March 7, 2012 Northwestern University

65
DEVELOPMENT EVELOPMENT ,C ,CALIBRATION ALIBRATION AND AND APPLICATION PPLICATION OF OF SIMULATION IMULATIONBASED ASED D YNAMIC YNAMIC TRAFFIC RAFFIC ASSIGNMENT SSIGNMENT TO TO GREATER REATER CHICAGO HICAGO NETWORK ETWORK USING SING DYNASMART DYNASMARTP Ali Zockaie K. USING SING DYNASMART DYNASMARTP Meead Saberi Hani S. Mahmassani March 7, 2012 Northwestern University 1

Transcript of March 7, 2012 Northwestern University

Page 1: March 7, 2012 Northwestern University

DDEVELOPMENTEVELOPMENT, C, CALIBRATIONALIBRATION ANDAND AAPPLICATIONPPLICATIONOFOF SSIMULATIONIMULATION‐‐BBASEDASED DDYNAMICYNAMIC TTRAFFICRAFFICAASSIGNMENTSSIGNMENT TOTO GGREATERREATER CCHICAGOHICAGO NNETWORKETWORKUUSINGSING DYNASMARTDYNASMART‐‐PP

Ali Zockaie K.

UUSINGSING DYNASMARTDYNASMART‐‐PP

Meead SaberiHani S. Mahmassani

March 7, 2012

Northwestern University1

Page 2: March 7, 2012 Northwestern University

OutlineOutlineIntroduction to Simulation-based DTA

Greater Chicago NetworkGreater Chicago Network

Calibration and Validation of DYNASMART-PSupply side

Demand side

ApplicationsWeather-responsive traffic estimation and predictionp p

Congestion management2

Page 3: March 7, 2012 Northwestern University

Introduction to Simulation-based DTA

3

Page 4: March 7, 2012 Northwestern University

Introduction to Simulation-based DTA

DYNASMARTDYNASMART‐‐PP

What is DYNASMART‐P?DYDY i NN t k AA i t SSi l ti MM d l–– DYDYnamic NNetwork AAssignment‐SSimulation MModel for AAdvanced RRoadway TTelematics (PPlanning version)version)

– It is an intelligent transportation network design, planning, evaluation, and traffic simulation tool.planning, evaluation, and traffic simulation tool.

4

Page 5: March 7, 2012 Northwestern University

State of Practice in Network ModelingState of Practice in Network ModelingIntroduction to Simulation-based DTA

Most agencies use static assignment models, often lacking formal equilibration, with very limited behavioral sensitivity to congestion‐related 

( )

State of Practice in Network ModelingState of Practice in Network Modeling

phenomena (incl. reliability)

Some agencies use traffic micro‐simulation models downstream from assignment model output primarily for local impact assessmentassignment  model output, primarily for local impact assessment

Time‐dependent (dynamic) assignment models continuing to break out of University research into actual application– market growing stillUniversity research into actual application market growing, still fragmented, with competing claims and absence of standards:

existing static players adding dynamic simulation‐based capabilities,

existing traffic micro‐simulation tools adding assignment (route choice) capability, often in conjunction with meso‐simulation

standalone simulation‐based DTA tools

5

Page 6: March 7, 2012 Northwestern University

St t f P ti i N t k M d liSt t f P ti i N t k M d li

Introduction to Simulation-based DTA

State of Practice in Network ModelingState of Practice in Network ModelingApplications to date complementary, not substitutes, for static 

i i li i f i l l i kassignment; primary applications for operational planning purposes:  work zones, evacuation, ITS deployment, HOT lanes, network resilience, etc…Existing commercial software differs widely in capabilities, reliability and f ll dfeatures; not well tested.

Equilibration for dynamic models not well understood, and often not performedperformed

Dominant features, first introduced by DYNASMART‐P in mid 90’s:

Micro‐assignment of travelers; ability to apply disaggregate demand modelsMicro assignment of travelers; ability to apply disaggregate demand models

Meso‐simulation for traffic flow propagation:  move individual entities, but according to traffic flow relations among averages (macroscopic speed‐density relations):  faster execution, easier calibration

Ability to load trip chains (first tool with this capability, essential to integrate with activity‐based models)

6

Page 7: March 7, 2012 Northwestern University

G t Chi N t kGreater Chicago Network

7

Page 8: March 7, 2012 Northwestern University

D t O iD t O i

Greater Chicago Network

Data OverviewData Overview• Five categories of data required for DYNASMART‐Pg q

– Network data – Control data – Demand data – Scenario data – System dataSystem data 

First three groups are critical for setting up the network 

Last two group are critical for scenario analysis

8

Page 9: March 7, 2012 Northwestern University

Sources of dataSources of dataGreater Chicago Network

Sources of data Sources of data Network:CMAP TransCAD network

converted to DYNASMART‐P using DYNASMART‐P utility (DynaBuilder)

Control:Signal locations based on TranCAD network Other control locations inferred by spatial reasoning logic confirmed by GoogleOther control locations inferred by spatial reasoning logic, confirmed by Google Earth Timing plans have been coded in DSPEd– Actual timing plans not available

A t t d C t l i l ti i l ifi d b d f lt– Actuated Control signal timing plans specified by default

Transit:Bus routes and frequenciesq– Not implemented to this network, yet

Demand:Static demand matrix provided on daily basis and hourly factorsStatic demand matrix provided on daily basis and hourly factors

Link counts obtained from IDOT loop detectors (in 5 minutes intervals) 9

Page 10: March 7, 2012 Northwestern University

• ~40,000 links – 144 links are tolled

Greater Chicago Network

144 links are tolled– 1,400 freeways– 200 highways– 2,000 ramps– (96 of them are metered)– 36,400 arterials

• ~13,000 nodes – 2155 signalized intersections

• 1,961 zones – 1,944 internal– 17 external

• Demand period– 5am ‐10am hourly demand– 355 unique link counts– Observation Interval: 5 min

10

Page 11: March 7, 2012 Northwestern University

Calibration and Validation of

DYNASMART-P

11

Page 12: March 7, 2012 Northwestern University

i f ffi d f ffi fl lib ii f ffi d f ffi fl lib i

Calibration and Validation of DYNASMART-P I- Supply side

Location of traffic data for traffic flow calibrationLocation of traffic data for traffic flow calibration

Page 13: March 7, 2012 Northwestern University

Calibrating parameters in the traffic flow model /Calibrating parameters in the traffic flow model /

Calibration and Validation of DYNASMART-P I- Supply side

Calibrating parameters in the traffic flow model / Calibrating parameters in the traffic flow model / ProcedureProcedure

Step 1 Plot the speed vs density graph and set initialStep 1. Plot the speed vs. density graph, and set initialvalues for all the parameters, i.e. breakpoint density (kbp),speed‐intercept (vf), minimum speed (v0), jam density(kjam), and the shape parameter (α), based on observations.

Step 2. For each observed density (ki), calculate thepredicted speed value and the parameters initialized inStep 1.Step 1.

Step 3. Compute the squared difference betweenobserved speed value (vi) and predicted speed value, for

h d i d h d h i Modified Greenshieldseach data point, and sum the squared error over the entiredata set.

Step 4. Minimize the sum of squared error obtained inp qStep 3, by changing the values of model parameters.

Page 14: March 7, 2012 Northwestern University

Calibrating parameters in the traffic flow model forCalibrating parameters in the traffic flow model for

Calibration and Validation of DYNASMART-P I- Supply side

Calibrating parameters in the traffic flow model for Calibrating parameters in the traffic flow model for different weather conditionsdifferent weather conditions

Speed‐Density Calibrated RelationshipSpeed‐Density Data

Page 15: March 7, 2012 Northwestern University

TimeTime‐‐dependent OD Estimation / Methodologydependent OD Estimation / Methodology

Calibration and Validation of DYNASMART-P II- Demand side

TimeTime dependent OD Estimation / Methodologydependent OD Estimation / Methodology

Input Bi‐level Optimization output

Static/historical OD matrix for the

Minimizing deviation from static demand and

Upper Level Problem

matrix for the planning time 

horizon

static demand and observation with specific weights by changing 

estimated demand given link proportions Time‐dependent OD 

matrices over the time horizon with a chosen time interval

Time‐dependent traffic counts on 

selected

Finding link proportions by DTA given a time dependent 

OD

chosen time interval (5 minutes)

15

selected observation links

OD

Lower Level Problem

Page 16: March 7, 2012 Northwestern University

TimeTime‐‐dependent OD Estimation for large scale dependent OD Estimation for large scale Calibration and Validation of DYNASMART-P II- Demand side

networks / Resultsnetworks / ResultsOriginal static OD matrix Observed link flowsNew time‐dependent

OD matrix

RMSEDemand: deviation between

RMSEFlows: deviation between: deviation between 

the new demand matrix and the original demand matrix

: deviation between the simulated and the observed link flows

Minimize Both RMSEs

16

Page 17: March 7, 2012 Northwestern University

TimeTime‐‐dependent OD Estimation / Resultsdependent OD Estimation / Results

Calibration and Validation of DYNASMART-P II- Demand side

TimeTime dependent OD Estimation / Resultsdependent OD Estimation / Results

14000

16000

18000

20000

nts

10000

12000

nts Link 14506

6000

8000

10000

12000

14000

mulative Link

 Cou

n

Link 14681

4000

6000

8000

mulative Link

 Cou

n

0

2000

4000

6000

0 100 200 300 400

Cu Observed

Simulated

0

2000

0 100 200 300 400

Cum

Observed

Simulated

Time (min.)

300

400

500

nts

Time (min.)

200

250

300

ts

0

100

200

300

Link

 Cou

n

0

50

100

150

Link

 Cou

n

17

0 100 200 300 400

Time (min.)

0

0 50 100 150 200 250 300 350 400

Time (min.)

Page 18: March 7, 2012 Northwestern University

VALIDATION OF WEATHER SENSITIVEVALIDATION OF WEATHER SENSITIVE

Calibration and Validation of DYNASMART-P II- Demand sideCalibration and Validation of DYNASMART-P

VALIDATION OF WEATHER SENSITIVE VALIDATION OF WEATHER SENSITIVE DYNASMARTDYNASMART‐‐PP

Relative difference : 37% Relative difference : ‐5%

18

Page 19: March 7, 2012 Northwestern University

ApplicationsppI- Weather-responsive traffic estimation and prediction

19

Page 20: March 7, 2012 Northwestern University

Obj tiObj ti

Application I- Weather-responsive traffic estimation and prediction

ObjectivesObjectives

Reduce the impact of inclementinclement weatherweather eventsevents and mitigatecongestioncongestionD t i th l t d d i d t l b dDetermine weather‐related advisory and controls based onpredicted traffic conditions and anticipatory road weatherinformationThis calls for integrated real‐time WeatherWeather‐‐ResponsiveResponsive TrafficTrafficManagementManagement (WRTM) and a TrafficTraffic EstimationEstimation andand PredictionPredictionSystemSystem (TrEPS)SystemSystem (TrEPS)

20

Page 21: March 7, 2012 Northwestern University

Offli WRTMOffli WRTM

Application I- Weather-responsive traffic estimation and prediction

Offline WRTMOffline WRTMHistorical weather and traffic count data fromHistorical weather and traffic count data from different days can be used to simulate various various realreal‐‐world scenarios.world scenarios.Many different WhatWhat‐‐If scenarios If scenarios can be tested and evaluated.Successful scenarios can be added to the WRTM   strategy repositoryWRTM   strategy repository to be used as an initial input initial input for real‐time implementation in DYNASMART‐X via Scenario ManagerScenario Manager..

21

Page 22: March 7, 2012 Northwestern University

Description of 5 ScenariosDescription of 5 ScenariosApplication I- Weather-responsive traffic estimation and prediction

Description of 5 ScenariosDescription of 5 Scenarios1.1. Clear Day: Clear Day: Maximum visibility with zero precipitation.2.2. Snow:Snow: Visibility ranges from 0.5 to 2.0 miles, snow 

intensity ranges from 0.03 to 0.10 inches per hour, network‐widenetwork‐wide.

3.3. Snow with VMS Snow with VMS –– Variable Speed Limit: Variable Speed Limit: Speed reduction strategies are implemented on freeway corridors.

4.4. Snow Snow with VMS with VMS –– Detour:Detour: Vehicles are detoured from some heavily impacted links to alternative routes.

5.5. Snow with VMS Snow with VMS –– Detour plus Variable Speed Limit:Detour plus Variable Speed Limit:Vehicles are detoured from some heavily impacted links to alternative routes and Speed reduction strategies arealternative routes and Speed reduction strategies are implemented on freeway corridors.

22

Page 23: March 7, 2012 Northwestern University

Weather data during simulation withWeather data during simulation with

Application I- Weather-responsive traffic estimation and prediction

Weather data during simulation with Weather data during simulation with snowsnow

Snow Intensity Visibility

Page 24: March 7, 2012 Northwestern University

Weather Impact Weather Impact on densityon densityon densityon density

Clear DaySnow

24

Page 25: March 7, 2012 Northwestern University

Lake Shore Dr North bound between Belmont and Fullerton

Clear Day SnowClear Day Snow

Density

SpeedSpeed

VolumeVolume

Page 26: March 7, 2012 Northwestern University

WRTM StrategiesWRTM StrategiesApplication I- Weather-responsive traffic estimation and prediction

WRTM StrategiesWRTM StrategiesVMS ‐ VSL

VMS – Detour Kennedy Expy

Eisenhower Expy

Stevenson Expy Dan Ryan Expy

26

Page 27: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

5:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

27

Page 28: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

5:30 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

28

Page 29: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

6:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

29

Page 30: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

6:30 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

30

Page 31: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

7:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

31

Page 32: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

7:30 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

32

Page 33: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

8:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

33

Page 34: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

8:30 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

34

Page 35: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

9:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

35

Page 36: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

9:30 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

36

Page 37: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

10:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

37

Page 38: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

10:30 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

38

Page 39: March 7, 2012 Northwestern University

ClearSnow + Detour

+ VSL

11:00 amDensityDensity

SnowSnow + Detour Snow + VSLSnow

39

Page 40: March 7, 2012 Northwestern University

A Cl L k Li k D iti d S dA Cl L k Li k D iti d S d

Application I- Weather-responsive traffic estimation and prediction

A Closer Look: Link Densities and SpeedsA Closer Look: Link Densities and SpeedsK d EKennedy Expy

Eisenhower Expy

Stevenson Expy

Dan Ryan Expy

40

Page 41: March 7, 2012 Northwestern University

Kennedy Expy between Pulaski Rd and N Cicero Ave (west bound)

(Density)

Snow + Detour

(Density)

Clear

Snow + VSL

Sno + Deto r + VSL

Snow

Snow + Detour + VSL

Page 42: March 7, 2012 Northwestern University

Snow + DetourKennedy Expy between Pulaski Rd and N Cicero Ave (west bound)

(Speed)

Clear

(Speed)

Snow + VSL

Sno + Deto r + VSL

Snow

Snow + Detour + VSL

Page 43: March 7, 2012 Northwestern University

Snow + DetourKennedy Expy between Pulaski Rd and N Cicero Ave (west bound)

(Volume)

Clear

(Volume)

Snow + VSL

S + D t + VSL

Snow

Snow + Detour + VSL

Page 44: March 7, 2012 Northwestern University

Application I- Weather-responsive traffic estimation and predictionApplication I- Weather-responsive traffic estimation and prediction

A validated offline WRTM validated offline WRTM strategy can provide a predefined input to be used for online WRTMonline WRTM..

Variable Speed Limit Variable Speed Limit (VSL) (VSL) is a more general strategy which can be implemented for an entire corridor and can be evaluated offline.evaluated offline.

( S2)( S2) i h h ld l b id dDetourDetour (VMS2)(VMS2) is a strategy that should always be considered. However, its effectiveness should not be tested offline as it is more casecase‐‐dependent.dependent.

This calls the needneed for an online implementation online implementation with Detector Detector Measurement data Measurement data andWeather Prediction Weather Prediction  in order to predict near‐future events based on prevailing real‐world conditions and p gmake proper interventions proper interventions using online WRTM online WRTM strategies.

44

Page 45: March 7, 2012 Northwestern University

ApplicationsppII- Congestion management

45

Page 46: March 7, 2012 Northwestern University

Wh t i th P bl ?Wh t i th P bl ?

Application II- Congestion management

What is the Problem?What is the Problem?

46

Page 47: March 7, 2012 Northwestern University

Wh t i th P bl ?Wh t i th P bl ?

Application II- Congestion management

What is the Problem?What is the Problem?

Congestion is growing in major cities

Highly congested neighborhoods (e.g. CBD) suffer from gridlock phenomena in peak periods

d f ffi i ili i f i iNeed for a more efficient utilization of existing infrastructure

Page 48: March 7, 2012 Northwestern University

Obj tiObj ti

Application II- Congestion management

ObjectivesObjectives

Improve mobility and accessibility

Congestion mitigation

Finding an effective and practical solution

Page 49: March 7, 2012 Northwestern University

CitCit id T ffi Fl R l tiid T ffi Fl R l ti

Application II- Congestion management

CityCity‐‐wide Traffic Flow Relationswide Traffic Flow Relations

Traffic Control900

1000

r)

Network Flow600

700

800

900

rk Flow (v

eh/hr

Network Speed200

300

400

500

verage

 Networ

Network Density0

100

0 50 100 150 200

Av

Average Network Density (veh/mile)Average Network Density (veh/mile)

Page 50: March 7, 2012 Northwestern University

CitCit id T ffi Fl R l tiid T ffi Fl R l ti

Application II- Congestion management

CityCity‐‐wide Traffic Flow Relationswide Traffic Flow Relations

Transportation Planning80,000

90,000

s

Mobility50,000

60,000

70,000

,

ompleted

 Trip

sAccessibility

20,000

30,000

40,000

Numbe

r of C

Vehicle Accumulation

0

10,000

0 200,000 400,000 600,000 800,000

Vehicle Accumulation in the Network

Page 51: March 7, 2012 Northwestern University

CitCit id T ffi Fl R l tiid T ffi Fl R l ti

Application II- Congestion management

CityCity‐‐wide Traffic Flow Relationswide Traffic Flow Relations

Page 52: March 7, 2012 Northwestern University

Wh t i th id ?Wh t i th id ?

Application II- Congestion management

What is the idea?What is the idea?

Input O t tInput OutputUrban Network System

The idea is to monitor and control aggregate vehicle accumulation in the network in order to maximize the accessibility and mobility.

Page 53: March 7, 2012 Northwestern University

H d it?H d it?

Application II- Congestion management

How can we do it?How can we do it?

London, UK

Page 54: March 7, 2012 Northwestern University

H d it?H d it?

Application II- Congestion management

How can we do it?How can we do it?

Zurich, Switzerland

Page 55: March 7, 2012 Northwestern University

H d it?H d it?

Application II- Congestion management

How can we do it?How can we do it?

Chicago, USA

Page 56: March 7, 2012 Northwestern University

D t ChiD t Chi

Application II- Congestion management

Downtown ChicagoDowntown Chicago

Page 57: March 7, 2012 Northwestern University

Vehicle Accumulation vs Network FlowVehicle Accumulation vs Network FlowApplication II- Congestion management

Vehicle Accumulation vs. Network Flow Vehicle Accumulation vs. Network Flow Chicago CBDChicago CBD

800

900

1,000ph

)

500

600

700

800

erage Flow

 (v

200

300

400

500

Network A

ve

0

100

200

0 10,000 20,000 30,000 40,0000 10,000 20,000 30,000 40,000

Vehicle Accumulation (veh)

Page 58: March 7, 2012 Northwestern University

G idl k f tiG idl k f ti

Application II- Congestion management

Gridlock formationGridlock formation

Page 59: March 7, 2012 Northwestern University

Wh th f ?Wh th f ?

Application II- Congestion management

Where they came from?Where they came from?

Spatial distribution of Origin‐Destination demand in the network

Spatial distribution of Origin‐Destination demand associated with vehicles trapped in 

the gridlock

mbe

rs From

CB

D

mbe

rs From

CB

D

stin

atio

ns z

one

num

tinat

ions

zon

e nu

m

Des

Des

t

Page 60: March 7, 2012 Northwestern University

Eff t f t l i f tiEff t f t l i f ti

Application II- Congestion management

Effect of traveler informationEffect of traveler information

1000

1200eh

/hr) 5% EnRoute

10% EnRoute

600

800

work Flow

 (ve

20% EnRoute

30% EnRoute

200

400

Average Ne

tw

00 50 100 150 200

Average Network Density (veh/mile)Average Network Density (veh/mile)

Page 61: March 7, 2012 Northwestern University

Eff t f d d tEff t f d d t

Application II- Congestion management

Effect of demand managementEffect of demand management

Page 62: March 7, 2012 Northwestern University

Application II- Congestion management

Work in progressWork in progress

We have identified 41 signals in the periphery of downtown Chicago.

Restricting the accumulation of vehicles in downtown via modifying the signal timings on the periphery of downtown and/or pricing.

Similar analysis will be performed in a multi‐modal network to understand the impact of modes interaction and its effect on the network‐wide mobility and accessibility.

Page 63: March 7, 2012 Northwestern University

SummarySummarySummarySummary

63

Page 64: March 7, 2012 Northwestern University

Simulation based DTA tools overcome many of the known

Summary

Simulation‐based DTA tools overcome many of the known limitations of static assignment tools used in current practice.

DYNASMART‐P provides a platform for integrating activity‐based models with network assignment and performance simulation.

A Calibrated greater Chicago network is prepared in DYNASMART. Calibration includes both demand and supply side.Calibration includes both demand and supply side.

Two Applications of DYNASMART‐P were reviewed including :‐Weather‐responsive traffic estimation and prediction‐ Congestion management.

64

Page 65: March 7, 2012 Northwestern University

Thank You 

Questions ?Questions ?

65