March 5, 2015 -...

14
March 5, 2015 0 | Page Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Transcript of March 5, 2015 -...

Page 1: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

0 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Page 2: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

1 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Table of Contents

Abstract ........................................................................... Pg. (2)

Project Description .......................................................... Pg. (2)

Design and Performance ................................................ Pg. (3)

OOM Block Diagram Figure 1 ………….......................... Pg. (4)

OOM Payload Concept Model Figure 2 …...................... Pg. (5)

CSC Block Diagram Figure 3 …………........................... Pg. (6)

CSC Payload Concept Model Figure 4 …....................... Pg. (7)

Ground Control Station GUI Figure 5 …………………… Pg. (8)

Ground Control Station Block Diagram Figure 6 ………. Pg. (9)

Testing and Verification ................................................... Pg. (9)

Project Management Gant Chart ..................................... Pg. (10)

Budget ……...................................................................... Pg. (12)

Promotional Flyer ............................................................ Pg. (13)

Page 3: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

2 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

ABSTRACT In the evolving world of autonomous flight technology, unmanned aerial vehicles have distinguished themselves as a valuable tool for many different industries. For SDG&E, the goal is to provide the technician with a vehicle capable of inspecting overhead transmission lines with pre-planned, autonomous missions. The ability to automate inspection processes and increase power line worker safety are both significant benefits of unmanned aerial vehicles. The vehicle will utilize a wide array of sensors across two different payloads, including a high definition camera, radar range finder, thermal imaging camera, and a deployable current measurement system. In addition, the quad copter will stream real time telemetry data to the technician on the ground for further analysis at a later time.

PROJECT DESCRIPTION For this project, our goal is to design a battery operated autonomous quad copter that is able to carry out several key missions on transmission lines and power systems: high definition photographing and video, infrared imaging for excess heat detection, line current measurement, and topographic map generation. Using the built in mission planning software, line technicians will have the ability to pre designate mission routes, as well as photograph points with the autonomous vehicle. At these designated capture points, the vehicle will take high definition images of intended targets on the transmission lines. These photographs will have a time and position stamp to make organizing and records more efficient. The unmanned aerial vehicle will also have the capability to take infrared images and videos, giving a real time representation of the heat signatures present on lines, transformers, and other elements. Using this information, the technicians will be able to easily identify possible problem points. Another valuable feature of the autonomous vehicle is its ability to safely and accurately check to ensure transmission lines are operating at intended current levels. This will be accomplished through the use of a non-intrusive current sensing clamp, deployed directly from the quad copter. The last key mission for the quad copter is topographic map generation. Grid flight planning software will enable the vehicle to fly in a designated grid pattern over a specified area. During the grid flight pattern, the quad copter will take real time elevation measurements with a LIDAR radar range finder. Flying at a constant elevation, the radar range finder will yield the exact distance to the ground. By overlaying this reading with high definition video, the unmanned aerial vehicle will be able generate detailed topographic maps of areas surrounding transmission lines. This feature can be extremely valuable in determining possible issues due to vegetation over growth.

Page 4: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

3 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

DESIGN & PERFORMANCE Each of the payloads for the intended missions will be detailed in the following sections.

1. Observe Or Map Payload (OOM) Acquire target distance by LIDAR range sensor. Detect temperature differences between targets from FLIR Lepton and stream

video back to Ground Station. Record High Definition Video for duration of flight (10-15 minutes) and stream

low resolution analog video back to Ground Station. Remain on lithium ion battery power for duration of flight (10-15 minutes).

Observe Or Map Payload (OOM) – Block Diagram and Concept Model To accommodate all three mission concepts, two separate payloads will be designed for use on the 3D Robotics model X8+ quad copter platform. The X8+ with a connected PC ground station will execute mission parameters based on 3DR’s Mission Planner software. The OOM payload will include a high resolution GoPro Hero 3, a long-wave infrared camera (FLIR Lepton), and a laser light detection and ranging sensor (LIDAR). In conjunction, this payload will capture small resolution infrared images in the same frame as high resolution images. These images will be streamed wirelessly to the ground station using a 5.8 GHz main video feed. The LIDAR sensor will assist in object detection during general flight operation as well as elevation recording during mapping missions. Using the built in Pixhawk flight controller, the telemetry data from the LIDAR will be transmitted to the ground station.

Page 5: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

4 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Figure 1: Observe or Map Payload

Page 6: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

5 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Figure 2: Observe or Map attachment

Page 7: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

6 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

2. Current Sense Claw Payload

Acquire power line using LIDAR sensor. Resolve power line in field of view of charge coupled device camera (CCD) to

assist user in deployment. Detect when the claw is in position to attach to the power line and stay

mechanically attached for 30 minutes or until retrieved. Measure AC current passing through the power line and wirelessly send

measurements back to the Ground Station. Current Sense Claw (CSC) – Block Diagram The second payload, called the CSC, will include a smaller resolution light weight CCD camera, a laser light detection and ranging sensor (LIDAR), and a deployable ammeter. The CCD camera and LIDAR will assist in acquiring the power line and in deployment of the ammeter claw. Once attached to an individual power line, the ammeter claw will wirelessly transmit the current measurements back to the PC ground station using WiFi.

Figure 3: Current Sensing Claw Payload

Page 8: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

7 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Figure 4: Current Sensing Attachment

Page 9: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

8 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Ground Control Station

Allow the user to plan and execute missions appropriate for both payloads. Display and record telemetry data for submission to OSI Pi server. Display either main or auxiliary video feeds for user.

The telemetry data sent to the PC ground station will interface with the Mission Planner software and be recorded into log files. This data will include:

Telemetry Data (GPS Position, Altitude, Directional Heading, Date/Time Stamp)

High Resolution Video and Images

Thermal Video and Images

Current Readings

Figure 5: Shown above is an example of the Mission Planner graphical user interface (GUI). The primary flight displays also aids in flight heading, directional awareness, and angle of attack.

Page 10: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

9 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Figure 6: Telemetry Stream Flow Diagram

Testing and Verification Overhead power line simulation: Mock Power Line: extension cord Altitude: Extension cord elevated to 10 feet off the ground Transformer: Plastic or metal housing with internal heater Loads: Variable AC Load (Variable current draw to measure sensitivity of CSC) Voltage: 120 VAC 60 Hz Outlet Thermal Imaging Testing: An enclosure with a small heater (mock transformer) will be used to test the FLIR Lepton thermal imaging camera’s ability to detect heat changes along a power line, as in the case of a transformer. Two mock transformers will be present on the test apparatus, one heated and one cold. We will analyze the Lepton’s ability to distinguish thermal differences between the two. Go-Pro's HD Video Testing: This test will check the quality of the HD video recording after it is stored on a micro-SD. Tape marks will be used to simulate corrosion or defects on the extension cord and transformer to test the Go-Pro's HD video clarity.

Page 11: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

10 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

LIDAR Testing: This test will use tree or other object near the extension cord to test the quad copter's ability to avoid objects by utilizing the LIDAR (proximity) sensor. It will locate objects of interest, such as an extension cord and a transformer, and avoid potential hazards, such as trees and other vegetation. Current Testing: The ammeter claw will be deployed to a suspended extension cord to measure the current at various loads. The data will then be transmitted to the ground station. Mission Planner: A predetermined flight will be programmed into the quad copter to test its ability to fly autonomously.

Project Management

Gant Chart

Page 12: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

11 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Page 13: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

March 5, 2015

12 | P a g e Neither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Budget

X8+ Quad Copter 1350.00

X8+ Extras 157.99

Micro CCD/ HERO 3 Camera 355.97

FLIR Dev Kit 377.95

LIDAR-Lite 107.12

FPV Components 165.99

Tarot T-2D Gimbal Kit 210.00

Wireless Router 73.99

Current Clamp Assembly 29.99

Current Clamp Actuator 19.99

Misc. Current Clamp 25.00

Misc. Components 200.00

Misc. Cabling 60.00

Testing Supplies 150.00

Replacement Part Funds 216.01

Total 3500.00

BUDGET

X8+ quadcopter

X8+ Extras

Micro CCD/ HERO 3 Camera

FLiR Dev Kit

LIDAR-Lite

FPV Components

Tarot T-2D Gimbal Kit

Wireless Router

Current Clamp Assembly

Current Clamp Actuator

Misc. Current Clamp

Misc. Components

Misc. Cabling

Testing Supplies

Replacement Part Funds

Page 14: March 5, 2015 - seniordesignlab.comseniordesignlab.com/sdl_docs/Proj_Sp_15/proposals/ALIA_Proposal.pdfMarch 5, 2015 2 | P a g e ... able to carry out several key missions on transmission

13 | P a g eNeither this document nor the information disclosed herein shall be reproduced or transferred to other documents or used or disclosed to others for manufacturing or any other purposes except as specifically authorized in writing by the authors.

Promotional Flyer