Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood...

16
2019c9 $ ˚ ˘˘ 123 13ˇ Sept., 2019 Operations Research Transactions Vol.23 No.3 DOI: 10.15960/j.cnki.issn.1007-6093.2019.03.004 ˆˇ&XO¥üzKz{ * 41,` ˆˇ&XO¥NıKzK. ¡, øzK~~ kp55, eJuƒ); ,¡, §qkgAˇ(, ~X5! '5. |^‘z{(KAˇ(ƒ)?nˆˇ&XOK ·Cc5˘.˜9:. ':?ˆˇ&XO¥üzKz {, )ı^rZ6&OKeØD/´¯//Oı\ı (Multi-Input Multi-Output, MIMO) uK, 0yzE(KAˇ( 3ƒ)?nªüK#?. c t, COz, ı^rZ6&, ØD/´¯//O, OE,5, ;t, MIMO u, ˆˇ&X ¥ª'a O221, TN92 2010 Œ˘'a 65K05, 90B18, 90C22, 90C30, 90C90 Two optimization problems in wireless communication system design and related optimization methods * LIU Yafeng 1,Abstract Many problems arising from wireless communication system design can be formulated as optimization problems. On the one hand, these optimization problems are often non-convex and highly nonlinear and thus are difficult to solve; on the other hand, these problems have their own special structures such as (hidden) convexity and separability. Recently applying mathematical optimization methods to solve/deal with these problems while judiciously taking care of their special structures is a hot research topic. This (survey) paper aims to introduce two optimization problems in wireless communication system design, max-min fairness linear transceiver design problem and MIMO detection problem, and related optimization methods. This paper will focus on the above two problems and overview recent advances of applying mathematical optimization techniques to solve/deal with them by exploiting their special structures. Keywords semi-definite relaxation, alternating optimization, multiuser interference channel, transceiver beamforming design, computational complexity, tight relaxation, MIMO detection, wireless communication system ´vFˇ: 2019-03-01 *˜78: I[g,˘˜7 (Nos. 11688101, 11671419, 11631013, 11571221), g,˜7: ; (No. L172020), I[uU˘Œœ²M#A^«8 (No. 2016-999999-65-01- 000696-01) 1. ¥I˘Œ˘X˘˜, OŒ˘˘§O˜/, ˘§OI[: ¢¿, 100190; State Key Laboratory of Scientific and Engineering Computing, Institute of Computa- tional Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China ˇ& E-mail: yafl[email protected]

Transcript of Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood...

Page 1: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

2019c9� $ Ê Æ Æ � 123ò 13Ï

Sept., 2019 Operations Research Transactions Vol.23 No.3

DOI: 10.15960/j.cnki.issn.1007-6093.2019.03.004

Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{∗

4æ¹1,†

Á� Ã�Ï&XÚ�O¥�Nõ¯K�ï��`z¯K. ��¡, ù`z¯K~~ä

kpÝ���55, ���¹eJu¦); ,��¡, §�qkg��AÏ(�, ~XÛ¹

�à5!�©5�. |^`z��{(ܯK�AÏ(�¦)Ú?nÃ�Ï&XÚ�O¯K

´Cc5Æâ.ïÄ�9:. �©­:?ØÃ�Ï&XÚ�O¥�ü�`z¯KÚ�'`z

�{, �)õ^rZ6&�����OKe�éÜDÑ/�ÂÅå¤/�OÚõÑ\õÑÑ

(Multi-Input Multi-Output, MIMO) uÿ¯K, Ì�0�y�`zEâ(ܯK�AÏ(

�3¦)Ú?nþãü�¯K��#?Ð.

'�c ��½tµ, Cþ�O�`z, õ^rZ6&�, éÜDÑ/�ÂÅå¤/�O,

O�E,5, ;tµ, MIMO uÿ, Ã�Ï&XÚ

¥ã©aÒ O221, TN92

2010 êÆ©aÒ 65K05, 90B18, 90C22, 90C30, 90C90

Two optimization problems in wireless communicationsystem design and related optimization methods∗

LIU Yafeng1,†

Abstract Many problems arising from wireless communication system design canbe formulated as optimization problems. On the one hand, these optimization problemsare often non-convex and highly nonlinear and thus are difficult to solve; on the otherhand, these problems have their own special structures such as (hidden) convexity andseparability. Recently applying mathematical optimization methods to solve/deal withthese problems while judiciously taking care of their special structures is a hot researchtopic. This (survey) paper aims to introduce two optimization problems in wirelesscommunication system design, max-min fairness linear transceiver design problem andMIMO detection problem, and related optimization methods. This paper will focus on theabove two problems and overview recent advances of applying mathematical optimizationtechniques to solve/deal with them by exploiting their special structures.

Keywords semi-definite relaxation, alternating optimization, multiuser interferencechannel, transceiver beamforming design, computational complexity, tight relaxation,MIMO detection, wireless communication system

ÂvFÏ: 2019-03-01

*Ä7�8:I[g,�ÆÄ7 (Nos. 11688101, 11671419, 11631013, 11571221),�®½g,Ä7­:;� (No. L172020), I[uU��Æ�êâú�ÑÖ²��M#A^«��8 (No. 2016-999999-65-01-

000696-01)

1. ¥I�Æ�êÆ�XÚ�ÆïÄ�, O�êÆ��Æó§O�ïĤ, �Æ�ó§O�I[­:¢�¿,�® 100190; State Key Laboratory of Scientific and Engineering Computing, Institute of Computa-

tional Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China

† Ï&�ö E-mail: [email protected]

Page 2: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

48 4æ¹ 23ò

Chinese Library Classification O221, TN92

2010 Mathematics Subject Classification 65K05, 90B18, 90C22, 90C30, 90C90

0 Ú ó

�`z[1-3]?Øûü¯K��ZÀJ, �EϦ�Z)�O��{, ïÄùO��

{�nØ5�9¢SO�Ly. �`z3I�!²L!7K!ó§!�Ï!+n!êâ©

Û!ÅìÆS!<ó�U�Nõ+�kX2��A^. Ã�Ï&Eâ[4-6]Ì�|^Ã�>

^Å5DÑ&E.y�¿Âe�Ã�Ï&©u 19­V 90c�¿�|<ê�Z (Guglielmo

Marconi)��X�>^Å¢�,¦¤õ/|^>^Å¢yÃ�êâDÑ. 1948c, �à

(Claude Elwood Shannon) uLK�“A Mathematical Theory of Communication”�Ø

©, ïáÏ&�êÆnØ[7]. A�c5, <�Øä²{X#�Ã�Ï&�{��)ÚC

�, ¿�ÉXõ«õ��Ã�Ï&ÑÖ. Ã�Ï&Eâ�uÐ4�/Uõ<��Ñ1!

Ï&Ú©zDÂ��ª,�<�Jø=�B$�ÑÖ.Ã�Ï&Eâ�uÐ�´�cI

[ÔÑuÐOy�­�|¤Ü©. �©­:?ØÃ�Ï&XÚ�O¥�`z¯KÚ`z

�{, Ì�0�y�`zEâ(ܯK�AÏ(�3Ã�Ï&XÚ5U`z�ü�Y~

9Ù�#?Ð.

Ã�Ï&XÚ�O¥�Nõ¯K8�(.Ñ´`z¯K, �$^`z�{\±¦),

'XÏ&�ä�ÿÀ(��O!&Ò�?)èL§!�`] ���. 8c,�éuÏ&

Eâ3y¢)¹¥�%ÇuÐ,Ï&XÚ`z�êÆnØ��{w��é¢�,3,�

¡®²¤�K�ÙuÐÚA^�'�Ï�. Ã�Ï&XÚ�O¥�éõ¯K~~�ï�

��kAÏ(���à��5�å`z¯K.��¡,ù`z¯K~~äkpÝ���

55,���¹eJu¦);,��¡,§�qkg��AÏ(�,~XÛ¹�à5!�©

5!DÕ5�. |^`z��{(ܯK�AÏ(�¦)Ú?nÃ�Ï&XÚ�O¯K,

C��c²þzcÑkù�¡�ó�¼ IEEE &Ò?nƬ½ö IEEE Ï&Ƭ�ZØ

©ø. ­.Ͷ`z;[!\<��[�Æ��¬!&Ò?nÚÃ�Ï&º?Ïr IEEE

Transactions on Signal Processing c?Ì?Û���Ç�Ì�ïÄ��´`z�{��

O!©Û9Ù3Ã�Ï&Ú&Ò?n¥�A^.Û���Ç3þã����´a�ïÄ

¤J, l �¼� 2004!2009!2011 c IEEE &Ò?nƬ�ZØ©ø, 2015 c IEEE

Signal Processing Magazine �ZØ©ø, 2011 cî³&Ò?nƬ�ZØ©ø, Ú 2011

cISÏ&�¬�ZØ©ø. `z�{3Ã�Ï&XÚ�O¥�­�5dd����.

�©X­0�y�`zEâ(ܯK�AÏ(�3Ã�Ï&XÚ5U`z�ü�Y

~9Ù�#?Ð. ·�ò31 1 !0�õÑ\õÑÑ (Multi-Input Multi-Output, MIMO)

Z6&�¥����OKe�éÜDÑ/�ÂÅå¤/�O¯K9Ù�#ïÄ?Ð; 31

2!0� MIMOuÿ (MIMO Detection)¯K9Ù�#ïÄ?Ð.�©ý­ul`z��

Ý"ÀÃ�Ï&XÚ�O,kXeü�ý­:.�©�1��ý­:´'uÃ�Ï&XÚ

�O¥`z¯KO�E,5��x[8]. O�E,5�±�x¤�įK���J´§Ý,

´)ûÚ©Û¢S¯K�'�Ú½. �©�1��ý­:´�â¯K�AÏ(��Ok

���{?nÚ¦)�A�Ã�Ï&XÚ`z�O¯K, ¿é�'�{?1nØ©Û�.

'uÃ�Ï&XÚ`z�O�nã©Ù, �ë�©z [9-16].

ÎÒ�½: �©^��çNi1L«��þ, ��çNi1L«Ý. �½Ý A,

Page 3: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 49

AT L«§�=�, A† L«§��Ý=�, A−1 L«§�_, Ai,j L«§�1 (i, j) ��

�. �q�ÎÒ�·^u�þ. �½�þ x = [x1, x2, · · · , xK ]T, ‖x‖p ,

∑Kk=1 |xk|p L«

§� p �ê, Ù¥ p ∈ {2,∞}; Diag(x) L«d�þ x )¤�é�Ý. �½ (·��ê

�) HermitianÝ AÚ B, A � 0L« A´����½Ý; A •BL« AB �,,=∑i

∑j Ai,jBj,i; A⊗B L«§�� Kronecker ¦È. ��, �©^ e L«·��ê�� 1

�þ, ^ I L«·��ê�ü Ý, ^ 0 L«·��ê�� 0 ݽ�þ.

1 ����OKeéÜDÑ/�ÂÅå¤/�O

1.1 `z�.

õ^rZ6&�Xã 1 ¤«. 3õ^rZ6&�¥, kõ�DÑàÚõ��Âà. z

�DÑàÚ�ÂàCkØÓêþ�U�.z�DÑàF"�éA��Âàux&Ò.AO

/,�DÑà 1 (TX1)��Âà 1 (RX1)ux&Ò�Ó�, TX1 ��Ù¦��Âà�5

Z6;�L5,� RX1 � TX1 DÑ&Ò�Ó�,��Â�Ù¦DÑàDÑ�&Ò,ùé

u RX1 5`�´Z6. ù=´õ^rZ6&�.

ã1 õ^rZ6&�«¿ã

b�XÚ¥k K �^r, ·�^ K = {1, 2, · · · ,K} L«XÚ¥¤k^r�8Ü. �

Äü1ÅÏ&XÚ,=1 k �DÑà3�����ux��&Ò sk ∈ C�éA��Âàk. ·�^ Hkj ∈ CMk×Nj L«1 j �DÑà�1 k ��Âà�&�Ý, Ù¥ Mk Ú

Nk ©OL«1 k ��ÂàÚ1 k �DÑàCk�U��ê, @o�Âà k �Â�&Ò

yk = Hkkvksk +∑j 6=k

Hkjvjsj + zk,

Ù¥ vk ∈ CNk×1 L«DÑà k ¦^�DÑÅå¤/�þ, zk ∈ CMk×1 ´\5pdxD

(, Ñl��©Ù CN (0, σ2kI). - uk ∈ CMk×1 L«�Âà k ¦^��ÂÅå¤/�þ,

Page 4: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

50 4æ¹ 23ò

K�Âà k ²L�5?n±����&Ò�

sk = u†kyk = u†kHkkvksk +∑j 6=k

u†kHkjvjsj + u†kzk.

òZ6w¤D(, @o1 k �^r�&ZD' (Signal-to-Interference-plus-Noise-Ratio,

SINR) �L«�

SINRk =|u†kHkkvk|2

σ2k‖uk‖2 +

∑j 6=k

|u†kHkjvj |2, k ∈ K. (1.1)

�âXÚ¥DÑàÚ�ÂàCk�U��ê,�òõ^rZ6&��Xe©a:�X

Ú¥z�DÑàÚ�ÂàÑCkõ�U��, = Mk > 2, Nk > 2 (k ∈ K) �, d&�¡

� MIMO Z6&�, Ù SINR L�ªXª (1.1) ¤«; �XÚ¥z�DÑàCkõ�U

�, z��ÂàCk 1 �U�, = Mk = 1, Nk > 2 (k ∈ K) �, d&�¡�õÑ\üÑÑ

(Multi-Input Single-Output, MISO) Z6&�.

3MIMOÚMISOZ6&�¥,z�DÑà�õÇ�å�L«� ‖vk‖2 6 pk, k ∈ K,Ù¥ pk L«1 k �DÑà�õÇþ�. �XÚ¥z��ÂàCkõ�U�, z�DÑà

Ck 1 �U��, = Mk > 2, Nk = 1 (k ∈ K) �, d&��üÑ\õÑÑ (Single-Input

Multi-Output, SIMO) Z6&�.

��y^r�m�ú²5, ·��Ä MIMO Z6&�¥��� SINR ��z (�

du���Ç��z) ¯K:

max{u,v}

G(u,v) , mink∈K{SINRk(uk,v)}

s.t. ‖uk‖2 = 1, ‖vk‖2 6 pk, k ∈ K,(1.2)

Ù¥ SINRk(uk,v) dª (1.1) �Ñ. 5¿�1 k �^r� SINR L�ª (1.1) Ø�6u

{uj}j 6=k , ¤±·�^ SINRk(uk,v) L«1 k �^r� SINR. Ú\9ÏCþ SINR =

mink∈K {SINRk} , þã�� SINR ��z¯K (1.2) �±�d/��

max{u,v}

SINR

s.t. SINR 6 SINRk, ‖uk‖2 = 1, ‖vk‖2 6 pk, k ∈ K.(1.3)

1.2 �#?Ð

�z��ÂàCk 1 �U� (Mk = 1, k ∈ K) �, = MISO Z6&�: ©z [17] J

ÑÏL��z_&Z'�\�Ú5%C¯K (1.2), ¿y²�±ÏLÀ�·��\�Xê

¼�¯K (1.2) ��`), dó�¼� 2007 c IEEE &Ò?nƬ�ZØ©ø; ©z

[18,19] JÑõ�ª�m�{�¦�¯K (1.2) ��Û�`).

�z�DÑàCk 1 �U� (Nk = 1, k ∈ K) �, = SIMO Z6&�, ·�Äg��

Xeõ�ª�m�)�(J, ù�(JÌ�´du¯K¥Û¹�à5[20]. duÙy²´

�E5�, ¤±Ó���ѯK (1.2) �DÑàk 1 �U���õ�ª�m�{; �

�©z [21].

½n 1.1 �z�DÑàCk 1 �U� (Nk = 1, k ∈ K) �, �� SINR ��z¯K

(1.2) �3õ�ª�mS¦).

Page 5: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 51

Ó�, ·��Äg��DÑàÚ�ÂàÑCkõ�U��¯K (1.2) �E,5(

J[23]: =�z�DÑàCk�U�ê�u½�u 2(3), z��ÂàCk�U�ê�u½

�u 3(2) �, �ä�½ SINR 8I��15¯K´r NP-J�. 'uDÑàÚ�ÂàC

k�U�êÑ�u 2 �¯K (1.2) �E,5, ù�¯K��] �û. �C, ·�£�

ù�¯K; ��©z[22].

½n 1.2 �½¯K (1.3) ¥ SINR 8I ζ. �z�DÑà/�ÂàCk�U�ê�

u½�u 2 �, �ä�½ ζ ��15¯K´r NP-J�. Ïd, �`z¯K (1.2) �´r

NP-J�.

L 1 ¥o( MIMO Z6&��� SINR ��z¯K (1.2) 3DÑàÚ�ÂàCk

ØÓU�ê��O�E,5. lL 1 ¥·���, ¯K (1.2) �E,5�XDÑàÚ�Â

àCk�U�ê8�Cz Cz. ��5ù, O\U�ê8�±JpÏ&XÚ�5U, �

���A`z¯K�¦)�5(J.

L 1 ����OKeéÜDÑ/�ÂÅå¤/�O¯K (1.2) �O�E,5hhhhhhhhhhhhhhhh�Âà

DÑàNk = 1 Nk > 2

Mk = 1 õ�ª�) õ�ª�)[18,19]

Mk > 2 õ�ª�)[21] r NP-J[22]

·��JÑü�Cþ�O�`z�{¦)�� SINR ��z¯K (1.2): 1���

{´°(Ì��Iþ,�{ (Exact Cyclic Coordinate Ascent Algorithm, ECCAA), z�Ú

S�°(¦)f¯K;1���{´�°(Ì��Iþ,�{ (Inexact Cyclic Coordinate

Ascent Algorithm, ICCAA), Ù¥kf¯K�°(¦). Cþ�O�`z�{�Ä�g

�´Äk·�/ò¯K�Cþ©¬, ,� (°(½ö�°() �O/3��¬�m?1`

z/S�, zg`z/S���#Ù¥�¬Cþ, Ù¦¬Cþ�½ØC.

AO/, éu¯K(1.2), òÙCþ©�ü¬un = (un1 , · · · ,unK)Úvn = (vn1 , · · · ,vnK),

Ù¥ n > 0 L«S��I. �½ vn, Ï� SINRk =� uk �', ¤±�±ÏL¦) K �

�¯K

max{uk}

|u†kHkkvnk |2

σ2k‖uk‖2 +

∑j 6=k

|u†kHkjvnj |2

s.t. ‖uk‖2 = 1

(1.4)

��¯K (1.2) � vn �½��). ½Â

Mk(v) =

∑j∈K

Hkjvj (Hkjvj)†

+ σ2kI

−1 , k ∈ K,K¯K (1.4) ��`) unk ��5��þ�Ø� (Linear Minimum Mean Square Error,

LMMSE) �ÂÅå¤/�þ

unk = unk/‖unk‖, uk = Mk(vn)Hkkvnk . (1.5)

Page 6: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

52 4æ¹ 23ò

�½ un, ¯K (1.2) 'uCþ v C�Xe MISO Z6&�¥�`z¯K:

max{v}

mink∈K

{| (unk )

†Hkkvk|2

σ2k +

∑j 6=k | (unk )

†Hkjvj |2

}s.t. ‖vk‖2 6 pk, k ∈ K.

(1.6)

dL 1 ��, ¯K (1.6) �±3õ�ª�mS¦��Û�`).

�{ 1.1 ECCAA

Ú 1 Щz: �½Ð©: v0 ÚÊ�OK ε. - n = 0.

Ú 2 O� un: �½ vn, O��`� LMMSE �ÂÅå¤/�þ un (�ª (1.5)).

Ú 3 O� vn+1: �½ un, ¦)¯K (1.6) ���`�DÑÅå¤/ vn+1.

Ú 4 ª�u�: �G(un,vn+1)−G(un,vn−1)

max {G(un,vn−1), 1}6 ε (1.7)

÷v�, ª��{; ÄK, � n := n+ 1, =Ú 2.

���¹e, =¦z�f¯KÑ°(¦), E,ØU�yCþ�O�{�Âñ5[23].

8I¼ê�1wÜ©±9�å¥Cþ��©5éu�{�Âñ5�~­�. N´�E�

~y²,�8I¼ê�1wÜ©½ö�å¥�CþØ�©�,Cþ�O�{�)�:��

UÂñ���ÿÂ�:.¦+¯K (1.2)�8I¼ê´�1w��8I¼ê¥Cþ uÚ

v ÍÜ3�å, ·�|^Cþ uk �Ñy3 SINRk ¥�AÏ(�y²þã�O�`z

�{ ECCAA �)�:�Âñ�¯K (1.2) ��� KKT (Karush-Kuhn-Tucker) :[24].

½n 1.3 - ECCAA �{¥ ε = 0. ECCAA �)�:� {(un,vn)} ½ª�u¯K(1.2) ��� KKT :, ½§�?¿à: (u, v) ´¯K (1.2) � KKT :.

�?�ÚJp ECCAA �{�O�k�5, ·�3© [25] ¥JÑ���°(�

Cþ�O�`z�{¦)¯K (1.2), ÙzgS��°(/¦)'uCþ v �`z¯K.

äN/, © [25] JÑÏL¦)f¯K

max{v, θ}

θ

s.t.(unk )

†Hkkvk − θ√

σ2k +

∑j 6=k | (unk )

†Hkjvj |2

>√G2n, k ∈ K,

‖vk‖2 6 pk, k ∈ K,

(1.8)

�#Åå¤/�þ vn+1, Ù¥ G2n ´¯K (1.2) 3: (un,vn) ?�¼ê�. 5¿�¯K

(1.8) ´����I5y (Second Order Cone Program, SOCP) ¯K, ¤±�3õ�ª

�mS¦�Ù�Û�`). ��#DÑÅå¤/�þ vn+1, ECCAA I�¦)�X�

SOCP �15¯K, ICCAA �I�¦)�� SOCP ¯K, ¤±4�/ü$zg�#

Cþ vn+1 �E,5. � ECCAA �{aq, ·��y² ICCAA ��ÛÂñ5[25].

'u MIMO Z6&�éÜDÑ/�ÂÅå¤/�OÚõÇ��?�Ú�ó�, �)

�\E,�|µ (~X MIMO 2Â&�!É��ä!�VóXÚ)Ú�O (~XÄÕg·

AÜ�!ÄÕ-¹!ÄÕ-^r'é) �, �ë� [26-39]; 'uCþ�O�`z�{¦)

Ã�Ï&XÚ�O¯K��õó�, �ë� [34,37,38,40-43];'u�O�`z�{�nã

©Ù9Ù3��+�¥�A^, �ë� [3,44,45].

Page 7: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 53

2 MIMO uÿ

2.1 `z�.

MIMO uÿ¯K´y�êiÏ&¥�Ä�¯K��[46,47]. êÆþ, MIMO &��Ñ

\ÑÑ'X�L«�

r = Hx∗ + v, (2.1)

Ù¥ r ∈ Cm ��Âà�Â���þ; H ∈ Cm×n �E�&�Ý; x∗ ∈ Cn L«DÑ�ý¢&Ò�þ; v ∈ Cm �\5D(. XJ¦^ M -Phase-Shift Keying (M -PSK) �N��

ª, @o x∗ �z��©þ x∗i Aáu��k�8Ü, =

x∗i ∈{

exp (iθ) | θ =2jπ

M, j = 0, 1, · · · ,M − 1

}, i = 1, 2, · · · , n,

Ù¥ i�JÜü ÷v i2 = −1.b�&�&E H®�, MIMOuÿ¯KF"ÄuÂ��

&Ò r ¡EDÑ�&Ò x. êÆþ, MIMO uÿ¯K�ï��

minx∈Cn

‖Hx− r‖22s.t. |xi|2 = 1, arg (xi) ∈ A, i = 1, 2, · · · , n,

(2.2)

Ù¥ arg (·) L«Eê�Ë�, A = {0, 2π/M, · · · , 2(M − 1)π/M} .�ª (2.1) ¥�D( v Ñlpd©Ù�, þã4�z�. (2.2) �du��q,�

O�.. N´�y, MIMO uÿ¯K (2.2) ��1:�ê� Mn. ¢Sþ, MIMO uÿ¯

K (2.2) ´r NP-J�[48], ¤±Ø�3õ�ª�m��{U¦)�Ù�Û�`) (Ø�

P=NP).

2.2 �#?Ð

Äu��½tµ (SemiDefinite Relaxation, SDR) ��{´¦)¯K (2.2) �~k�

��{��. Äu SDR ��{Ø�äkõ�ª�m���E,Ý, �3¢S¥�Ðy

ÑéÐ�uÿØèÇ. Äu SDR ��{�Ä�g�´ò¯K (2.2) ktµ��� (E½

ö¢�) SDR, ,�ÏL��{ (�Åz��{½öéuª��{) ���¯K���

�1).

�Ù¥·�X­0�'u MIMOuÿ¯K (2.2) SDR��#?Ð.�Qã�B,·

�Ú\Xe�PÒ: -

Q = H†H, c = −H†r;

- s = [s1, s2, · · · , sM ]T ∈ CM , Ù¥

sj = cos

(2(j − 1)π

M

)+ i sin

(2(j − 1)π

M

), j = 1, 2, · · · ,M ;

- sR = Re(s), sI = Im(s), Ù¥ÎÒ Re(·) Ú Im(·) ©OL«�AEÝ/E�þ/Eê

�¢ÜÚJÜ.

Ú\ n× n EÝ X = xx†, ¯K (2.2) ��dC/�

minx,X

Q •X + 2Re(c†x)

Page 8: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

54 4æ¹ 23ò

s.t. Xi,i = 1, i = 1, · · · , n,arg (xi) ∈ A, i = 1, · · · , n,X = xx†,

Ù¥Cþ x ∈ Cn, X ∈ Cn×n. ¯K (2.2) �DÚ (��þ��) E SDR ´

minx,X

Q •X + 2Re(c†x)

s.t. Xi,i = 1, i = 1, · · · , n,

X � xx†,

(2.3)

Ù¥Cþ x ∈ Cn, X ∈ Cn×n. duÙé�AÏ(�, S:�{�3 O(n3.5

)�mS¦�

SDR (2.3)��`)[49].ê�¢�L²,�¥)è (Sphere Decoding)�{[50-52]�',Äu

SDR��{3ØèÇ5UÚ�mE,5þk�~Ð�²ï[49]. ¥)è�{´¦) MIMO

uÿ¯K (2.2) �Ͷ��{��. lêÆ�Ý, ¥)è�{´�«¿©|^¯K (2.2)

AÏ(��©|½.�{, ¤±Ù�±�y¦�¯K (2.2) ��Û�`), �´¥)è�

{���Ú²þE,ÝÑ´�ê�[48,53].

'�ª (2.2) Ú (2.3) ��, ª(2.3) ò�å X = xx† tµ��å X � xx† ¿¿K

¤k�Ë��å arg (xi) ∈ A, i = 1, 2, · · · , n. N´�y

X � xx† ⇐⇒[

1 x†

x X

]� 0.

�JpþãE SDR ��þ, ·�3© [54] ¥JÑ3ÙÄ:þV\k�Ë��[55,56]. ä

N/,�â x�½Â, n�¥ xi A��u�þ s¥�,��©þ. ÏLtµþã�|Ü

�å, ·���Xe\r�E SDR:

minx,X,t

Q •X + 2Re(c†x)

s.t. Xi,i = 1, i = 1, · · · , n,X � xx†,

x = St,

At = en, t > 0,

(2.4)

Ù¥Cþ x ∈ Cn, X ∈ Cn×n, t ∈ RnM ,

S = In ⊗ sT, A = In ⊗ eTM . (2.5)

3ª (2.4) ¥, t = [tT1 , tT2 , · · · , tTn]T Ú ti = [ti,1, ti,2, · · · , ti,M ]T ∈ RM .

©z [54] y²þãE SDR ÚXe�¢ SDR �d

miny,Y

Q •Y + 2cTy

s.t. Yi,i + Yn+i,n+i = 1, i = 1, 2, · · · , n,

Y � yyT,

(2.6)

Page 9: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 55

Ù¥Cþ y ∈ R2n, Y ∈ R2n×2n,

Q =

[Re(Q) −Im(Q)

Im(Q) Re(Q)

], c =

[Re(c)

Im(c)

], y =

[Re(x)

Im(x)

]. (2.7)

Äuª (2.6), ©z [54] ?�ÚJÑ��\r�¢ SDR. ½Â 3× 3 �Ý

Yi =

1 yi yn+i

yi Yi,i Yi,n+i

yn+i Yn+i,i Yn+i,n+i

, i = 1, 2, · · · , n (2.8)

Ú

Pj =

1

Re(sj)

Im(sj)

[ 1 Re(sj) Im(sj) ] , j = 1, 2, · · · ,M. (2.9)

�⪠(2.7) ¥ y �½Â, n�¥ª (2.8) ¥½Â� Yi A��u Pj (j = 1, 2, · · · ,M) ¥

�,��, =

Yi ∈ {P1, P2, · · · ,PM} , i = 1, 2, · · · , n.

ÏLtµþã�|Ü�å±9¿K�P{��å,©z [54]JÑXe�'u MIMOu

ÿ¯K (2.2) � SDR:

miny,Y,t

Q •Y + 2cTy

s.t. Yi =

M∑j=1

ti,jPj , i = 1, 2, · · · , n,

At = en, t > 0,

Y � yyT,

(2.10)

Ù¥Cþ y ∈ R2n, Y ∈ R2n×2n, t ∈ RMn, Q Ú c 3ª (2.7) ¥�Ñ, Yi 3ª (2.8) ¥�

Ñ, Pj 3ª (2.9)¥�Ñ, A 3ª (2.5)¥�Ñ.du Yi �é¡5,�å Yi =∑Mj=1 ti,jPj

��d/L«�Xe 5 ��5�å:

yi = tTi sR, yn+i = tTi sI , Yi,i = sTRDiag(ti)sR,

Yn+i,n+i = sTI Diag(ti)sI , Yi,n+i = sTRDiag(ti)sI .

(2.11)

'u MIMOuÿ¯K (2.2)� SDR,��­��nدK´Ù3�o^�e´;�,

=3�o^�e¦)�A� SDR�±���¯K��`).'u M = 2� SDR;5�

(Jéõ, �'(J�ë�©z [49,57-60]. AO/, ©z [60] y²Xe(Ø.

½n 2.1 éu M = 2, XJª (2.1) ¥�ëê H Ú v ÷v

λmin

(Re(H†H)

)> ‖Re(H†v)‖∞, (2.12)

Ù¥ λmin (·) L«�'Ý���A��, KXe¢ SDR 'u¯K (2.2) ´;�:

minx,X

Re(Q) •X + 2Re(c)Tx

s.t. Xi,i = 1, i = 1, 2, · · · , n,X � xx†.

(2.13)

Page 10: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

56 4æ¹ 23ò

'u M > 2 � SDR ;5©Û�(J3©z¥�~��. AO/, ©z [60] ¥JÑ

��úm¯K, =éu M > 2 ��/, ´Ä�3'u¯K (2.2) ;� SDR. ·��C3

©z [54] ¥£�ù�úm¯K, y²ª (2.4) Ú (2.10) ¥� SDR Ñ´;�. ùü�

SDR �´'u�� MIMO uÿ¯K (2.2) ®��@�3nØþk;5�y� SDR. ä

N(JXe.

½n 2.2 éu?¿� M > 3, XJª (2.1) ¥�ëê H Ú v ÷v

λmin

(H†H

)sin( πM

)>∥∥H†v∥∥∞ , (2.14)

Kª (2.4) Ú (2.10) ¥� SDR 'u¯K (2.2) Ñ´;�.

'uª (2.4)Ú (2.10)¥� SDR±9½n 2.2��?ØXe.Äk, � M = 2�,

(2.9) ¥½Â�Ýòz�

P0 =

1 1 0

1 1 0

0 0 0

Ú P1 =

1 −1 0

−1 1 0

0 0 0

.¤± (2.11) ¥��5�åòz�

Yi,i = 1, yi = ti,1 − ti,2, Ú yn+i = Yn+i,i = Yn+i,n+i = 0.

�ÑÝ Y ¥�"¬, N´�yª (2.10)¥� SDRòz�ª (2.13)¥� SDR. ¤±�

M = 2 �, SDR (2.10) 3^�ª (2.12) ¤á�'u¯K (2.2) �´;�.

Ùg, ª(2.12) Ú (2.14) ¥� (¿©) ^�ÑkéÐ�ó§ÚÔn)º. ±ª (2.14)

�~: (2.14) ¥�� λmin

(H†H

)L�&��Ð�, �&�Ý H ¥���O'��

�, λmin

(H†H

)��, ^� (2.14) �J÷v; (2.14) ¥�� sin (π/M) �x M XÛK

�¯K�JÝ, M ��, ��ü�ÎÒ�ål 2 sin (π/M) ��, ^� (2.14) �J÷v;

(2.14) ¥��∥∥H†v∥∥∞ �xD(�K�, D( v é&�Ý H ���mK��� (=∥∥H†v∥∥∞ ��),^� (2.14)�J÷v.{ ó�,�N���ê��!&���!D( (é

&�Ý��mK�)��, (2.14)¥�^��J÷v;�� (2.14)¥�^��N´÷v.

2g, ·�?Ø8c���©¥�Ñ� SDR �m±9�©z [61] ¥ SDR �'X.

N´�y, SDR (2.10)' SDR (2.4)r, SDR (2.4)' SDR (2.3)Ú (2.6)r, SDR (2.3)

Ú (2.6) �d. ©z [61] ¥JÑ� SDR ´ÄuXe�*: éu x∗ ¥�?Û x∗i Ñ�3

ti ∈ RM ¦�Ù¥�k��©þ� 1 Ù{©þÑ� 0 �÷v x∗i = tTi s. Äud, ©z [61]

ò¯K (2.2) �d��

mint

tTQt + 2cTt

s.t. At = en, t > 0,

t ∈ {0, 1}Mn,

Ù¥

Q = STQS, c = STc, S =

(Re(S)

Im(S)

). (2.15)

Page 11: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 57

Äuþã�dC/¿|^�þ t �AÏ(�, ©z [61] JÑXe�'u¯K (2.2) �

SDR∗:

mint,T

Q •T + 2cTt

s.t. At = en, t > 0,

T � ttT,

Ti,i = Diag(ti), i = 1, 2, · · · , n,

(2.16)

Ù¥Cþ t ∈ RMn, T ∈ RMn×Mn, Ti,i ∈ RM×M ´Ý T �1 i �é�¬. �����

å Ti,i = Diag(ti) �¦ Ti,i ´��é�Ý�Ùé���� ti. ÃØ´3/ª�´í�

�ªþ, SDR (2.10)Ú SDR (2.16)ÑØ��.k¿g�´,·�3©z [62]¥y²ùü

� SDR �m��d'X.

½n 2.3 SDR (2.10) Ú SDR (2.16) ��18�m÷vXe�'X:

STST = Y Ú St = y, (2.17)

Ù¥ S 3 (2.15) ¥�Ñ. ¤± SDR (2.10) Ú SDR (2.16) ´�d�.

þã^� (2.17)�y�A�ü� SDR�8I¼ê���.(ܽn 2.2Ú 2.3,·�

��: � (2.1) ¥�ëê H Ú v ÷v (2.14) �, SDR (2.16) 'u¯K (2.2) ´;�. ½

n 2.3 Ó��« SDR (2.16) ¥äk�½P{5. l (2.17) ¥�±��, p��m (T, t)

¥�k^&E3$��m (y,Y, t)¥Ñ���±.AO/, SDR (2.16)¥ÝCþ��

ê´ Mn×Mn SDR (2.10) ¥ÝCþ��ê´ 2n× 2n. ¤±¦) SDR (2.10) ò¬

'¦) SDR (2.16) 3ê�þk��õ (AO´� M ��u 2 �).

Äuþã\r� SDR,·��uÐk��©|½.�{¦)MIMOuÿ¯K (2.2).

'uù�¡�?Ð,�ë�©z [63].���J�´,3�^���¹e,~XÑ\ÚÑÑ

�ê8��½XÚ�&D'�$�,·�uÐ�Äu\r SDR�©|½.�{'¥)è

�{3¦)�Ýþkêþ?�Jp. ·�uÐ�©|½.�{�±í2^5¦)Xe�

����àE�g5y¯K:

minx∈Cn

1

2x†Qx + Re

(c†x)

s.t. `i 6 |xi| 6 ui, i = 1, 2, · · · , n,arg (xi) ∈ Ai, i = 1, 2, · · · , n,

Ù¥ |xi| L«Eê xi �ÌÝ, ui Ú `i (i = 1, 2, · · · , n) ´ 2n �¢ê÷v ui > `i > 0,

Ai (i = 1, 2, · · · , n) ´ n �lÑ/ëY�8Ü.

'u¦) MIMO uÿ¯K (2.2) �Ù¦k��{!�#?б9nã, �ë�©z

[47,48,50-53,63-68]; 'u��½5y/��½tµ9Ù3&Ò?nÚÃ�Ï&¥A^�n

ãÚ�#?Ð, �ë�©z [11,69,70],

∗SDR (2.16) Ú [61] ¥� SDR (Model III) ���«O3u SDR (Model III) ¥|^z��þ ti ¦Ú�u 1 �5�����Cþ.

Page 12: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

58 4æ¹ 23ò

3 ( å �

Ã�Ï&XÚ�O¥�Nõ¯K8�(.Ñ´`z¯K. |^`z��{(ܯK

�AÏ(�¦)Ú?nÃ�Ï&XÚ�O¯K´Cc5Æâ.ïÄ�9:. �©X­0

�üaÃ�Ï&XÚ�O¥�¯K, =õ^rZ6&�����OKe�éÜDÑ/�

ÂÅå¤/�O¯KÚ MIMO uÿ¯K, Ì�0�ùüa¯K�`z�.±9|^`

zEâ(ܯK�AÏ(�3¦)Ú?nþãüa¯K��#?Ð.

Cc5,15�(5G)£ÄÏ&XÚ®¤�­.��SÆâ.Úó�.�ïÄ9:[71,72].

�'u�c�£ÄÏ&XÚ, 5G ØI�?�ÚJp^rN��Ç, �I�|±pë

��ݱ¢y£Äêâ�ÖþZ�O�!DÑà��Âà�Ï&�òü$ 90%!�¢y

ªÌ�ÇÚõÇ�ÇJ,���8I. �¢yd8I, 5G £ÄÏ&3Ã�DÑEâÚÃ

��äe��¡?1�·5�EâM#.ùC���¡U¢yþã8I,,��¡

��ïÄö�JÑ#��ä]Ô5�Ä:nØÚ'��ƯK. ù¯K¥éõÑ´

`z¯K, ~X�Ã��\� (Cloud Radio Access Network) ¥���`z[73,74]!�5

�U�� (Massive MIMO) ¥� 1 'Aý?è (One-Bit Precoding) �O[75,76]!ÑÖ

���ä��ä�¡ (Network Slicing)[77,78]!Ôé�¥��Å�\uÿ (Random Access

Detection)[79,80] �, )ûù¯K�Ì�(JÚ]Ô3u�Op�Ø%ûü`z�{é

Ï&] ?1Ä�©�±·A¯�Cz�Ã��¸! r±96þG�. o ó�, `z

�{òUY3 5G £ÄÏ&XÚ�O¥�üØ�O��­��Ú.

�u�öY²k�, �©J�k¢¦Ú ¹�?, �Öö1µ��.

��

�©¤�9�ö�ïÄó�Ñ´�Ü�ö�å�¤�. AO/, �©'u MIMO Z

6&�����OKe�éÜDÑ/�ÂÅå¤/�O�ó�Ì�´Ú�ö����Í

ôïÄÚ�l¥©�Æ (�e) Û���ÇÜ��¤�; �©'u MIMO uÿ¯K�

�½tµ�ó�Ì�´Úu�>å�Æ´§Æ¬Ü��¤�. 3d�¤kÜ�ö�¿L

«a�. �ö�/dŬAOa�¥I�Æ�êÆ�XÚ�ÆïÄ��æ��¬Ú`z

�K|�P�ÓÆ�.

ë � © z

[1] �æ�, �©Õ. �`znØ��{ [M]. �®µ�ÆÑ��, 1997.

[2] Nocedal J, Wright S J. Numerical Optimization [M]. New York: Springer Science+Business

Media, 2006.

[3] Bertsekas D. Nonlinear Programming [M]. Belmont: Athena Scientific, 1999.

[4] Tse D, Viswanath P. Fundamental of Wireless Communications [M]. New York: Cambridge

University Press, 2005.

[5] Cover T M, Thomas J A. Elements of Information Theory [M]. New York: John Wiley & Sons,

Inc., 2006.

[6] Goldsmith A. Wireless Communications [M]. New York: Cambridge University Press, 2006.

[7] Shannon C E. A mathematical theory of communication [J]. The Bell System Technical Journal,

1948, 5: 379–423, 623-656.

Page 13: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 59

[8] Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-

Completeness [M]. San Francisco: W. H. Freeman and Company, 1979.

[9] Luo Z Q, Yu W. An introduction to convex optimization for communications and signal pro-

cessing [J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1426-1438.

[10] Luo Z Q. Applications of convex optimization in signal processing and digital communication

[J]. Mathematical Programming, 2003, 97(1-2): 177-207.

[11] Luo Z Q, Ma W K, So A M C, et al. Semidefinite relaxation of quadratic optimization problems

[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20-34.

[12] Gershman A B, Sidiropoulos N D, Shahbazpanahi S, et al. Convex optimization-based beam-

forming [J]. IEEE Signal Processing Magazine, 2010, 27(3): 62-75.

[13] Bjornson E, Jorswieck E. Optimal resource allocation in coordinated multi-cell systems [J].

Foundations and Trends R© in Communications and Information Theory, 2013, 9(2–3): 113-

381.

[14] Hong M, Luo Z Q. Signal processing and optimal resource allocation for the interference channel

[M]//Academic Press Library in Signal Processing. Elsevier, 2014, 409-469.

[15] Gesbert D, Hanly S, Huang H, et al. Multi-cell MIMO cooperative networks: A new look at

interference [J]. IEEE Journal on Selected Areas in Communications, 2010, 28(9): 1380-1408.

[16] 4æ¹. Ã�Ï&¥��`] ©�)E,5©Û��{�O [J]. ¥I�Æ: êÆ, 2013, 43(10):

953-964.

[17] Schubert M, Boche H. Solution of the multiuser downlink beamforming problem with individual

SINR constraints [J]. IEEE Transactions on Vehicular Technology, 2004, 53(1): 18-28.

[18] Wiesel A, Eldar Y C, Shamai S. Linear precoding via conic optimization for fixed MIMO

receivers [J]. IEEE Transactions on Signal Processing, 2006, 54(1): 161-176.

[19] Liu Y F, Dai Y H, Luo Z Q. Coordinated beamforming for MISO interference channel: Com-

plexity analysis and efficient algorithms [J]. IEEE Transactions on Signal Processing, 2011,

59(3): 1142-1157.

[20] Xia Y. A survey of hidden convex optimization [J]. 2019. Available: https://arxiv.org/abs/

1902.10921

[21] Liu Y F, Hong M, Dai Y H. Max-min fairness linear transceiver design problem for a multi-

user SIMO interference channel is polynomial time solvable [J]. IEEE Signal Processing Letters,

2013, 20(1): 27-30.

[22] Liu Y F. Dynamic spectrum management: A complete complexity characterization [J]. IEEE

Transactions on Information Theory, 2017, 63(1): 392-403.

[23] Powell M J. On search directions for minimization algorithms [J]. Mathematical Programming,

1973, 4(1): 193-201.

[24] Liu Y F, Dai Y H, Luo Z Q. Max-min fairness linear transceiver design for a multi-user MIMO

interference channel [C]//Proceedings of IEEE International Conference on Communications

(ICC), 2011, 1-5.

[25] Liu Y F, Dai Y H, Luo Z Q. Max-min fairness linear transceiver design for a multi-user MIMO

interference channel [J]. IEEE Transactions on Signal Processing, 2013, 61(9): 2413-2423.

[26] Yu W, Kwon T, Shin C. Adaptive resource allocation in cooperative cellular networks [M]//

Cooperative Cellular Wireless Networks. New York: Cambridge University Press, 2010, 233-

256.

[27] Zhang J, Chen R, Andrews J G, et al. Networked MIMO with clustered linear precoding [J].

IEEE Transactions on Wireless Communications, 2009, 8(4): 1910-1921.

[28] Chen E, Tao M, Liu Y F. Joint base station clustering and beamforming for non-orthogonal

multicast and unicast transmission with backhaul constraints [J]. IEEE Transactions on Wire-

less Communications, 2018, 17(9): 6265-6279.

Page 14: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

60 4æ¹ 23ò

[29] Ng C T, Huang H. Linear precoding in cooperative MIMO cellular networks with limited

coordination clusters [J]. IEEE Journal on Selected Areas in Communications, 2010, 28(9):

1446-1454.

[30] Hong M, Sun R, Baligh H, et al. Joint base station clustering and beamformer design for partial

coordinated transmission in heterogeneous networks [J]. IEEE Journal on Selected Areas in

Communications, 2013, 31(2): 226-240.

[31] Dai B, Yu W. Sparse beamforming and user-centric clustering for downlink cloud radio access

network [J]. IEEE Access, 2014, 2: 1326-1339.

[32] Shi Y, Zhang J, Letaief K. Group sparse beamforming for green cloud-RAN [J]. IEEE Trans-

actions on Wireless Communications, 2014, 13(5): 2809-2823.

[33] Tao M, Chen E, Zhou H, et al. Content-centric sparse multicast beamforming for cache-enabled

cloud RAN [J]. IEEE Transactions on Wireless Communications, 2016, 15(9): 6118-6131.

[34] Liao W C, Hong M, Liu Y F, et al. Base station activation and linear transceiver design

for optimal resource management in heterogeneous networks [J]. IEEE Transactions on Signal

Processing, 2014, 62(15): 3939-3952.

[35] Shen K, Yu W. Distributed pricing-based user association for downlink heterogeneous cellular

networks [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1100-1113.

[36] Shen K, Liu Y F, Ding D Y, et al. Flexible multiple base station association and activation for

downlink heterogeneous networks [J]. IEEE Signal Processing Letters, 2017, 24(10): 1498-1502.

[37] Sanjabi M, Razaviyayn M, Luo Z Q. Optimal joint base station assignment and beamforming for

heterogeneous networks [J]. IEEE Transactions on Signal Processing, 2014, 62(8): 1950-1961.

[38] Shi Q, Razaviyayn M, Luo Z Q, et al. An iteratively weighted MMSE approach to distributed

sum-utility maximization for a MIMO interfering broadcast channel [J]. IEEE Transactions on

Signal Processing, 2011, 59(9): 4331-4340.

[39] Zhang X, Chang T H, Liu Y F, et al. Max-min fairness user scheduling and power allocation

in full-duplex OFDMA systems [J]. IEEE Transactions on Wireless Communications, 2019,

18(6): 3078õ3092.

[40] Codreanu M, Tolli A, Juntti M, et al. Joint design of Tx-Rx beamformers in MIMO downlink

channel [J]. IEEE Transactions on Signal Processing, 2007, 55(9): 4639-4655.

[41] Chang T H, Liu Y F, Lin S C. QoS-based linear transceiver optimization for full-duplex multi-

user communications [J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2300-2313.

[42] Li Q, Hong M, Wai H T, et al. Transmit solutions for MIMO wiretap channels using alternating

optimization [J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9): 1714-1727.

[43] Hong M, Li Q, Liu Y F. Decomposition by successive convex approximation: A unifying ap-

proach for linear transceiver design in heterogeneous networks [J]. IEEE Transactions on Wire-

less Communications, 2016, 15(2): 1377-1392.

[44] Wright S J. Coordinate descent algorithms [J]. Mathematical Programming, 2015, 151(1): 3-34.

[45] Hong M, Razaviyayn M, Luo Z Q, et al. A unified algorithmic framework for block-structured

optimization involving big data: With applications in machine learning and signal processing

[J]. IEEE Signal Processing Magazine, 2016, 33(1): 57-77.

[46] Verdu S. Multiuser Detection [M]. New York: Cambridge University Press, 1998.

[47] Yang S, Hanzo L. Fifty years of MIMO detection: The road to large-scale MIMOs [J]. IEEE

Communication Surveys & Tutorials, 2015, 17(4): 1941-1988.

[48] Verdu S. Computational complexity of optimum multiuser detection [J]. Algorithmica, 1989,

4(1-4): 303-312.

[49] Kisialiou M, Luo X, Luo Z Q. Efficient implementation of quasi-maximum-likelihood detection

based on semidefinite relaxation [J]. IEEE Transactions on Signal Processing, 2009, 57(12):

4811-4822.

Page 15: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

3Ï Ã�Ï&XÚ�O¥�ü�`z¯KÚ�'`z�{ 61

[50] Fincke U, Pohst M. Improved methods for calculating vectors of short length in a lattice,

including a complexity analysis [J]. Mathematics of Computation, 1985, 44(170): 463-471.

[51] Viterbo E, Boutros J. A universal lattice code decoder for fading channels [J]. IEEE Transac-

tions on Information Theory, 1999, 45(5): 1639-1642.

[52] Damen M O, Gamal H E, Caire G. On maximum-likelihood detection and the search for the

closest lattice point [J]. IEEE Transactions on Information Theory, 2003, 49(10): 2389-2402.

[53] Jalden J, Ottersten B. On the complexity of sphere decoding in digital communications [J].

IEEE Transactions on Signal Processing, 2005, 53(4): 1474-1484.

[54] Lu C, Liu Y F, Zhang W Q, et al. Tightness of a new and enhanced semidefinite relaxation

for MIMO detection [J]. SIAM Journal on Optimization, 2019, 29(1): 719-742.

[55] Lu C, Liu Y F. An efficient global algorithm for single-group multicast beamforming [J]. IEEE

Transactions on Signal Processing, 2017, 65(14): 3761-3774.

[56] Lu C, Deng Z, Zhang W Q, et al. Argument division based branch-and-bound algorithm for

unit-modulus constrained complex quadratic programming [J]. Journal of Global Optimization,

2018, 70(1): 171-187.

[57] Jalden J. Detection for multiple input multiple output channels: Analysis of sphere decoding

and semidefinite relaxation. Ph.D. thesis. Stockholm: KTH, 2006.

[58] Jalden J, Martin C, Ottersten B. Semidefinite programming for detection in linear systems–

Optimality conditions and space-time decoding [C]//Proceedings of IEEE International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP), 2011, 9-12.

[59] Kisialiou M, Luo Z Q. Probabilistic analysis of semidefinite relaxation for binary quadratic

minimization [J]. SIAM Journal on Optimization, 2010, 20(4): 1906-1922.

[60] So A M C. Probabilistic analysis of the semidefinite relaxation detector in digital communica-

tions [C]//Proceedings of twenty-first annual ACM-SIAM symposium on Discrete Algorithms

(SODA), 2010, 698-711.

[61] Mobasher A, Taherzadeh M, Sotirov R, et al. A near-maximum-likelihood decoding algorithm

for MIMO systems based on semi-definite programming [J]. IEEE Transactions on Information

Theory, 2007, 53(11): 3869-3886.

[62] Liu Y F, Xu Z, Lu C. On the equivalence of semidifinite relaxations for MIMO detection with

general constellations [C]//Proceedings of ICASSP, 2019, 4549-4553.

[63] Lu C, Liu Y F, Zhou J. An enhanced SDR based global algorithm for nonconvex complex

quadratic programs with signal processing applications [J]. arXiv:1902.04287.

[64] Liu H, Yue M C, So A M C, et al. A discrete first-order method for large-scale MIMO de-

tection with provable guarantees [C]//Proceedings of IEEE International Workshop on Signal

Processing Advances in Wireless Communications (SPAWC), 2017, 669-673.

[65] Burer S, Monteiro R D, Zhang Y. Rank-two relaxation heuristics for max-cut and other binary

quadratic programs [J]. SIAM Journal on Optimization, 2002, 12(2): 503-521.

[66] Luo Z Q, Luo X, Kisialiou M. An efficient quasi-maximum likelihood decoder for PSK signals

[C]//Proceedings of ICASSP, 2003, 561-564.

[67] Pan J, Ma W K, Jalden J. MIMO detection by Lagrangian dual maximum-likelihood relaxation:

Reinterpreting regularized lattice decoding [J]. IEEE Transactions on Signal Processing, 2014,

62(2): 511-524.

[68] Lu C, Liu Y F, Zhou J. An efficient global algorithm for nonconvex complex quadratic prob-

lems with applications in wireless communications [C]//Proceedings of IEEE/CIC International

Conference on Communications in China (ICCC), 2017, 1-5.

[69] Vandenberghe L, Boyd S. Semidefinite programming [J]. SIAM Review, 1996, 38(1): 49-95.

[70] Pu W, Liu Y F, Yan J, et al. Optimal estimation of sensor biases for asynchronous multi-sensor

data fusion [J]. Mathematical Programming, 2018, 170(1): 357-386.

Page 16: Marconi) (Claude Elwood Shannon)lsec.cc.ac.cn/~yafliu/ORT_Review_Paper.pdf · (Claude Elwood Shannon) uL K‘\A Mathematical Theory of Communication"˙Ø ...

62 4æ¹ 23ò

[71] Andrews J G, Buzzi S, Choi W, et al. What will 5G be? [J]. IEEE Journal on Selected Areas

in Communications, 2014, 32(6): 1065-1082.

[72] c�m,��©,pÜÛ,�. 5G£ÄÏ&uЪ³�eZ'�Eâ [J].¥I�Æ: &E�Æ, 2014,

44: 551–563.

[73] Tao M, Chen E, Yu W, et al. Cache-enabled cloud radio access networks [M]// Wireless Edge

Caching: Modeling, Analysis and Optimization, Cambridge University Press, 2019.

[74] Dai B, Liu Y F, Yu W. Optimized base-station cache allocation for cloud radio access network

with multicast backhaul [J]. IEEE Journal on Selected Areas in Communications, 2018, 36(8):

1737-1750.

[75] Jacobsson S, Durisi G, Coldrey M, et al. Quantized precoding for massive MU-MIMO [J].

IEEE Transactions on Communications, 2017, 65(11): 4670-4684.

[76] Sohrabi F, Liu Y F, Yu W. One-bit precoding and constellation range design for massive MIMO

with QAM signaling [J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(3):

557-570.

[77] Zhang N, Liu Y F, Farmanbar H, et al. Network slicing for service-oriented networks under

resource constraints [J]. IEEE Journal on Selected Areas in Communications, 2017, 35(11):

2512-2521.

[78] Domenico A D, Liu Y F, Yu W. Optimal computational resource allocation and network slic-

ing deployment in 5G hybrid C-RAN [C]// Proceedings of IEEE International Conference on

Communications (ICC), 2019.

[79] Liu L, Larsson E G, Yu W, et al. Sparse signal processing for grant-free massive connectivity:

A future paradigm for random access protocols in the Internet of Things [J]. IEEE Signal

Processing Magazine, 2018, 35(5): 88-99.

[80] Chen Z, Sohrabi F, Liu Y F, et al. Covariance based joint activity and data detection for massive

random access with massive MIMO [C]// Proceedings of IEEE International Conference on

Communications (ICC), 2019.