M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of...

16
m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 1 Single Particle Amplitude M. Apollonio – University of Oxford
  • date post

    15-Jan-2016
  • Category

    Documents

  • view

    218
  • download

    0

Transcript of M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of...

Page 1: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 1

Single Particle Amplitude

M. Apollonio – University of Oxford

Page 2: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 2

amplitude: is a single particle concept

Consider first a 2D case

)(

02

z

xx

)(1)(

))(cos()()(

zz

zzAzx

field strength

222

2

22

4

22

ssccA

x

scAcxx

cAx

(1)

(3)

(2)

0442 222

c=cos()

Page 3: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 3

)(zA

))(cos()( zzA

x

x’

area=

A

A: for a linear system this is a constant of the motion (Liouville’s theorem)

: describes the optical propertiesof the channel

x

z

envelope

motion of a particle in the lattice

Page 4: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 4

2

22

1

2

2

xxxxA

: optical Twiss parameters

1

1

B

xBxA T

Page 5: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 5

if the beam is gaussian and matched there is a relationbetween V and B

BVxxxx

xxxx

here B and describe beam envelope properties.B can be inferred from Vand A too ...

... A is still a single particle amplitude BUT describes a level of constant probability for a gaussian distributed beam

xVxA T 1

V: covariance matrix of the beam

Page 6: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 6

x

emittance: RMS amplitudeproperty of the beamit can be derived from the COVARIANCE MATRIX of the beam

emittance/amplitude are normalizedmultipling by a factor p/mc

optical parameters: from the covariance matrix OR from our knowledge of the magnetic field

x’

Page 7: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 7

from 2D to 4D

(x,x’,y,y’)

solenoidal field introduces couplings (assume x=y)

yy

yy

xx

xx

B

00

00

00

00

ppp

ppp

ppp

ppp

B

0

0

0

0

4

ppp

ppp

ppp

ppp

B

0

0

0

0

4

Page 8: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 8

we can still think about single particle amplitude but weneed to be a little more careful ...

p

ppp

pp

ppppp xyyxyyxxyxyxA

222

2222

1

2

22

xBxA Tp

14

... and take into account (x-y) correlations

the definition of 4D A from a cov. mat. V is different w.r.t. the 2D case because of a (possible) non-zero canonical angular momentum

Page 9: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 9

NORMALIZED amplitudes (x,x’,y,y’) (x,px,y,py)

xypyxpyx

z

pzp

np ypxpypxppp

pyxp

mA

221 2222

xyTyxTyx

z

TzT

nT ypxpypxppp

pyxp

mA

221 2222

l=<Lcan>/2mcN T=pV1+l2 T=pV1+l2

the single particle amplitude isindependent from the beam

we can use this variable to characterize cooling and transmissionthrough the channel

Page 10: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 10

profile plot

reg-2 ~ centre of 1st tracker reg-92 ~ centre of 2nd tracker

cooling

Page 11: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 11

=3.0 cm rad

PZ=200 MeV/c, abs=42 cm

coolingN

2/N

1

N2/

N1

=2.0 cm rad

N2/

N1

Page 12: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 12

amplitude vs aperture

p = 200

MeV/c R (cm) (cm) Anmax (cm)

Absorber 15 42 10.1

RF 21 110 7.6

Tracker 15 33 12.9 AnMAX = p/mc R2/

in a focus/unif. field the max allowed amplitude has a very simple expression

in a general case it is more complicated but still the same concept we can study transmission as a function of amplitude

AnMAX = p/mc R2/

Page 13: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 13

PZ=200 MeV/c, abs=42 cm=0.6cm rad

=1.0cm rad

transmission through MICEstep VI

Page 14: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 14

MICE STEP VI ~90m of MICE Channel

RF ABS tracker

A (m rad) A (m rad)

Page 15: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 15

AnMAX

physical aperture R

we can define the max allowed amplitude at the end of the channel

useful for the acceleration stage in the NF

Page 16: M.apollonioCM17 -CERN- (22/2 - 25/2 2007)1 Single Particle Amplitude M. Apollonio – University of Oxford.

m.apollonio CM17 -CERN- (22/2 - 25/2 2007) 16

conclusion

amplitude has been introduced as a single particle property MICE is a capable of measuring single particle kinematic

parameters which, combined with the optical functions, allow to define the amplitude of each muon

idependent from beam useful to study the specific effects of scraping ...

TRANSMISSION ... and COOLING:

definable as an increase of the phase space density (rather than an emittance reduction)

useful to understand the fraction transmissable to the stage after the NF front-end