Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool...

12
Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density increases. Sersic 159-03 EPIC Radial Profiles Abel 1835 RGS Spectra

Transcript of Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool...

Page 1: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

The cooling-flow problemBremsstrahlung emission ) L / n2 ) center parts cool faster.Pressure equilibrium ) mass in-flow ) density increases.

Sersic 159-03EPIC Radial Profiles

Abel 1835RGS Spectra

Page 2: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

The cooling-flow problemHeating mechanism: Magnetic reconnection? Central AGN? Turbulence?Spatially-resolved, high-resolution spectra to map out the temperature distribution and the dynamics of the gas in the center.

500£500 2-eV resolution spectrum of the nucleus of a cluster of galaxies with XEUS.

Instrument requirements: FoV = As large as possible (goal 10 £ 10). Mosaic observations.

E = 2 eV (v ¼ few 100 km/s) E range= 0.3 – 12 keV (0.3 keV to reach up to z ¼ 0.05)

Page 3: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Warm-hot intergalactic medium (WHIM)

Missing baryons at z ¼ 0

baryon; WMAP = 0.0440barion; observed = 0.0124

Mass Temperature

OVII

Simulations of structure formation

Page 4: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Warm-hot intergalactic medium (WHIM)XMM-Newton: Soft excessemission in Cl. of Galaxies.Possible infalling groups.

Properties of the emitting gas:

kT ¼ 0.2 keV

[O] ¼ 0.1 [O¯]

Mass ¼ MassCl. of Galaxies

XEUS: Simulated observationfor A 2052.

Other lines: CVI, NVII, OVIII and the Fe-L complex. Abundance up to z ¼ 0.5 (after that, problems with background lines)

Page 5: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Warm-hot intergalactic medium (WHIM)WHIM can also be detected in absorption to higher redshifts, provided enough bright background sources exist.

Instrument requirements:FoV = Not a driver. Snapshots of outskirts of Clusters or bright

background sources.E = 2 eV (weak narrow lines) E range= 0.1 – 2 keV (0.1 keV ! N up to z ¼ 0.5 and O up to z ¼

2)

Page 6: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Active Galactic NucleiMildly-ionized material in the vicinity of an AGN (warm absorber)

- Broadened lines ! vturbulent & 600 km/sec- Outflow velocity = 200 km/sec- Two photo-ionisation components

Page 7: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Active Galactic NucleiTime-resolved spectroscopy of Seyfert 1 galaxies with sufficient spectral resolution to determine outflow velocities down to a few 100 km/s.

Changes in the plasma parameters related to changes in the X-ray luminosity provide information about the location of the absorbing plasma.

NGC 5548 - 100-s with XEUS

Instrument requirements:Effective area (»100-s time-scale variability)E = 2 eV (v ¼ few 100 km/s) E range= 0.3 – 12 keV (constrain continuum / Fe line at ¼ 6.5 keV)

Page 8: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Extreme gravity and NS equation of state Close to NS or black holes, gravitational energy is comparable to rest-mass energy. This regime has so far not been tested.

Inside NS, & 10 £ nuclear. Possible exotic particles, like strangeness-bearingbaryons, pions and kaon condensates, or deconfined quarks.

Only possibility, since the Big Bang, to find those particles in nature.

Suppermassive BH

Solar-mass BH

Intermediate-mass BH

Galactic rotationStrong lensing/

Shapiro DelayDeflection of light/

Terrestrial LabsGravity Probe B

Hulse-Taylor Pulsar

Neutron starredshifted linesand QPOs

Black Hole QPOs

Precession of Mercury

Microlensing

/

Page 9: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Neutron star equation of state Composition of NS from Mass-Radius measurements – Possible Quark stars – Physics of nuclear interactions

OV

II x

y

OV

II E

dge

OV

II K

OV

II K

O

VII

I L

y

Ne

IX w

NV

II L

y

OV

II w O

VII

xy

NV

I K

NV

II L

yN

VI

K

CV

I L

yC

VI

Ly

CV

I L

yN

VI

w

FeX

XV

23

(z

0.3

5)

FeX

XV

I H

(

z

0.3

5)

OV

III

Ly

(z

0.3

5)

z 0.35

Page 10: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Redshift ! M/RLine width ! M/R2

30-second exposures of the early part of a single X-ray burst, for 3 different spin frequencies of the neutron star.

R (km)

L

0 5 10 15 20

1

2

0

. oM

(M

)

Quark

KC

APR98

AFPS

AUM

Neutron star equation of state Composition of NS from Mass-Radius measurements – Possible Quark stars – Physics of nuclear interactions

Instrument requirements:Effective area!!!E = 2 eV (to measure line width) E range= 0.3 – 2 keV (»10 keV ! redshifted Fe XXVI Ly)

Page 11: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Life cycle of the elements SNe and SNR. Explosive nucleosynthesis.

Cas A – 1 Ms with Chandra

Doppler maps

Page 12: Mariano Mendez - SRON The cooling-flow problem Bremsstrahlung emission ) L / n 2 ) center parts cool faster. Pressure equilibrium ) mass in-flow ) density.

Mariano Mendez - SRON

Life cycle of the elements

XMM-Newton

XEUS

Rare elements – ISM enrichment

Instrument requirements:Detector uniformity/stability. FoV less importantE = 2 eV (shock dynamics) E range= 0.3 (to include C-K edge) to »10 keV (Fe-K edge)