MAE200B_HW3

download MAE200B_HW3

of 11

Transcript of MAE200B_HW3

  • 7/25/2019 MAE200B_HW3

    1/11

  • 7/25/2019 MAE200B_HW3

    2/11

  • 7/25/2019 MAE200B_HW3

    3/11

  • 7/25/2019 MAE200B_HW3

    4/11

  • 7/25/2019 MAE200B_HW3

    5/11

  • 7/25/2019 MAE200B_HW3

    6/11

    FIGURES

    Figure 1- Problem 1

    Figure 2 Problem 2

  • 7/25/2019 MAE200B_HW3

    7/11

    Figure 3 Problem 3

    MATLAB CODE

    Contents

    PROBLEM 1

    PROBLEM 2

    PROBLEM 3

    %MAE 200B HW3

    %Laura Novoa

    PROBLEM 1

    clc

    clear all

    close all

    k = 0.1;

    a = 1;

    N = 50;

    %First 50 zeros of J0(x)

    z0=besselzero(0, 50, 1);

    http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%232http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%232http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%233http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%233http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%234http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%234http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%234http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%233http://c/Users/ldn/Documents/MATLAB/html/MAE200B_HW3.html%232
  • 7/25/2019 MAE200B_HW3

    8/11

    syms x

    u_inf = 1/2;

    f = sin(pi*abs(x)/a) - u_inf;

    %Fourier Bessel coefficients

    forj=1:N

    B(j)=double(int(f*x*besselj(0, z0(j)*x/a), 0, a));

    B(j)=2*B(j)/(a* besselj(1, z0(j)))^2;

    end

    %X ,T mesh for plotting

    [X,T] = meshgrid(0:0.01*a:a,0:.2:5);

    %Reconstruction of the function

    fsim=0;

    forj=1:N

    fsim = fsim + B(j)*besselj(0, z0(j)*X/a).*exp(-k.*(z0(j)/a).^2.*T);

    end

    U = u_inf + fsim;

    mesh(X,T,U)

    xlabel('r')

    ylabel('t')

    zlabel('u')

  • 7/25/2019 MAE200B_HW3

    9/11

    PROBLEM 2

    clear all

    clc

    close all

    k = 0.1;L = 1;

    N = 30;

    syms x

    f = 4.*abs(x)/L - 4.*(x/L).^2;

    %Fourier cosine coefficients

    forj=1:N

    B(j)= double(int(f*cos((j)*pi*x/L), -L, L))/L;

    end

    %X,T mesh for plotting

    [X,T] = meshgrid(0:0.01*L:L,0:.2:5);

    %Reconstruction of the function

    fsim=0;

    forj=1:N

    fsim = fsim + B(j)*cos((j)*pi*X/L).*exp(-k*((j)*pi/L). 2.*T);

    end

    B_o = int(f,-L,L)/L; % SS solution

    U = B_o/2 + fsim; % Accounts for the SS solution, i.e., if n=0

    mesh(X,T,U)

    xlabel('x')

    ylabel('t')

    zlabel('u')

  • 7/25/2019 MAE200B_HW3

    10/11

    PROBLEM 3

    clc

    clear all

    close all

    k = 0.1;

    a = 1;

    N = 10;

    %First 50 zeros of J0(x)

    z0=besselzero(0, 50, 1);

    z1=besselzero(1, 50, 1);

    z1_0 = [0; z1]; % concatenating 0 as z10

    syms x

    f = 4.*abs(x)/a - 4.*(x/a).^2;

    %Fourier Bessel coefficients

    forj=1:N

    B(j)=double(int(f*x*besselj(0, z1_0(j).*x/a), 0, a));

    B(j)=2*B(j)/(a.*besselj(0, z1_0(j))).^2;

  • 7/25/2019 MAE200B_HW3

    11/11

    end

    %X,T - mesh for plotting

    [X,T] = meshgrid(0:0.01*a:a,0:.2:5);

    %Reconstruction of the function

    fsim=0;

    forj=1:N

    fsim = fsim + B(j)*besselj(0,z1_0(j)*X/a).*exp(-k.*(z1_0(j)/a).^2.*T);

    end

    %u_inf = besselj(0,0);

    U = fsim;

    mesh(X,T,U)

    xlabel('r')

    ylabel('t')

    zlabel('u')

    Published with MATLAB R2015a

    http://www.mathworks.com/products/matlab/http://www.mathworks.com/products/matlab/http://www.mathworks.com/products/matlab/