Majorana modes in Atomic Chains on the Surface of a … · 2020-01-14 · Majoranafermions and...

43
Majorana modes in Atomic Chains on the Surface of a Superconductor Stevan Nadj-Perge TU DELFT CALTECH

Transcript of Majorana modes in Atomic Chains on the Surface of a … · 2020-01-14 · Majoranafermions and...

  • Majorana modes in Atomic Chains on the Surface of a Superconductor

    Stevan Nadj-PergeTU DELFTCALTECH

  • Prof. Ali YazdaniSangjun Jeon

    Prof. B. A. Bernevig

    Jungpil SeoIlya Drozdov

    Acknowledgments Experiment

    Theory UT Austin

    Prof. Allan MacDonaldHua ChenJian Li

  • Topology & band structure

    Momentum

    Ener

    gy

  • SPIN ORBIT INTERACTION (SOI)

    Momentum

    Ener

    gy

  • SOI+Magnetism

    Momentum

    Ener

    gy

  • SOI + Magnetism

    Momentum

    Ener

    gy

  • SOI + Magnetism

    Momentum

    Ener

    gy

  • SOI + Magnetism

    B < B critical B = B critical B > B critical

    EF

  • SOI + Magnetism

    B < B critical B = B critical B > B critical

    EF

    TOPOLOGICALLY DISTINCTNumber of crossing different in parity

  • SOI + Magnetic field + superconductivity

    Y. Oreg et al. PRL(2010); R. M. Lutchyn et al PRL (2010);

    Ener

    gy

    Momentum

    B < B critical B = B critical B > B critical

  • MajoranaEdge States

    TRIVIAL TRIVIALTOPOLOGICAL

    Inverted band structureNon-Inverted band structure Non-Inverted band structure

    Topology & bandstructure in 1D

    Y. Oreg et al. PRL(2010); R. M. Lutchyn et al PRL (2010);

  • Majorana wires

    Rokhinson et al. Nat. Phys. (2012) Mourik et al., Science (2012)Das et al., Nat. Phys. (2012)(Also: Deng et al. Nano Lett. (2012), van Harlinegen

    group and C. Marcus groups (2013), and others )

    Zero bias peak in tunneling spectroscopy

  • Majorana wires

    Rokhinson et al. Nat. Phys. (2012) Mourik et al., Science (2012)Das et al., Nat. Phys. (2012)(Also: Deng et al. Nano Lett. (2012), van Harlinegen

    group and C. Marcus groups (2013), and others )

    Zero bias peak in tunneling spectroscopy

  • 𝐻𝐻 = 𝐻𝐻𝐵𝐵𝐵𝐵𝐵𝐵 + 𝐵𝐵 𝑆𝑆 � 𝑠𝑠

    Dens

    ity o

    f sta

    tes

    Energy-E +E

    Classical spin in a superconductor

    Yu-Shiba-Rusinov states for a single atom

    Mn, Gd on Nb Yazdani et al., Science (1997)Cr, Mn on Pb, Ji et al., PRL (2008)

    0

    2ΔYu APS (1965), Shiba PTP (1968) , Rusinov JETP (1969), Balatsky et al RMP (2006)

    TOPOGRAPHY

    dI/dV conductance (at 1.07mV for the gap 1.35meV)

    18 Å

    s-wave superconductor

  • s-wave superconductor

    STM tip

    Chain of magnetic atoms on the superconductor

    Magnetic atom

    • Suitable for STM• Can be disorder free

    Magnetism + Superconductivity Majorana proposals:Choy et. al (PRB 2011)Flensberg et. al (PRB 2011)Martin and Morpurgo (PRB 2012)

    Spin-orbit coupling

  • s-wave superconductor

    STM tip

    Chain of magnetic atoms on the superconductor

    Magnetic atom

    • Suitable for STM• Can be disorder free

    Magnetism + Superconductivity Majorana proposals:Choy et. al (PRB 2011)Flensberg et. al (PRB 2011)Martin and Morpurgo (PRB 2012)

  • Majorana fermions and magnetic texture

    Kjaergaard, Wӧlms, Flensberg (PRB 2012)Nadj-Perge, Drozdov, Bernevig, Yazdani (PRB 2013)

    See also: Martin and Morpurgo (PRB 2012); Glazman (PRB 2013), and others ..

    Nakosai, Tanaka, Nagaosa (PRB 2013)Klinovaja, Stano, Loss (PRL 2012)

  • More than one band –Tight binding model

    Momentum (π/a)

    0 1-1

    Ener

    gy (e

    V)

    -4

    -3

    -2

    -1

    0

    1

    J

  • More than one band –Tight binding model

    Momentum (π/a)

    0 1-1

    Ener

    gy (e

    V)

    -4

    -3

    -2

    -1

    0

    1

    J (eV)0 1 2 4

    μ(e

    V)

    -3

    -2

    -1

    0

    1

    2

    3

    JFe

    J

  • New Generation of High-Resolution STM at 1.4 Kintegrated STM/Growth/vector-field

    in situ growth capabilitySTM head: dual sample holderMisra et al. Rev. Sci. Inst. (2013)

    Assembled by:

    Ilya Drozdov

    Jungpil Seo

  • Experimental requirements

    1) Atomically flat superconducting substrate

    2) Magnetic atoms

    3) Spin-orbit coupling (or spin texture)

  • Superconducting Pb (110) substrate

    Topographic image – Pb(110)

    Point spectrum

    a=4.95Å

    Tc=7.2K, ξ=830A, Hc=80mT, λL=370A -10 -8 -6 -4 -2 0 2 4 6 8 100

    1

    2

    3

    Diffe

    rent

    ial c

    ondu

    ctan

    ce (a

    .u)

    Energy (meV)

    Δ=1.35 meVT=1.46K

    BCS fit

    Bias V

    Pb(110)

    VacuumW Tip

    100Å

  • Fe atomic chain growth on Pb substrate

    Topographic image

    200 Å

    0

    20

    Heig

    ht (Å

    )

    Total chain length up to 800 Å (~ 380 atoms)“Clean” segments up to 150 Å (~ 70 atoms)

    50Å

    50Å

    50Å

  • 20 Å

    Single atom wide chains on Pb(110) substrate

    Corrugation: fitting Fe atoms onto Pb

  • Atomic cains on Pb(110) substrate – DFT

    1) Chains form zig-zag structure2) Corrugation periodicity reproduced3) Expected height matches experiment

    Cut across the chain Cut along the middle of the chain

    Heig

    ht (Å

    )

    Distance (Å)

    0

    5

    10

    15

    0 10 20 0 10 20Distance (Å)

    Heig

    ht (Å

    )

    0

    5

    10

    15

    Charge density (10-4e/aB3)0 1.5

  • Point spectrum Experiment vs DFT modeling

  • Spin-polarized measurements

    B B

    Antiferromagnetic Cr tip

    Antiferromagnetic Cr tip

    B = -1 T B = +1 T

  • Background subtracted

    B (T)-1 -0.5 0.5 10

    0.5

    1.0

    1.5

    2.0

    2.5

    dI/ d

    Von

    cha

    in –

    dI/ d

    Von

    sub

    stra

    te (n

    S)

    Fe chains on Pb(110): Spin-polarized measurements

    Most likely tip switching (at ±0.25T)

    Average conductance on the chain

  • 3.1

    3.2

    -1 -0.5 0 +0.5 +1B (T)

    dI/d

    V(+3

    0meV

    ) (a

    .u.)

    Spin-polarized tip on the Pb(110): Hints of spin-orbit coupling

    Consistent with strong SOI at the Pb surface

    B B

    Experimental signature:Tunneling suppressed when Tip polarized out of plane (Spins in plane)

    Pb –Heavy element (Z= 82, A=204-208) Strong SOI expectedSymmetry broken at the surface

    Similar experiment in 2DEG GaAs:Moser et al, Phys Rev. Lett. 99, 056601(2007)

  • Experimental requirements

    1) Atomically flat superconducting substrate

    2) Magnetic atoms (break spin degeneracy)

    3) Spin-orbit coupling in substrate (to enable p-wave pairing)

    HOW DO STATES INSIDE SUPERCONDCTING GAP LOOK LIKE?????

  • Spectroscopy of an atomic chain

    515Å

  • Spectroscopy of an atomic chain

    515Å

    130Å 150Å

    0

    3

    dI/dV (a.u.)

    0

    3

    dI/dV (a.u.)

  • Spectroscopy of an atomic chain

    515Å

    130Å 150Å

    Voltage (mV)-5 0 50

    1

    2

    3

    dI/d

    V(a

    rb. u

    nits

    ))

    -5 0 50

    1

    2

    3

    4

    5

    Voltage (mV)dI

    /dV

    (arb

    . uni

    ts))

  • +0.44mV-1.28mV -0.44mV +0.64mV-0.64mV +1.04mV

    Spatial extent of the density of the states: another example

    100Å

  • +0.44mV0mV-1.28mV -0.44mV +0.64mV-0.64mV +1.04mV

    Spatial extent of the density of the states: another example

    100Å

    Zero bias peak feature localized on the scale of a 1nm

  • Recall Shiba states

    Localization length of MQP in an atomic chain

    |ψ (r)|2 ~ 1/r2ψ (r)∝kFr

    2π e-r/ξ

    ξ~500-1000Å λF/2=2-3Å

    Realistic model of imbedded Fe chain calculations show atomic scale localization of

    Majorana (not a pure 1D chain)

    J. Li, H. Chen et al, Phys. Rev. B 90, 235433 (2014)

    Renormalization of vF due to d-band/Shiba hybridization

  • Zero bias peak at the chains ends

    Energy (meV)

    50

    100

    150

    -5 0 5

    end 1 bulk

    dI/d

    V(n

    S)

    end 1

    bulk

    bulk

    -5 0 525

    50

    75

    dI/d

    V(n

    S)

    end 2 bulk

    L

    HdI/dV

    -5 0 5

    0

    50

    100

    Dis

    tanc

    e (Å

    )

    -5 0 5Energy (meV)

    0

    50

    100

    Dis

    tanc

    e (Å

    )

    spectroscopic linecutssubstrate

    substrate

    end 2

  • Kondo effect? ZBP due to superconductivity?

    Energy (meV)

    -5 0 5

    0

    40

    80

    Dis

    tanc

    e (Å

    )

    B = 0

    Energy (meV)

    -5 0 5

    0

    40

    80 L

    HdI/dV (a.u.)

    B = 100mT > BcStates are clearly related to superconductivity!

    Note: ZBP end state separate from the Shiba bands which also change at the edge

  • Current bound on ZERO with 90μeV resolutionFactor of 5 improvement from 1.4K

    Pb at 20mKT_electrons=250mK

    Predicted two gaps in Pb

    End of chainMidchain avg.

    90 μV

    Splitting < 45μeV

    Ben Feldman

    Mallika Randeria

    Ilya Drozdov

  • Imbedding the Fe Chains further in Pb1.4K measurements

    Fe chain

    Topo (5mV, 100pA) Conductance @ 0V

    Pb SubstrateT = 1.4 K

    End of chainMid-chainMid-chain (2)Pb background

    Pb MQP

    Fe Chain

    Pb overlayers

    in-gap statesYonglong Xie

    Sangjun Jeon

  • Better energy resolution using superconducting tip

    Katarina Franke’s group FU Berlin,ArXiv: 1507.03104

    Also: Ernst Mayer’s group Basel,ArXiv: 1505.06078

  • Summary

    Experimental progress:

    Magnetic chains on superconductor

    Spin polarized measurement:- (Modulated) Ferromagnetism- SOI present

    Observed end states at zero bias:- Reproducible on many wires- Related to Magnetism and Superconductivity - Consistent with FM + SOI scenario for Majorana fermions

  • THANK YOU!QUESTIONS?

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28Slide Number 29Slide Number 30Slide Number 31Slide Number 32Slide Number 33Slide Number 34Slide Number 35Slide Number 36Slide Number 37Slide Number 38Slide Number 39Slide Number 40Slide Number 41Slide Number 42Slide Number 43