Manual Work Designendustri.eskisehir.edu.tr/ipoyraz/ENM 301/icerik/Manual_Work_Design.pdfergonomics...

63
END 202 - Manual Work Design - END 202 – Work analysis and design Manual Work Design

Transcript of Manual Work Designendustri.eskisehir.edu.tr/ipoyraz/ENM 301/icerik/Manual_Work_Design.pdfergonomics...

END 202-ManualWorkDesign -

END202– Workanalysisand design ManualWork Design

Manualwork design

• The design of manual work was introduced by theGilbreths through motion study and the principlesof motion economy

• Theprinciplesarebrokendowninto3basicsubdivisions:– Theuseofthehuman body– Thearrangementandconditionsofthe workplace– Thedesignoftoolsand equipments

• Theprinciplesarebasedonanatomical,biomechanicalandphysiologicalprinciplesofthehumanbody.Theyformthescientificbasis forergonomicsandwork design.

END202– Workanalysisand design ManualWork Design

Musculoskeletal system

Musculoskeletalsystemofthe arm

• Thehumanbodyisabletoproducemovementsbecauseofacomplexsystemofmusclesand bones

• Themusclesareattachedtothebonesbya joint• Agonistsactastheprimeactivatorsofthe motion• Antagonistscounteracttheagonistsandopposethe

motion

END202– Workanalysisand design ManualWork Design

Musculoskeletal system

• Thereare3typesofmusclesinthehumanbody– Skeletal:attachedtothebones,approx.500inthebody

– Cardiacmuscles:found inthe heart

– Smoothmuscle:foundintheinternalorgansandthewallsoftheblood vessels

END202– Workanalysisand design ManualWork Design

Musculoskeletal system

Skeletal muscles• Myofibrilsaresubdividedintomyofilaments

• Myofilaments:thick(myosine)andthinfilaments (actine)

• Filaments slide over oneanother to contract andextendmuscles– Completecontraction=50% oftheresting length

– Completeextension=180%oftheresting length

END202– Workanalysisand design ManualWork Design

Principlesofworkdesign: Humancapabilitiesandmotion economy

END202– Workanalysisand design ManualWork Design

Principlesofwork designForce-lengthrelationshipofskeletal muscle

Ataskrequiringanimportantmuscleforceshouldbeperformedattheoptimum position.

END202– Workanalysisand design ManualWork Design

Principlesofwork design

Maximumforce state• restinglength:optimalbondingbetweenthick(myosin)

andthin(actin) filaments• stretchedstate:minimaloverlap,decreasedmuscle force• contractedstate:interferencebetweenfilaments,

decreasemuscle force

END202– Workanalysisand design ManualWork Design

Principlesofwork design

1. Achieve the maximummuscle strength at themidrange of motion

Midrangeof motion(relaxed posture)

Thepostureassumedbyanastronautinweightlessconditionswhenbothagonistandantagonistmusclesarerelaxed.

Typicalrelaxed posture

END202– Workanalysisand design ManualWork Design

Principlesofwork design

Force-velocityrelationship

2.Achievethemaximummusclestrengthwithslowmovements

• Thefasterthemolecularbondsareformed,broken,reformed,thelesseffectiveisthebondingandthelessmuscularforceis produced

• Slowmovementsare themost efficient

END202– Workanalysisand design ManualWork Design

Principlesofwork design

3. Use momentum to assist workers whereverpossible; minimize it if it is counteracted bymuscular effort

• Fastermovementsproducehighermomentumandhigherimpactforcesinthecaseof blows

• Downward motions are moreeffective than upwardmotionsbecauseoftheassistancefrom gravity

END202– Workanalysisand design ManualWork Design

Principlesofwork design

4.Designtaskstooptimizehumanstrength capability

• Humanstrengthcapabilitydepends on– thetypeof strength:• Dynamicstrength (isotonic)• Staticstrength (isometric)• Psychophysicalstrength(extended time)

– themuscleorjointmotionbeing utilized– posture

• Maximumacceptableloadis40to50percentlessthanaone-timestaticexertion

• Extensive tables for psychophysicalstrength of various frequencies andpostures (pg 134, Tables 4.2,4.3,4.4)

END202– Workanalysisand design ManualWork Design

Staticstrength positions

Principlesofwork design

5.Uselargemusclesfortasksrequiring strength

• Musclestrengthisdirectlyproportionaltothesizeofthemuscle

• Forexample,legandtrunkmusclesshouldbeusedinheavyloadlifting,rather thanweakarmmuscles

Staticstrength positions

END202– Workanalysisand design ManualWork Design

Principlesofwork design

6.Staybelow15%(evenbelow10%or5%)ofmaximumvoluntary force

• Thenon-linear relationship:– atamaximalcontractionaveryshort

endurancetime(6 sec)– indefiniteendurancetimeatapprox.

15%ofamaximal contraction

T = 1.2 /( f - 0.15)0,618-1.21T : Endurance time (min)f : Required force, expressed as a fraction

of maximum static strength

Ex:T=1.09minforf= 50%

END202– Workanalysisand design ManualWork Design

Staticmuscleendurance-exertionlevel relationship

Principlesofwork design

7.Useshort,frequent,intermittent,work/restcycles

• Afastinitialrecoveryperiod,whichthentendstoleveloffwithincreasing time

• Mostofthebenefitisgainedinarelativelyshort period

• Ahigher%ofmaxstrengthcan bemaintainedifthestrengthisexertedasaseriesof repetitivecontractionsratherthan onesustainedstatic contraction Percentageofmaxstaticstrengththatcanbemaintained

inasteadystateduringrhythmic contractions

END202– Workanalysisand design ManualWork Design

Principlesofwork design

8. Designtaskssothatmostworkerscando them• Individualfactorsaffectstrengthperformance:gender,age,

handedness,and fitness/training• Musclestrengthappearstopeakinthemid-20s,thendecreases

linearlybythe mid-60s.• Handedness:non-dominanthandproducesabout90%ofdominant

hand’s grip

END202– Workanalysisand design ManualWork Design

Principlesofwork design

9. Useoflowforceforprecisemovementsorfinemotorcontrol

– Whentheforceincrease,musclecontrol decreases

10. Donotattemptprecisemovementsorfinecontrolimmediatelyafterheavy work

– Ex:Assemblyoperationsafterliftingheavyparts.Usedifferentworkersfor lifting.

11. Beginandendmotionswithbothhands simultaneously– Workstationscanbedesignedtodo“twoata time”

12. Movethehandssymmetricallyandsimultaneouslytoandfromthecenterofthe body

– Deviationsfromsymmetryresultinslow,awkward movements

END202– Workanalysisand design ManualWork Design

Principlesofwork design

13.Usethenaturalrhythmsofthe body

• Optimumworktempoforsome tasks:– Filingmetal:60-78strokesper minute– Chiseling:60strokesper minute– Armcranking:35rpm(numberoffullrotationsover1 min)– Shoveling:14-17tossesper min

END202– Workanalysisand design ManualWork Design

Principlesofwork design

14.Usecontinuouscurvedmotions

• Straight-linemotionsinvolvingsuddenandsharpchangesindirectionrequiremoretimeandareless accurate

• Continuouscurvedmotionsdo notrequiredecelerationtomakeadirectionalchangeandperformedfasterperunitof distance

• Pivotaroundajoint (elbow)Forearmmotion is bestwhilepivotingon elbow

END202– Workanalysisand design ManualWork Design

Principlesofwork design

15.Usethelowestpracticalclassificationof movement

• Alwaysutilizethelowestpossible: finger→wrist→forearm→shoulder→ body

• Additionaltimeisrequiredforthecentralnervoussystemtoprocessadditionaljointsand muscles

16.Workwithbothhandsandfeet simultaneously

• Relievethehandsofworkthatcanbedonebythefeetifthisworkisperformedwhilethehandsare occupied Classificationsof movements

END202– Workanalysisand design ManualWork Design

Principlesofwork design

17.Minimizeeye fixations• Thelocationoftheprimaryvisualtargetsshouldbeoptimizedwith

respecttothe operator• Withintheareainthefigurenoheadmovementsareneededand

eyefatigueis minimized

END202– Workanalysisand design ManualWork Design

Principlesofworkdesign– Summary

Humancapabilitiesandmotion economy1.2.3.4.5.6.7.

AchievethemaximummusclestrengthatthemidrangeofmotionAchievethemaximummusclestrengthwithslow movementsUsemomentumtoassistworkerswhereverpossible;minimizeitifitiscounteractedbymusculareffortDesigntaskstooptimizehumanstrength capabilityUselargemusclesfortasksrequiring strengthStaybelow15%(evenbelow10%or5%)ofmaximumvoluntaryforceUseshort,frequent,intermittent,work/rest cycles

8. Designtaskssothatmostworkerscando them9. Useoflowforceforprecisemovementsorfinemotor control10. Donotattemptprecisemovementsorfinecontrolimmediatelyafterheavy work11. Beginandendmotionswithbothhands simultaneously12. Movethehandssymmetricallyandsimultaneouslytoandfromthecenterofthe body13. Usethenaturalrhythmsofthe body14. Usecontinuouscurved motions15. Usethelowestpracticalclassificationof movement16. Workwithbothhandsandfeet simultaneously17. Minimizeeyefixations

END202– Workanalysisand design ManualWork Design

Principlesofworkdesign– Summary

• Theprinciplesofhumancapabilitiesandmotioneconomyarebasedonanelementaryunderstandingofhuman physiology

• Theanalystneednotbeanexpertinhumananatomy

• Themotioneconomychecklistsummarizesmostoftheprinciplesinaquestionnaireformat(Figure4.16,pg146:Coursewebpage )

END202– Workanalysisand design ManualWork Design

Motion Study

END202– Workanalysisand design ManualWork Design

Motion study

• Motionstudyisthecarefulanalysisofbodymotionsemployedindoinga job

• Thepurposeistoeliminateorreduceineffectivemovementsandfacilitateandspeedeffectivemovements

• Gilbrethspioneeredthestudyofmanualmotion anddevelopedbasiclawsofmotion economy

• Gilbrethsconcludedthatallwork,productiveornon-productive,isdonebyusingcombinationsof17 basicmotionscalled therbligs:– Effectivetherbligs:directlyadvancetheworkprogress, theycanbeshortenedbutnotcompletely eliminated

– Ineffectivetherbligs:donotadvancetheworkprogress,shouldbe eliminated

END202– Workanalysisand design ManualWork Design

Effective therbligs

END202– Workanalysisand design ManualWork Design

Ineffective therbligs

END202– Workanalysisand design ManualWork Design

Thetwo-handprocess chart

• Thetwo-handprocesschart(operatorprocesschart)showsallmovementsanddelaysmadebytherightandlefthands,andtherelationshipsbetweenthem

• Analystcandeterminewhatimprovementscanbe introduced

• Therbliganalysischecklist(Figure4.18,pg151:Coursewebpage)

END202– Workanalysisand design ManualWork Design

Manualworkanddesign guidelines

END202– Workanalysisand design ManualWork Design

Manualworkanddesign guidelines

• Energyexpenditureandworkload guidelines• Heartrate guidelines• NIOSHlifting guidelines• Multitasklifting guidelines• Generalguidelines:Manual lifting

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• Energyisrequiredformuscle contraction• ATP(adenosinetriphosphate)molecule:immediate

energysourcebutverylimited,lastingonlyfew seconds• ATPmustbereplenishedfromCP(creatinephosphate)

molecule,lastingforlessthan1 min• CPisregeneratedfromthebasicfoods:carbohydrates,

fats, proteins• TwodifferentmodesforCP generation:

– Aerobic(requiresoxygen):muchmoreefficient,generates38ATPsforeachglucosemolecule,butitis slow

– Anaerobic(withoutoxygen):veryinefficient,generatesonly2ATPsforeachglucosemolecule,butmuch quicker.(Glucosemoleculeisonlypartiallybrokendowninto2lactatemolecules,inwateryenvironmentofthebodytheyformlacticacidwhichcauses fatigue)

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

Sourcesofenergyduringthefirstfewminutesofmoderatelyheavy work

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• Bywarmingupandstartingheavyworkslowly,theworkercanminimizetheamountofanaerobicmetabolismandthebuildupoflacticacidassociatedwithfeelingsof fatigue.

• Thedelayoffullaerobicmetabolismistermedoxygendeficit

• Theenergyexpendedonataskcanbeestimatedbyassumingthattheenergyisproducedthroughaerobicmetabolismandmeasuringtheamountofoxygenconsumedbythe worker

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• Theamountofinspiredairisassumedtocontain21%oxygen

• Typically4.9kcalofenergyisproducedforeachliterofoxygenusedin metabolism

• Energy expenditure:E(kcal/min)=4.9xoxygen consumption

=4.9*V*(0.21– EO2)– V=volumeofairinspired,L/min(canbemeasuredbya flowmeter)– EO2=fractionofoxygeninexpiredair(canbemeasuredbyan

oxygenmeter)

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• Theenergyexpendedonataskvariesbythetypeoftask,thepostureandtheload carriage.

• Dataonseveralhundreddifferenttypesoftaskshavebeen collected

• Formanualmaterialhandling,themannerinwhichtheloadiscarriedismost critical

• Balancedloadscarriedclosesttothecenterofgravityofthebodydemandlowest energy– Ex:backpacksupportedbythetruckmusclesis easier than

twosuitcasesofequalweightineach arm• Posturealsoplaysanimportantrole,withlessenergy

forsupported postures

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• 5.33kcal/ministhelimitofacceptableenergyexpenditureforan8hworkdayfora man,– Thisnumbercorrespondsto1/3themaximumenergyexpenditureoftheaverageU.S. Male

– 16 kcal/min x1/3=5.33 kcal/min– Forfemales: 12 kcal/min x1/3=4 kcal/min

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

Examplesof energycostsofvarioustypesofhumanactivity (kcal/min)

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• Iftheoverallworkloadisexceeded(morethan5.33kcal/minformalesand4kcal/minforfemales)restisrequiredtoallowthebodytorecoverfromfatigueandrecyclethelactic acid

• Guidelineforrestallocation:

R=(W– 5.33)/(W– 1.33)– R:timerequiredforrest,aspercentoftotal time– W:averageenergyexpenditureduringwork, kcal/min– 1.33kcal/min:energyexpenditureduring rest

• Example:ShovelingcoalW=9.33 kcal/min R= 0.5Foran8hofworkspend4hfor resting

END202– Workanalysisand design ManualWork Design

Energyexpenditureandworkload guidelines

• Thedurationoftheworkcycleisimportantforanoptimal recovery• Forheavyworks,withoutresting,therecoveryprocesstendstobe

exponential• Shortburstsofheavyworks(1/2to1min)followedbyshortrest

periodsprovidemaximum benefit• Micropausesof1to3sarealso useful• Activebreaks,duringwhichtheworkeralternateshandsoruses

othermuscles,relievesfatiguedmuscles• Itisbestforworkerstodecidewhentotakebreaks,wheneverthey

feeltheneedforrestasopposedtoprescribed breaks• Theuseoffrequentshortwork/restcyclesishighly recommended

END202– Workanalysisand design ManualWork Design

Heartrate guidelines

• Themeasurementofoxygenconsumptioncanbecumbersomeandexpensive(equipmentcostsseveralthousanddollarsandinterfereswiththe worker)

• Analternativewaytomeasuretheenergyexpenditureistheheartrate level

• Thehighertheenergyexpenditurethehighertheheart rate• Lessexpensive(100$foravisualreadout,several hundred

dollarsforaPC interface)

END202– Workanalysisand design ManualWork Design

Heartrate guidelines

Theanalystmustbe careful:• Thismeasurementismostappropriatefordynamic work

• Canvaryconsiderablybetweenindividuals,dependingontheirfitnesslevelsand age

• Canbeconfoundedbyotherstressorsincludingheat,humidity,emotionallevels,andmentalstress

END202– Workanalysisand design ManualWork Design

Heartrate guidelines

• Averageworkingheartrate=40beats/min+restingaverageheartrate(≈72 beats/min)

• averageincreaseinheartrate/increaseinenergyexpenditure(slope)=10beats/minper1 kcal/min

• A5.33kcal/minworkload(4kcal/minabovetherestinglevel of1.33kcal/min)producesa40beats/minincreaseinheart rate

END202– Workanalysisand design ManualWork Design

Heartrate guidelines

• Heartratebetween1/2to 1minaftercessation: HR1

• Heartratebetween2.5to3minaftercessation:HR2

• Acceptableheartraterecovery:– HR1≤110 beats/min– HR2– HR1≥20 beats/min

• Theincreaseintheheart rateduringsteady-statework,calledheartratecreep,indicatesanincreasingbuildupoffatigueandinsufficientrecoveryduringrestpausesandmustbe avoided

Averageheartratemeasurementfortwodifferent workloads

END202– Workanalysisand design ManualWork Design

Heartrate guidelines

Subjectiveratingsofperceived exertion

• ThescaledevelopedbyBorg (1967)

• Ratingsthrough6to 20correspondtotheheartratesdividedby 10

• Theratingsshouldbeusedwithcaution andnormalizedtoeachindividual’smaximumrating

BorgRatingofPerceivedExertion (RPE)

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

• 40%ofworkaccidentsarecausedduringmaterialhandling

• 70%ofmanualmaterialhandlingaccidentsconcernlow back

• Lowbackaccidentsandillnessesconsists25%ofthetotal compensations

• Theaveragecostoflowbackaccidentsis 60,000$

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

• Vertebraeisdividedinto:cervical,thoracic,lumbarandsacrum regions

• Spinalcordisprotectedbyvertebrae,spinalnerverootsareseparatedfromthespinalcordtoachieveinternalorgansand extremities

• Vertebralbonesareseparatedbyasoftertissue:intervertebral disks.

• Theyserveasjoints,allowingalargerangeofmotion,andcushionsbetween vertebral

• Mosttrunkflexionoccursinthetwolowestjoints:L5/S1ve L4/L5

Anatomyofthehuman spine

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

Lowback problems• Aging,heavymanualworkexposure:thediskscan

weaken• Cartilageendplatecansuffermicrofractures,releasing

somegelatinousmaterial,thecenterstartsdrying up• Thediskspacenarrows,vertebralbonescomecloser

andtouch:irritationandpain,motor impairments• Diskherniation(slipped disk)• Softtissueinjuries(ligaments,muscles, tendons)

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

(a) Normal state(b) Narrowingofthediskspace,allowing

thenerveroottobe pinched(c) Herniateddisk,allowingthegel

materialtoextrudeandimpingeuponthenerve root

Anatomyofavertebraandtheprocessofdisk regeneration

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

Somecausesforlow-back problems• Heavy work

– Frequentliftingoflarge loads– Forward-bendingtrunkposturesforlong periods

• Longperiodsofimmobility,eveninsitting postures• Wholebody vibration• Geneticpredisposition(weakerconnectivetissues,disks,

ligaments, etc.)• Personallifestyleconditions(smoking,obesity, etc.)

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

AnalogybetweenL5/S1diskandfirst-class lever

• Centerofthediskactsasthe fulcrum• FindthemuscleforceFMandthetotalcompressiveforce Fcomp

2xFM=30x50=>FM=750lb(341kg)Fcomp=750+50=800lb (364kg)

• Acompressiveforceof770lb(350kg)isconsideredthedangerthreshold

END202– Workanalysisand design ManualWork Design

Lowbackcompressive forces

Moreaccuratevaluesforvariousloadsandhorizontal distances

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelines

• NIOSH:NationalInstituteforOccupationalSafetyand Health• Keyoutputistherecommendedweightlimit (RWL)• RWLisbasedontheoptimumweight,withadjustmentsfor

variousfactorsrelatedtotask variables• RWListheloadthatcanbehandledbymost workers

– 350kgcompressionforcecreatedbyRWLcanbetoleratedbymostyoung,healthy workers

– Over75%ofwomenand99%ofmenhavethestrengthcapabilitytoliftaloaddescribedby RWL

– Maximumresultingenergyexpendituresof4.7kcal/minwillnotexceedrecommended limits

• IfLoad>RWL,thentheinjuriesandlowbackproblemsincrease

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelines

• TheformulationforRWLisbasedonamaximumloadthatcanbehandledinanoptimum posture

RWL=LCxHMxVMxDMxAMxFMx CM– LC=LoadConstant=51 lbs– HM=HorizontalMultiplier= 10/H

H:Horizontallocationoftheloadforwardofthemidpointbetweentheankles,10≤H≤25in

– VM=VerticalMultiplier=1– 0.0075|V-30|V:Verticallocationoftheload,0≤V≤70 in

– DM=DistanceMultiplier=0.82+ 1.8/DD:Verticaltraveldistancebetweenoriginanddestinationoflift,10≤D≤70 in

– AM=AsymmetryMultiplier=1– 0.0032*AA:Angleofsymmetrybetweenthehandsandfeet,0≤A≤135 derece

– FM=FrequecnyMultiplier=Table4.7– CM=CouplingMultiplier=Table 4.8

• Thesemultipliersrangefromaminimumvalueof0forextremeposturestoamaximumvalueof1foranoptimalpostureor conditions

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelines

END202– Workanalyisand design ManualWork Design

NIOSHlifting guidelines

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelinesCouplingmultiplier

Coupling Type

V < 30 in (75 cm)

V ≥ 30 in (75 cm)

Good 1.00 1.00Fair 0.95 1.00Poor 0.90 0.90

• OptimalContainer:Boxesandcrateswithwell-definedhandlesorhand-holdcutouts

• Optimalhandle:cylindrical,withasmooth,nonslip surface

• Forlooseobjects,agoodcouplingwouldconsistofacomfortablegripinwhichthehandcancomfortablywraparoundtheobjectwithoutanylargewrist deviations

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelines

LiftingIndex (LI):LI=loadweight/ RWL

• Toprovideasimpleestimateofthehazardlevelofliftingagiven load– Valuesexceeding1.0deemedtobe hazardous

• Usefulinprioritizingjobsforergonomic design• Controlthehazardbyredesigningjobsand workplaces

– Avoidhighandlow locations– Useliftandtilttables– Usehandlesorspecializedcontainersforhandling loads– Reducethehorizontal distance

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelines

Example:Liftingaboxintothetrunkofa car

• 30lbboxfromgroundintothe trunk• Twist90° topickup→A= 90• Groundlevel→Vorigin= 0• Trunk→Vdest=25,D= 25• Horigin=10andHdest= 25• One-timelift,FM= 1• Boxisfairlysmallandcompactbuthas no

handles→CM= 0.95

END202– Workanalysisand design ManualWork Design

NIOSHlifting guidelines

Example:Liftingaboxintothetrunkofa carRWL=51(10/H)(1-0.0075|V-30|)(0.82+1.8/D)(1-0.0032A)xFMxCM

RWLorigin=51(10/10)(1-0.0075|0-30|)(0.82+1.8/25) (1-0.0032*90)(1)(0.95)

=23.8 lbRWLdest=51(10/25)(1-0.0075|25-30|)(0.82+1.8/25)(1-0.0032*0) (1)(0.95)

=16.6 lbLI=loadweight/RWL→30/16.6= 1.8

• Only16.6lbcouldbeliftedsafelyandthe30lbboxwouldcreateahazardalmosttwicetheacceptable level

• Decreasethehorizontaldistanceto10in→RWLdest=41.5 lb• Movethefeetandeliminatethetwist→RWLorigin=33.4 lb

END202– Workanalysisand design ManualWork Design

Multitasklifting guidelines

• Usedforjobswithavarietyoflifting tasks• Overallphysical/metabolicloadisincreasedcomparedtothe

single lifting• ThisisreflectedinadecreasedRWLandanincreased LI• Compositeliftingindex(CLI)representsthecollective

demandsofthe job• CLIequalsthelargestsingle-taskliftingindex(STLI)and

increasesincrementallyforeachsubsequent task• CalculationsforCLIandSTLIarepresentinthebook(pg 166)• Whenthenumberoftasksexceedsthreeorfouravarietyof

softwareprogramscanbeused(Design Tools)

END202– Workanalysisand design ManualWork Design

Safelifting procedure

a. Planthe lift

b. Determinethebestlifting technique

c. Getasecure grip

d. Pulltheloadinclosetoyour body

e. Alternateliftingandlightwork tasks

END202– Workanalysisand design ManualWork Design

Generalpostureandtaskevaluation checklist

END202– Workanalysisand design ManualWork Design

Manualworkdesign– key points

• Designworkaccordingtohumancapabilitiesandlimitations

• Formanipulative tasks– Usedynamicmotionsratherthanstatic ones– Keepthestrengthrequirementbelow15%of maximum– Avoidextremerangesof motion– Usethesmallestmusclesforspeedand precision– Usethelargestmusclesfor strength

• Forliftingandotherheavymanual work– Keepworkloadsbelowone-thirdofthemaximumwork

capacity– Minimizehorizontalload distances– Avoid twisting– Usefrequent,shortwork/rest cycles

END202– Workanalysisand design ManualWork Design