Magnetic Hyperthermiausers.auth.gr/agelaker/index_htm_files/Angelakeris3-PAM3...Hyperthermia differs...

30
M. Angelakeris : Magnetic Hyperthermia: A versatile platform for heat - triggered modalities 1 /30 PHYSICS AUTh - Greece PAMS-3 3 rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran Magnetic Hyperthermia: A versatile platform for heat-triggered modalities Principle Parameters Conditions Functions M. Angelakeris, associate professor Department of Physics, Aristotle University 54124, Thessaloniki-Greece [email protected] http://multigr.physics.auth.gr

Transcript of Magnetic Hyperthermiausers.auth.gr/agelaker/index_htm_files/Angelakeris3-PAM3...Hyperthermia differs...

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Magnetic Hyperthermia:

    A versatile platform for heat-triggered modalities

    Principle

    Parameters

    Conditions

    Functions

    M. Angelakeris, associate professorDepartment of Physics, Aristotle University

    54124, Thessaloniki-Greece

    [email protected]

    http://multigr.physics.auth.gr

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Introduction-Heat treatmentsPrinciple

    Parameters

    Conditions

    Functions

    1891: A century ago, Dr. William Coley an innovative New York surgeon induced

    a fever in the body of a cancer patient to stimulate the immune response and

    cause cancer remission.

    Coley’s toxins: Bacteria used to treat patients with a variety of types of cancer

    up until the early 1950s. More than 1,000 patients over 40 years.

    “What medicine cannot cure,

    iron (the knife) cures;

    what iron cannot cure, fire cures ;

    what fire does not cure, is to be considered incurable”

    Hyperthermia is elevated body temperature due to failed thermoregulation that occurs when

    a body produces or absorbs more heat than it dissipates.

    Hyperthermia differs from fever in that the body's temperature set point remains unchanged.

    500 BC: Hippocrates

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 3 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Introduction-Hyperthermia typesPrinciple

    Parameters

    Conditions

    Functions

    Hyperthermia: Treatments at temperatures of 41–45 ◦C

    for up to few hours—actually denoted as

    hyperthermia—need a combination with other assisting

    toxic agents (mostly irradiation or chemotherapy) for

    reliable damage of tumor cells.

    Local hyperthermia: the local temperature increase with respect to standard temperature of the human

    body is considered to be therapeutically useful over a relatively broad temperature range where different

    mechanisms of cell damaging occur with increasing temperature.

    Local intracorporal heat generation by: microwave radiation, capacitive or inductive coupling of

    radiofrequency fields, implanted electrodes, ultrasound, lasers.

    Thermoablation: aims for the thermal killing

    of all tumor cells by applying temperatures

    in excess of at least 50 ◦C in the tumor

    region for exposure times of at least few

    minutes.

    Whole body hyperthermia: the

    systemic temperature has to be

    carefully controlled to ~41.8 ◦C

    by a heat bath.

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 4 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Magnetic HyperthermiaPrinciple

    Parameters

    Conditions

    Functions

    Magnetism + hyperthermia:

    1957: Gilchrist and others proposed the use of magnetic materials in

    hyperthermia.

    Today: MPH: Magnetic Particle Hyperthermia: The use of magnetic

    nanoparticles improves hyperthermia cancer treatment.

    Hyperthermia vs cancer:

    Many tumors thrive in a hypoxic environment in which the

    oxygenation of the tumor is much lower than in normal tissue.

    Because tumors cannot dissipate heat as quickly as healthy tissue, they

    can get hotter than that tissue if enough heat is applied.

    Hyperthermia at relatively low levels — as in the early clinical use of

    thermal medicine — ends up increasing the amount of blood flow and

    oxygenation of the tumor, making it more sensitive to radiation and

    chemotherapies.

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 5 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    Functions

    Field Frequency: 100-1000 kHz

    Field Amplitude: 10-100 kA/m

    Magnetic Hyperthermia-Setup

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 6 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Magnetic hyperthermia-MechanismsPrinciple

    Parameters

    Conditions

    Functions

    Γ=KV/kBT

    A=αμοMSHC

    Co

    erc

    ive

    fie

    ld

    Su

    pe

    rpar

    amag

    ne

    tism

    ferromagnetism

    monodomain multidomain

    Particle Diameter

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 7 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsMagnetic hyperthermia-Parameters

    Magnetic losses

    Hysteresis losses

    ~2 K

    Néel relaxation

    τΝ=τ0eKV/kT

    Brown relaxation

    τΒ=4πnrh3/kT

    Viscous losses

    ~2πμ0ΜRHV

    Induced Heating Power

    ~ H2 f2 D2

    Effective relaxation

    τeff=τΝτΒ/(τΝ+τΒ)

    Ferromagneticparticles

    Superparamagneticparticles

    Magnetic losses

    to be utilized for heating

    different processes of

    magnetization reversal

    different manners on

    the applied magnetic AC: field amplitude and frequency.

    the structure: mean size, width of size distribution, particle

    shape and crystallinity.

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 8 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Magnetic hyperthermia-ProcessPrinciple

    Parameters

    Conditions

    Functions

    Obtained data corrected for heat losses

    Coil heating effect

    Environmental losses

    ΔΤ/Δt

    Τ=Το+be-Kt

    Specific Loss Power

    (SLP) calculation

    J. Magn. Magn. Mater. 323 775-780 (2011).J. Appl. Phys. 114, 103904 (2013).

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 9 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsMagnetic hyperthermia-Parameters

    Size: 10 < D < 30 nm

    Saturation Magnetization: 60 < Ms < 100 A m2/kg

    Anisotropy: 5 < Keff < 40 KJ/m3

    heat⇔SLPmax

    Material

    DosageConditions

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 0 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Sizes

    28

    SLP

    (W/g

    Fe) SPM

    maximum

    FM maximum

    22 KA/m

    Fe3O4: IEEE Trans. on Magn. 48 1320,( 2011).MnFe2O4: Dalton Trans. 44 5396 (2015).

    further increase of particle size:

    MonodomainMultidomain

    coercivity & remanence decrease

    decrease of hysteresis losses

    Iron oxide particles

    below ~ 20 nm become

    superparamagnetic

    a maximum of hysteresis losses

    may be expected

    for single domain iron oxide particles

    near ~ 30 nm

    PSPM = μ0πf χ’’H2

    HdMf0 FMP

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 1 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Sizes

    R. Hergt et al. J. Phys.: Condens. Matter 20 385214 (12pp) (2008).

    Narrow size distribution (w=0.7 nm)

    Broad size distribution (w=7 nm)

    Reduction of field amplitude below saturation

    decrease of heat output.

    The amount of decrease depends specifically on the

    mean size and the distribution width.

    Broad size distribution not very sensitive to changes

    of mean size.

    Narrow size distribution depression of losses for

    medium sizes.

    The maximum loss may be gained only if Ho > Hc is above

    the coercivity of the majority of particles.

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 2 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Shapes

    Tuning of magnetic anisotropy via shape anisotropy in magnetite particles

    Scientific Reports | 3 : 1652 | DOI: 10.1038/srep01652 (2013).

    -1.0 -0.5 0.0 0.5 1.0

    -100

    -50

    0

    50

    100

    20 nm spheres

    20 nm squares

    40 nm squares

    Ma

    gn

    eti

    za

    tio

    n (

    Am

    2/k

    g)

    Magnetic field (T)

    300 K

    50 nm

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 3 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Combinations

    single-core

    core-shell arrays

    50 nm

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 4 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Combinations

    Metallic Fe

    hard/softinterface

    Fe3O4 or γ-Fe2O3

    Tuning the magnetism of ferrite nanoparticles

    Sample Target (%wt) Chamber’s

    pressure/Gas

    Composition (%wt) XRD/Mossbauer analysis Average Size

    (nm)

    Morphology*

    Fe Fe3O4 Fe FeO Fe3O4 γ-

    Fe2O3 Core/Shell(s)

    (nm) Scheme

    F01 100 - 70 torr/Ar 79.4

    77.7 -

    20.6

    22.3 50 44/3

    F02 75 25 70 torr/Ar 58.6

    69.8

    10.1

    5.2

    31.3

    25.0 52 42/2/3

    F03 75 25 50 torr/Ar 53.6

    67.5

    11.8

    13.1

    34.6

    -

    -

    19.3 33 25/1/3

    F04 50 50 70 torr/Ar 12.9

    11.1

    14.7

    8.4

    72.4

    80.6 48 24/4/8

    F05 - 100 80 torr/Ar 9.1

    5.9 -

    90.9

    94.1 78 30/24

    F06 - 100 80 torr/Ar-O2 - -

    4.6

    -

    58.0

    100

    37.4 43 43/-

    Sample Target (%wt) Chamber’s

    pressure/Gas

    Composition (%wt) XRD/Mossbauer analysis Average Size

    (nm)

    Morphology*

    Fe Fe3O4 Fe FeO Fe3O4 γ-

    Fe2O3 Core/Shell(s)

    (nm) Scheme

    F01 100 - 70 torr/Ar 79.4

    77.7 -

    20.6

    22.3 50 44/3

    F02 75 25 70 torr/Ar 58.6

    69.8

    10.1

    5.2

    31.3

    25.0 52 42/2/3

    F03 75 25 50 torr/Ar 53.6

    67.5

    11.8

    13.1

    34.6

    -

    -

    19.3 33 25/1/3

    F04 50 50 70 torr/Ar 12.9

    11.1

    14.7

    8.4

    72.4

    80.6 48 24/4/8

    F05 - 100 80 torr/Ar 9.1

    5.9 -

    90.9

    94.1 78 30/24

    F06 - 100 80 torr/Ar-O2 - -

    4.6

    -

    58.0

    100

    37.4 43 43/-

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 5 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Combinations

    MFe2O4, M=Mn, Co

    hard/softinterface

    MFe2O4, M=Co, Mn or Fe

    J. Magn. Magn. Mater. 81 179 (2015)J. Mag. Magn. Mater. 415, 20 (2016)RSC Adv., 6, 53107 (2016)RSC Adv. 6, 72918 (2016)

    Tuning the magnetism of ferrite nanoparticles

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 6 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Combinations

    Tuning the magnetism of ferrite nanoparticles

    Cluster size dependent magnetic losses

    50 nm

    100 nm

    40 50 60 70 80 90 100100

    200

    300

    400 SLP

    SL

    P (

    W/g

    )

    Size (nm)

    H=25kA/m -f=765kHz

    100

    200

    300

    400

    H.L.

    Hyste

    resis

    Lo

    sse

    s (W

    /g)

    50 nm

    Mat. Sci. Eng. C 58, 187–193 (2016)

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 7 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    FunctionsTypes of materials-Combinations

    Tuning the magnetism of ferrite nanoparticles

    Scientific Reports, Nature, accepted for publication, 2016

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 8 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Conditions-Field effectPrinciple

    Parameters

    Conditions

    Functions

    Out of plane component of ac susceptibility: χ’’=χοωτ/(1+(ωτ)2)

    experimental time constant: ω-1=(2πf)-1

    ω-1=τ: determination of TBω-1>τ : thermal relaxation takes place

    ω-1

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 1 9 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Conditions-Field effectPrinciple

    Parameters

    Conditions

    Functions

    H

    (kA m-1)

    f

    (kHz)

    Hf

    (109A m-1 s-1)Reference

    18 100 1.8 1

    10 410 4.1 2

    32 183 5.9 3

    19 435 8.3 4

    37.3 500 18.7 5

    A restriction limits the range of frequency that can be

    employed, considering the safety and patient tolerance

    limits below which the eddy current effects are

    affordable.

    Originally, a maximum field - frequency product

    Hf ≤ 4.85 × 108 A m-1s-1 called the Atkinson-Brezovich

    limit was proposed in 1984, based on micron-sized

    magnetic implants.

    However, up to date practice, has shown that such a

    limitation is rather stringent and should be reconsidered

    by including both the nanoscale character of the particles

    and the treatment itself.

    1. B. Thiesen & A. Jordan (1st clinical magnetic hyperthermia

    application) Int. J. Hyperthermia, September 2008; 24(6): 467–474

    2. R. Hergt et al. J. Magn. Magn. Mater. 2005, 293, 80–86.

    3. E. Alphandéry et al. ACS Nano 2011, 5 (8), 6279–6296.

    4. S. Kossatz et al. Pharm Res (2014) 31:3274–3288

    5. H. Mamiya, Journal of Nanomaterials 2013, Article ID 752973

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 0 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Conditions-Concentration effectPrinciple

    Parameters

    Conditions

    Functions

    140 160 180 200 220 240 260 2800

    100

    200

    300

    400

    500

    600

    Ø18 nm

    c/7

    c

    Ø10 nm

    c/7

    c

    SA

    R (

    W/g

    Fe)

    H (Oe)

    Iron Oxide MNPs

    c=1.2 mg/ml

    ΔSAR=255

    ΔSAR=328

    SLP

    ΔSLP

    ΔSLP

    SLP decreases with increasing concentration

    Static susceptibility decrease

    Néel relaxation time decrease

    faster τ dominates

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 1 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Conditions-Concentration effectPrinciple

    Parameters

    Conditions

    Functions

    J. Appl. Phys. 108, 073918 (2010).

    Adv. Funct. Mater. DOI: 10.1002/adfm.201200307, 2012.

    Sci.Rep. 2016, Accepted for publication

    Single-domain metallic Fe MNPs

    Effective uniaxial magnetic anisotropy Keff

    Uniform magnetization and composition

    decrease in the initial susceptibility with increasing c, so that the

    stronger the interaction between particles, the lower the SLP.

    SLP saturates to a constant value for large fields

    the saturation taking place at larger values for larger concentrations.

    Ha (larger the higher the concentration) gives the upper limit for the

    field amplitude for larger SLP.

    Ha=2 K/MSanisotropy field

    SLP

    /f (

    J/k

    g)

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 2 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Conditions-Field effectPrinciple

    Parameters

    Conditions

    Functions

    In-vitro Hyperthermia

    Versatile in-vitro hyperthermia protocol

    (two hyperthermia runs separated by a

    48 h incubation stage).

    Single-pulse or a multi-pulse AC field

    exposure with tunable time duration in

    order to maintain the cells as long as

    possible between 41 and 45oC, i.e. the

    hyperthermia region.

    Check in-vitro performance in human

    osteosarcoma cell line (SaOs-2) and in two

    reference healthy cell lines (C2C12 skeletal

    myoblasts and 3T3-L1 fibroblast-like

    preadipocytes).

    (a) (b) (c)

    0 200 400 600

    41

    43

    45

    Te

    mpe

    ratu

    re (

    oC

    )

    Time (sec)

    Co+Fe

    Mn+Fe

    (b)

    0 200 400 600 800 1000

    34

    36

    38

    40

    42

    44

    46

    hyp

    ert

    he

    rmia

    leve

    ls 4

    1-4

    5oC

    Control

    Mn+Fe

    Co+Fe

    Te

    mp

    era

    ture

    (oC

    )

    Time (sec)

    Mn+Fe Co+Fe Control(a)

    0 200 400 600 800 1000

    34

    36

    38

    40

    42

    44

    46 Mn+Fe Co+Fe Control

    Control

    Tem

    pera

    ture

    (oC

    )

    Time (sec)

    Co+Fe

    Mn+Fe

    hyp

    ert

    he

    rmia

    leve

    ls 4

    1-4

    5oC

    (e)

    0 200 400 600

    41

    43

    45

    Mn+Fe

    Co+Fe

    Te

    mp

    era

    ture

    (oC

    )

    Time (sec)

    (f)

    Saos-2 sample Prusian Blue stained

    (a) control sample

    (b) with Mn+Fe MNPs

    (c) With Co+Fe MNPS

    Int J Hyperthermia 2016, 32(7):778-85.

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 3 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Functions-Tuning hyperthermia responsePrinciple

    Parameters

    Conditions

    Functions

    K. L. McNerny et al. J. Appl. Phys. 107 09A312 (2010).

    Fe27Pt73, Ni28Pd72, TC~45oC

    Ni alloys: Ni-Cu, Ni-Pd, Ni-Pt

    Fe-Pt alloys, Co-Pd alloys

    Ferrites: Fe1-xMnxFe2O4

    Magnetic nanoparticles possessing low Curie temperatures

    (TC) offer the possibility for self regulated heating of cancer

    cells, where the TC acts as an upper limit to heating to

    prevent damage to neighboring healthy tissues.

    Once they reach the Curie temperature, the Ms drops to zero

    and heating stops.

    Thus if the Curie temperature is fixed by judicious selection of

    particle composition and size hyperthermia response is

    eventually fixed below a certain temperature level preventing

    excessive temperatures.

    Self-regulated hyperthermia

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 4 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    Functions

    To investigate the usefulness of a method for controlling the

    temperature rise in magnetic hyperthermia (MH) using an external

    magnetic field to manipulate the energy dissipation of magnetic

    nanoparticles in the presence of both fields

    Functions-Tuning hyperthermia response

    High-Performance Iron Oxide Nanoparticles forMagnetic Particle Imaging – Guided Hyperthermia(hMPI)

    Appl. Field (f=380kHz, Ho=16kA/m)

    To mimic the magnetic environment during an MPI imaging Process -

    external magnetic field gradient (0.47T/m gradient across the

    hyperthermia coil with a null point near the center

    L. M. Bauer et al. Nanoscale, 2016,8, 12162-12169

    Control of the temperature rise in magnetichyperthermia with use of an external static magneticfield K. Murase et al. Phys Med. 2013;29(6):624-30

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 5 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Functions-NanoplatformsPrinciple

    Parameters

    Conditions

    Functions

    A. Ito et al. Cancer Immuniol. Immunother. 55 320-328 (2006).

    Interaction with the Immune System

    Hyperthermia based controlled drug-delivery

    Hyperthermia & Diagnosis

    Μultifunctional NPs with a γ-Fe2O3 core and

    labeled with a targeting agent LHRH

    (Luteinizing Hormone Release Hormone)

    ensured specific targeting to cancer cells of

    breast and prostate in addition to having a

    two-photon fluorescent probe to aid in

    optical tracking.

    Delivery through Bond Breaking (DBB)

    Delivery through Enhanced Permeability (DEP)

    C. S. S. R Kumar et al. Advanced Drug Delivery Reviews 63 789-808 (2011)

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 6 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    Functions

    Magnetic-hyperthermia triggered drug release system

    RSC Adv. 3, 24367 (2013).

    Functions-Nanoplatforms

    Highly faceted IOs

    Encapsulation in biodegradable block copolymers

    Hyperthermia & Taxol drug release

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 7 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Principle

    Parameters

    Conditions

    Functions

    The major advantage of such a study is that an optimum system

    directly addresses the multifunctional role in modern

    theranostics and may be further implemented in therapies with

    faster steps since major tasks have already been undertaken.

    A series of commercially available magnetic iron oxide nanoparticles (Nanomag®-D-spio,

    FeraSpin R and FluidMag-DX) as multifunctional biomedical carriers combining their initial

    modality (i.e. MRI contract agents or drug carriers) with heat triggered actions.

    J. Magn. Magn. Mater. 380 360-364 (2015).

    EPJ Web of Conferences 75, 08002 (2014).

    Functions-Nanoplatforms

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 8 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Functions-Multimodal Cancer RegimensPrinciple

    Parameters

    Conditions

    Functions

    Radiation sensitizers

    Chemo-therapeutic

    cocktails

    Surgery

    Targeted therapeutic

    agents

    Platinum therapeutics

    Multimodal

    Regimens

    • Radiation and chemotherapy induce

    DNA damagedouble strand breaks oxygen radicals

    • Hyperthermia increases

    • oxygenation levels in cancer cells

    • Hinders the ability of cancer cells to sense DNA

    destruction

    • Impedes DNA repair mediators

    Hyperthermia synergizes with

    Radiation therapy

    Chemotherapy: (arsenic trioxide, tirapazamine, cisplatin)

    + hyperthermia

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 2 9 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Magnetic hyperthermia-Questions Principle

    Parameters

    Conditions

    Functions

    In vivo studies

    Cell: 10-100 μm,

    Virus: 20-450 nm

    Gene: 2nm wide, 10-100 nm long

    Hydrodynamic parameters

    Blood flow rate

    Ferrofluid concentration

    Infusion route

    Circulation time

    Psysiological parameters

    Tissue depth & perfusion

    Tumour volume

    Strength of carrier/binding in varying enrnoment

    Side-effects of high frequency magnetic fields

    Stimulation of peripheral or skeletal muscles

    Possible cardiac stimulation and arrythmia

    Non-specific inductive heating of tissue

    Circulation & Accumulation

    Circumvention of rapid kidney clearance and reticular endothelial system (RES)

    Design to avoid rapid opsonization and subsequent macrophage phagocytosis

    Slow accumulation through the leaky vasculature in a variety of lesions

    Metallic Iron upon metabolism – oxidative stress through harmful reactive oxygen species

  • M . A n g e l a k e r i s : M a g n e t i c H y p e r t h e r m i a : A v e r s a t i l e p l a t f o r m f o r h e a t - t r i g g e r e d m o d a l i t i e s 3 0 / 3 0P H Y S I C SA U T h - G r e e c ePAMS-3

    3rd PAM International School on Application of Nanomaterials in Medicine, 2-4 November, 2016, Tehran, Iran

    Colleagues

    M. Farle & group members, Germany

    Ll. Balcels, C. Boubeta, D. Serantes, Spain

    K. Chliclia, K. Spriridopoulou, M. Tziomaki, M. Yavropoulou, Greece

    K. Dendrinou-Samara, O. Kalogirou, T. Samaras, AUTh-Greece

    Group members

    K. Simeonidis, Dr.

    D. Sakellari, Dr.

    A. Makridis, PhD student

    E. Mirovali, PhD student

    N. Maniotis, PhD student

    Acknowledgements