Magnetic Fields in Matter Chapter 6. 2 Magnetization.

57
Magnetic Fields in Matter Magnetic Fields in Matter Chapter 6

Transcript of Magnetic Fields in Matter Chapter 6. 2 Magnetization.

Page 1: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

Magnetic Fields in MatterMagnetic Fields in Matter

Chapter 6Chapter 6

Page 2: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

2

Magnetization Magnetization

aIm

Page 3: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

3

Magnetization Magnetization

Bm

x sinmB

x sinIabB

x sin)sinIbB(a

x sinaFFrN

torque

o

90

Page 4: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

4

Magnetization Magnetization

Torques and Forces on Magnetic Torques and Forces on Magnetic DipolesDipolesrotationrotation

Page 5: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

5

Magnetization Magnetization

randomrandom

paramagnetismparamagnetism

DiamagnetismDiamagnetism

External B fieldExternal B field

FerromagnetismFerromagnetism

Page 6: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

6

Magnetization Magnetization

Force on magnetic dipoleCase of uniform field (B=constant):

0 B)d(I)Bd(IF

00

Page 7: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

7

Magnetization Magnetization

x

y

x )(cosB)R(IBdIF 2

Case of nonuniform field (B ≠ constant):

I

B

Fringing field

Page 8: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

8

Magnetization Magnetization

)Bm(F

}z

By

y

Bz{I

}y

B)z (

z

B)y ({I

)]}z,,(B)z,,(B[)z dz(

)],y,(B),y,(B[)y dy({I

)}z,,(B)z dz(),y,(B)y dy(

)z,,(B)z dz(),y,(B)y dy[(I

BIdFd

2

000

000

000

000

I

y

z

x

Page 9: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

9

Magnetization Magnetization

x

xxx

xzyx

zyxzyx

Bm

}z

Bz

y

By

x

Bx{m

}z

Bz

z

Bx

y

Bx

y

By{m

}

z

B

z

B

z

B

zyx

y

B

y

B

y

B

zyx

{m

}z

By

y

Bz{IFd

010100

2

I

y

z

x

x mm )Bm(F

)]Ep(F[

Page 10: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

10

Magnetization Magnetization

Electric dipole

-

+

p

Magnetic dipole

S

N

m

Gilbert model

Im

Ampere model

Page 11: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

11

Magnetization Magnetization

Effect of magnetic field on atomic orbits

z evR)z R)(R

ev(SIm

moment dipole orbitalR

ev

T

eI

2

1

2

2

2

Page 12: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

12

Magnetization Magnetization

R

vm

R

eFF e

ocE

2

2

2

4

1

e

e

ee

eo

cBE

m

eRBv

vv

v

m

eRB

)vv)(vv(R

m

R

vvmBve

R

vmBve

R

e

FFF

2

2

4

1

22

2

2

2

only electric forceonly electric force

add magnetic fieldadd magnetic field

)vvvvv( 0

Page 13: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

13

Magnetization Magnetization

z evRm

m

eRBv

e

2

1

2

when B is turn on,the electron speeds up.when B is turn on,the electron speeds up.

Bm

RezB

m

RezR)v(em

ee

442

1 2222

Page 14: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

14

Magnetization Magnetization

.volume unit per moment dipole magneticM

20

4 R

Rm)r(A

d

R

R)r(M)r(A

20

4

R

x

y

z

M

r

r

)z,y,x(P

Page 15: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

15

Bound Currents Bound Currents

d )]

R()r(M[d

R

R)r(M)r(A

1

440

20

23

2322

222

2

2

1

11

R

R

R

R

)zz()yy()xx(

]z)zz(y)yy(x)xx[()(

)zz()yy()xx()z

zy

yx

x(

R

/

Page 16: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

16

Bound Currents Bound Currents

d ]R

)r(M[d )]r(M[

R

d )]R

()r(M[)r(A

1

4

1

4

0

0

21 p @ )v.(eq ,)f(A)A(f)Af(

]ad)r(M[R

d )]r(M[R

1

4

1

400

Page 17: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

17

Bound Currents Bound Currents

advd )v(

])adv([cd )]v[(c

)adv(cd )]v(c[

)adv(cd )]c(v)v(c[

ad)cv(d )cv(

theorem divergenceby

constantc where, cvv let

advd )v(

:proof

07151

21

p @ )..(eq ,

)AB(C)BA(C)AC(B)CB(A

p @ )iv.(eq ,)B(A)A(B)BA(

Page 18: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

18

Bound Currents Bound Currents

current bound surface: n MK

current bound volume: MJ

adR

)r(K d

R

)r(J

]ad)r(M[R

d )]r(M[R

)r(A

b

b

S

b

V

b

44

1

4

1

4

00

00

S

b

V

b adR

R)r(K d

R

R)r(J)r(B

20

20

44

--Using Biot-Savart law--Using Biot-Savart law

Page 19: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

19

Bound Currents Bound Currents

Exp 1: Exp 1: Find the magnetic field Find the magnetic field at the center at the center of a uniformly of a uniformly magnetized sphere.magnetized sphere.

Page 20: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

20

Bound Currents Bound Currents

Exp 1:Exp 1:

ˆ Msinr Mn MK

MJ

constantM, zMM where

adR

)r(K d

R

)r(J)r(A

b

b

S

b

V

b

0

4400

bK

ˆad

R

sinM)r(A

S 4

0

Page 21: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

21

Bound Currents Bound Currents

Exp 1:Exp 1:

bK

ˆsinR)R(vK

RR

),,r(

θθ

ˆ Msinr Mn MKb

MR

MB

03

2 236115 p@ ..Ex see

Page 22: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

22

Bound Currents Bound Currents

Exp 1:Exp 1:

Mz M

z dsinM

B

z bdb

)sinb)(sinM(

z b

)sinb(dIBd

00

0

30

3

20

3

20

3

2

3

22

2

2

z )za(

aI)z(B

/ 2322

20

2

d

a

R

z

222 zab, sinba

bK

b

)bd(sinMdKdI b

21865 p@ ..Ex see

Page 23: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

M n

)z,,(P 00

23

Bound Currents Bound Currents

Find the magnetic field of point Find the magnetic field of point PP..

MszMnMK

MJ

b

b

00

0

constantM, zMM 00

L

dI

zd

z

z]]R)Lz[(

Lz

)Rz(

z[

M

z]R)zz[(

)zz(M

z]R)zz[(

zdMRB

z]R)zz[(

zdMRz

]R)zz[(

dIRBd

//

L

/

L

/

//

2122212200

02122

00

0 23220

20

23220

20

2322

20

2

2

2

22

zdMzdKdI let b 0

Page 24: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

24

Bound Currents Bound Currents

]]R)Lz[(

Lz

)Rz(

z[

R

]R)zz[(

)zz(

R

]Ru[

u

Rcos

R

dsinR

cscR

dcscR

]Ru[

du

]R)zz[(

zd

//

L

/

Lz

z/

Lz

z /

L

/

212221222

021222

212222

2

33

2

2322

0 2322

1

1

11

1

2

1

2

1

2

1

LzuLz,zuz

zdduuzz

0

222222

2

1 cscR)(cotRRu

dcscRducotRu

)z,,(P 00

dI

zd

z

L

uu

RR

Page 25: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

25

Physical Interpretation of Bound Currents Physical Interpretation of Bound Currents

MtI MatIa

MVIam

nMKb

Mt

IK current surface b

When the magnetization is When the magnetization is uniformuniform::

Page 26: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

26

When the magnetization is When the magnetization is nonuniformnonuniform::

Physical Interpretation of Bound Currents Physical Interpretation of Bound Currents

dydzy

Mdz)]y(M)dyy(M[I

:directionx in

zzzx

y

Mda/I)J( :density current volume z

xxb

dzdyz

Mdy)]z(M)dzz(M[I

:directiony in

yyyx

z

Mda/I)J( :density current volume y

xxb

z

M

y

M)J( yzxb

MJb

0 MJb

Page 27: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

27

The Auxiliary Field H The Auxiliary Field H

M

fJ

fb JJJ

fenc

f

f

f

f

IdH

adJad)H(

JH

J)MB

(

)M(JJ)B(

law s'Ampere

0

0

1

MB

H

0

Page 28: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

28

The Auxiliary Field H

Exp 2: Exp 2: A long copper rod of radius A long copper rod of radius RR carries a uniformly carries a uniformly distributed (free) distributed (free) current current II. Find . Find HH inside and outside the rod. inside and outside the rod.

The Auxiliary Field H The Auxiliary Field H

Rs, ˆ s

I

Rs, ˆR

Is

H

Rs, I

Rs, R

sI

sH

Rs, I

Rs, )s)(R

I(

)ˆsd()ˆH(

IdH law s'Ampere by fenc

2

2

2

2

2

2

22

I

Page 29: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

29

Exp 2:Exp 2: The Auxiliary Field H The Auxiliary Field H

Rs, ˆ s

I

Rs, ˆ )MR

Is(

Rs, ˆ 0)s

I(

Rs, ˆ )MR

Is(

)MH(B

MBH

Rs, ˆ s

I

Rs, ˆ R

Is

H

0

0

2

2

2

2

12

2

0

20

0

20

0

0

2

Page 30: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

30

A Deceptive Parallel A Deceptive Parallel

JB

0

fJH

M)MB(H

0

1

Ampere law in vacuum :Ampere law in vacuum :

Ampere law in magnetic materials :Ampere law in magnetic materials : HB

0

Whereas ,the divergence of is not, in general, zero.Whereas ,the divergence of is not, in general, zero.0 B

H

Page 31: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

31

Boundary condition Boundary condition

)MM(HH

a)MM(a)HH(

ad)MH(adB

belowabovebelowabove

belowabovebelowabove

0

00

belowabove BB

a

n

nbelowH

aboveH

belowM

aboveM

Page 32: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

32

nKHH

KHH

KHH

IdH

fbelowabove

f//below

//above

f//below

//above

fenc

Boundary condition Boundary condition

)nK(BB belowabove

0

n

bf KKK

//aboveH

//belowH

Page 33: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

33

Linear and Nonlinear Media Linear and Nonlinear Media

tysceptibili magneticsu: HM mm

磁化率磁化率

Page 34: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

34

Linear and Nonlinear Media Linear and Nonlinear Media

materials cdiamagneti,

materials icparamagnet,

J)H(MJ

typermeabili: )(

HB

HHH)()MH(B

HM

m

m

fmmb

mr

rm

m

0

0

1

1

00

000

磁導率磁導率

Page 35: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

35

For linear isotropic homogeneous mediaFor linear isotropic homogeneous media

Electric Magnetic

)1( er )1( mr

PED 0

EP e

0

Er

0

E

MHB

00

HM m

Hr

0

H

Linear and Nonlinear Media Linear and Nonlinear Media

Page 36: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

36

Linear and Nonlinear Media Linear and Nonlinear Media

Exp 3: Exp 3: An infinite solenoid (An infinite solenoid (nn turns per unit length, current turns per unit length, current II) is ) is filled with linearfilled with linear material of susceptibility material of susceptibility χ χ mm. Find the magnetic field . Find the magnetic field inside the solenoid.inside the solenoid.

z InH InH

IdH

law s'Ampere by

fenc

ˆ nI)sH(nMK

current surface bound the

z nI)(H)(HB

mmb

mm

11 00

Page 37: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

37

Ferromagnetism Ferromagnetism

Ferromagnetic Materials : Fe, Co, Ni, Gd, Dy

domain

The domains range from about 10-12 to 10-8 m3 in volume and contain 1017 to 1021 atoms.

domain wall

Page 38: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

38

Ferromagnetism Ferromagnetism

Ferromagnetic domains. (photo courtesy of R. W. DeBlois)Ferromagnetic domains. (photo courtesy of R. W. DeBlois)

Page 39: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

39

)MH(B

0

Ferromagnetism Ferromagnetism

Hysteresis loopHysteresis loop

saturation

remanence

coercive

c

a g

b

d

f

e

Page 40: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

40

Hysteresis loopHysteresis loop

hard

soft

Ferromagnetism Ferromagnetism

Page 41: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

41

Page 42: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

42

Page 43: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

43

Page 44: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

44

Page 45: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

45

Page 46: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

46

Page 47: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

47

Page 48: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

48

Page 49: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

49

Page 50: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

50

Page 51: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

51

Page 52: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

52

Page 53: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

53

Page 54: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

54

Page 55: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

55

Page 56: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

56

In diamagnetic materials (bismuth 鉍 ): spin moments tend to be dominant and produce fields that oppose the external field. Thus, the internal magnetic field is reduced slightly compared to the external field.

If diople moments dominate slightly, then the internal field is increase slightly over the external field and the material is paramagnetic (tungsten 鎢 ).

Large diople moments are produced in certain regions or domains for the ferromagnetic materials (iron). A random domain alignment exists for virgin ferromagnetic material. When an external field is applied and then removed, a net alignment occurs given permanent magnetization and hysteresis effect . Alloys of some of the ferromagnetic materials are also ferromagnetic (alnico磁性合金 )

In ferrimagnetic materials, adjacent atoms develop unequal, but oppositely directed moments, allowing a rather larger response to external fields. From the point of view of engineering applications, the ferrites are very important ferrimagnetic materials. Ferries possess a very high resistance, and hence give very little eddy current loss at higher frequencies when used as transformer cores.

The magnetic tape used for audio and video recording is a superparamagnetic material and is composed of an array of small ferromagnetic particles.

Page 57: Magnetic Fields in Matter Chapter 6. 2  Magnetization.

57

The Auxiliary Field H The Auxiliary Field H