (Wick products)

aNp =

∑g≥0

εg (p) Np+1−2g

genus series (oriented case)

ε0(p) Catalan numbers

Page 89: Markov operators, classical orthogonal polynomial ensembles, and

aNp = E

(Tr

((XN)

2p)), XN GUE

three term recurrence equation

(p + 1)aNp = (4p − 2)NaN

p−1 + (p − 1)(2p − 1)(2p − 3)aNp−2

J. Harer, D. Zagier (1986)

map enumeration (Wick products)

aNp =

∑g≥0

εg (p) Np+1−2g

genus series (oriented case)

ε0(p) Catalan numbers

Page 90: Markov operators, classical orthogonal polynomial ensembles, and

aNp = E

(Tr

((XN)

2p)), XN GUE

three term recurrence equation

(p + 1)aNp = (4p − 2)NaN

p−1 + (p − 1)(2p − 1)(2p − 3)aNp−2

J. Harer, D. Zagier (1986)

map enumeration (Wick products)

aNp =

∑g≥0

εg (p) Np+1−2g

genus series (oriented case)

ε0(p) Catalan numbers

Page 91: Markov operators, classical orthogonal polynomial ensembles, and

aNp = E

(Tr

((XN)

2p)), XN GUE

three term recurrence equation

(p + 1)aNp = (4p − 2)NaN

p−1 + (p − 1)(2p − 1)(2p − 3)aNp−2

J. Harer, D. Zagier (1986)

map enumeration (Wick products)

aNp =

∑g≥0

εg (p) Np+1−2g

genus series (oriented case)

ε0(p) Catalan numbers

Page 92: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator technology

similar recursion formulas

for the classical orthogonal polynomial ensembles

continuous variable : Hermite, Laguerre, Jacobi

discrete variables : Charlier, Meixner, Krawtchouk, Hahn

explicit expressions for the (factorial) moments

Page 93: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator technology

similar recursion formulas

for the classical orthogonal polynomial ensembles

continuous variable : Hermite, Laguerre, Jacobi

discrete variables : Charlier, Meixner, Krawtchouk, Hahn

explicit expressions for the (factorial) moments

Page 94: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator technology

similar recursion formulas

for the classical orthogonal polynomial ensembles

continuous variable : Hermite, Laguerre, Jacobi

discrete variables : Charlier, Meixner, Krawtchouk, Hahn

explicit expressions for the (factorial) moments

Page 95: Markov operators, classical orthogonal polynomial ensembles, and

Gaussian Orthogonal Ensemble β = 1

PN(dx) =1

Z

∣∣∆N(x)∣∣ N∏i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

dµ(x) = e−x2/2 dx√2π

Pfaffian instead of determinant

limiting spectral distribution : Wigner semi-circle law

Tracy-Widom edge asymptotics

Page 96: Markov operators, classical orthogonal polynomial ensembles, and

Gaussian Orthogonal Ensemble β = 1

PN(dx) =1

Z

∣∣∆N(x)∣∣ N∏i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

dµ(x) = e−x2/2 dx√2π

Pfaffian instead of determinant

limiting spectral distribution : Wigner semi-circle law

Tracy-Widom edge asymptotics

Page 97: Markov operators, classical orthogonal polynomial ensembles, and

Gaussian Orthogonal Ensemble β = 1

PN(dx) =1

Z

∣∣∆N(x)∣∣ N∏i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

dµ(x) = e−x2/2 dx√2π

Pfaffian instead of determinant

limiting spectral distribution : Wigner semi-circle law

Tracy-Widom edge asymptotics

Page 98: Markov operators, classical orthogonal polynomial ensembles, and

Gaussian Orthogonal Ensemble β = 1

PN(dx) =1

Z

∣∣∆N(x)∣∣ N∏i=1

dµ(xi ), x = (x1, . . . , xN) ∈ RN

dµ(x) = e−x2/2 dx√2π

Pfaffian instead of determinant

limiting spectral distribution : Wigner semi-circle law

Tracy-Widom edge asymptotics

Page 99: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula ?

mean spectral measure

E(Tr

(f (XN)

))=

∫f (x)µN

GOE(x)dµ(x)

P`, ` ∈ N Hermite polynomials

µNGOE =

N−1∑`=0

P2` +

ex2/4PN−1∫ex2/4PN−1dµ

1N odd

+

√πN

8ex2/4PN−1

∫sgn (x − y) ex2/4(y)PN(y)dµ(y)

Page 100: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula ?

mean spectral measure

E(Tr

(f (XN)

))=

∫f (x)µN

GOE(x)dµ(x)

P`, ` ∈ N Hermite polynomials

µNGOE =

N−1∑`=0

P2` +

ex2/4PN−1∫ex2/4PN−1dµ

1N odd

+

√πN

8ex2/4PN−1

∫sgn (x − y) ex2/4(y)PN(y)dµ(y)

Page 101: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula ?

mean spectral measure

E(Tr

(f (XN)

))=

∫f (x)µN

GOE(x)dµ(x)

P`, ` ∈ N Hermite polynomials

µNGOE =

N−1∑`=0

P2`

+ex2/4PN−1∫ex2/4PN−1dµ

1N odd

+

√πN

8ex2/4PN−1

∫sgn (x − y) ex2/4(y)PN(y)dµ(y)

Page 102: Markov operators, classical orthogonal polynomial ensembles, and

moment recursion formula ?

mean spectral measure

E(Tr

(f (XN)

))=

∫f (x)µN

GOE(x)dµ(x)

P`, ` ∈ N Hermite polynomials

µNGOE =

N−1∑`=0

P2` +

ex2/4PN−1∫ex2/4PN−1dµ

1N odd

+

√πN

8ex2/4PN−1

∫sgn (x − y) ex2/4(y)PN(y)dµ(y)

Page 103: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools : differential equation

on the Laplace transform of the spectral measure

moment recursion formula

bNp = E

(Tr

((XN)

2p)), p ∈ N

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

Page 104: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools : differential equation

on the Laplace transform of the spectral measure

moment recursion formula

bNp = E

(Tr

((XN)

2p)), p ∈ N

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

Page 105: Markov operators, classical orthogonal polynomial ensembles, and

Markov operator tools : differential equation

on the Laplace transform of the spectral measure

moment recursion formula

bNp = E

(Tr

((XN)

2p)), p ∈ N

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

Page 106: Markov operators, classical orthogonal polynomial ensembles, and

effective values

aN0 = N

aN1 = N2

GUE aN2 = 2N3 + N

aN3 = 5N4 + 10N2

aN4 = 14N5 + 70N3 + 21N

bN0 = N

bN1 = N2 + N

GOE bN2 = 2N3 + 5N2 + 5N

bN3 = 5N4 + 22N3 + 52N2 + 41N

bN4 = 14N5 + 93N4 + 374N3 + 690N2 + 509N

Page 107: Markov operators, classical orthogonal polynomial ensembles, and

bNp = E

(Tr

((XN)

2p)), XN GOE

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

bNp five term recurrence equation

closed form : I. Goulden, D. Jackson (1997)

map enumeration : unoriented case

duality with Symplectic Ensemble (β = 4)

Page 108: Markov operators, classical orthogonal polynomial ensembles, and

bNp = E

(Tr

((XN)

2p)), XN GOE

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

bNp five term recurrence equation

closed form : I. Goulden, D. Jackson (1997)

map enumeration : unoriented case

duality with Symplectic Ensemble (β = 4)

Page 109: Markov operators, classical orthogonal polynomial ensembles, and

bNp = E

(Tr

((XN)

2p)), XN GOE

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

bNp five term recurrence equation

closed form : I. Goulden, D. Jackson (1997)

map enumeration : unoriented case

duality with Symplectic Ensemble (β = 4)

Page 110: Markov operators, classical orthogonal polynomial ensembles, and

bNp = E

(Tr

((XN)

2p)), XN GOE

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

bNp five term recurrence equation

closed form : I. Goulden, D. Jackson (1997)

map enumeration : unoriented case

duality with Symplectic Ensemble (β = 4)

Page 111: Markov operators, classical orthogonal polynomial ensembles, and

bNp = E

(Tr

((XN)

2p)), XN GOE

recursion formula coupled with the moments aNp of the GUE

bNp = (4N − 2)bN

p−1 + 4(2p − 2)(2p − 3)bNp−2

+ aNp − (4N − 3)aN

p−1 − (2p − 2)(2p − 3)aNp−2

bNp five term recurrence equation

closed form : I. Goulden, D. Jackson (1997)

map enumeration : unoriented case

duality with Symplectic Ensemble (β = 4)

Page 112: Markov operators, classical orthogonal polynomial ensembles, and

recursion formulas lead to

sharp moment bounds

Gaussian Unitary Ensemble (GUE)

three term recurrence equation

E(Tr

((XN)2p

))≤ C (4N)p eCp3/N2

, p3 ≥ N2

similar bounds for

classical orthogonal polynomial ensembles (β = 2)

Gaussian Orthogonal Ensemble (GOE) (β = 1)

Page 113: Markov operators, classical orthogonal polynomial ensembles, and

recursion formulas lead to

sharp moment bounds

Gaussian Unitary Ensemble (GUE)

three term recurrence equation

E(Tr

((XN)2p

))≤ C (4N)p eCp3/N2

, p3 ≥ N2

similar bounds for

classical orthogonal polynomial ensembles (β = 2)

Gaussian Orthogonal Ensemble (GOE) (β = 1)

Page 114: Markov operators, classical orthogonal polynomial ensembles, and

recursion formulas lead to

sharp moment bounds

Gaussian Unitary Ensemble (GUE)

three term recurrence equation

E(Tr

((XN)2p

))≤ C (4N)p eCp3/N2

, p3 ≥ N2

similar bounds for

classical orthogonal polynomial ensembles (β = 2)

Gaussian Orthogonal Ensemble (GOE) (β = 1)

Page 115: Markov operators, classical orthogonal polynomial ensembles, and

recursion formulas lead to

sharp moment bounds

Gaussian Unitary Ensemble (GUE)

three term recurrence equation

E(Tr

((XN)2p

))≤ C (4N)p eCp3/N2

, p3 ≥ N2

similar bounds for

classical orthogonal polynomial ensembles (β = 2)

Gaussian Orthogonal Ensemble (GOE) (β = 1)

Page 116: Markov operators, classical orthogonal polynomial ensembles, and

non asymptotic small deviation inequalities

P(λN

N ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

C−1 e−C s3/2 ≤ 1− FTW(s) ≤ C e−s3/2/C (s →∞)

moment bounds (GUE, GOE)

P(λN

N ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

fits the Tracy-Widom asymptotics (ε = s N−1/6)

deviation inequality on last passage percolation WN

K. Johansson (2000)

Page 117: Markov operators, classical orthogonal polynomial ensembles, and

non asymptotic small deviation inequalities

P(λN

N ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

C−1 e−C s3/2 ≤ 1− FTW(s) ≤ C e−s3/2/C (s →∞)

moment bounds (GUE, GOE)

P(λN

N ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

fits the Tracy-Widom asymptotics (ε = s N−1/6)

deviation inequality on last passage percolation WN

K. Johansson (2000)

Page 118: Markov operators, classical orthogonal polynomial ensembles, and

non asymptotic small deviation inequalities

P(λN

N ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

C−1 e−C s3/2 ≤ 1− FTW(s) ≤ C e−s3/2/C (s →∞)

moment bounds (GUE, GOE)

P(λN

N ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

fits the Tracy-Widom asymptotics (ε = s N−1/6)

deviation inequality on last passage percolation WN

K. Johansson (2000)

Page 119: Markov operators, classical orthogonal polynomial ensembles, and

non asymptotic small deviation inequalities

P(λN

N ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

C−1 e−C s3/2 ≤ 1− FTW(s) ≤ C e−s3/2/C (s →∞)

moment bounds (GUE, GOE)

P(λN

N ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

fits the Tracy-Widom asymptotics (ε = s N−1/6)

deviation inequality on last passage percolation WN

K. Johansson (2000)

Page 120: Markov operators, classical orthogonal polynomial ensembles, and

non asymptotic small deviation inequalities

P(λN

N ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

C−1 e−C s3/2 ≤ 1− FTW(s) ≤ C e−s3/2/C (s →∞)

moment bounds (GUE, GOE)

P(λN

N ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

fits the Tracy-Widom asymptotics (ε = s N−1/6)

deviation inequality on last passage percolation WN

K. Johansson (2000)

Page 121: Markov operators, classical orthogonal polynomial ensembles, and

non asymptotic small deviation inequalities

P(λN

N ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

C−1 e−C s3/2 ≤ 1− FTW(s) ≤ C e−s3/2/C (s →∞)

moment bounds (GUE, GOE)

P(λN

N ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

fits the Tracy-Widom asymptotics (ε = s N−1/6)

deviation inequality on last passage percolation WN

K. Johansson (2000)

Page 122: Markov operators, classical orthogonal polynomial ensembles, and

moment comparison

Wigner matrices (independent entries)

example : sign matrix Y N = Y Nij = ±1

asymptotic result : Y. Sinai, A. Soshnikov (1998-99)

P(λN

N(Y ) ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

E(Tr

((Y N)2p

))≤ E

(Tr

((XN)2p

)), XN GOE

P(λN

N(Y ) ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

Page 123: Markov operators, classical orthogonal polynomial ensembles, and

moment comparison

Wigner matrices (independent entries)

example : sign matrix Y N = Y Nij = ±1

asymptotic result : Y. Sinai, A. Soshnikov (1998-99)

P(λN

N(Y ) ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

E(Tr

((Y N)2p

))≤ E

(Tr

((XN)2p

)), XN GOE

P(λN

N(Y ) ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

Page 124: Markov operators, classical orthogonal polynomial ensembles, and

moment comparison

Wigner matrices (independent entries)

example : sign matrix Y N = Y Nij = ±1

asymptotic result : Y. Sinai, A. Soshnikov (1998-99)

P(λN

N(Y ) ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

E(Tr

((Y N)2p

))≤ E

(Tr

((XN)2p

)), XN GOE

P(λN

N(Y ) ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

Page 125: Markov operators, classical orthogonal polynomial ensembles, and

moment comparison

Wigner matrices (independent entries)

example : sign matrix Y N = Y Nij = ±1

asymptotic result : Y. Sinai, A. Soshnikov (1998-99)

P(λN

N(Y ) ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

E(Tr

((Y N)2p

))≤ E

(Tr

((XN)2p

)), XN GOE

P(λN

N(Y ) ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N

Page 126: Markov operators, classical orthogonal polynomial ensembles, and

moment comparison

Wigner matrices (independent entries)

example : sign matrix Y N = Y Nij = ±1

asymptotic result : Y. Sinai, A. Soshnikov (1998-99)

P(λN

N(Y ) ≤ 2√

N + s N−1/6)→ FTW(s), s ∈ R

E(Tr

((Y N)2p

))≤ E

(Tr

((XN)2p

)), XN GOE

P(λN

N(Y ) ≥ 2√

N + ε)≤ C e−N1/4ε3/2/C , 0 < ε ≤

√N