Mae 331 Lecture 15

13
Transfer Functions and Frequency Response Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 Frequency domain view of initial condition response Response of dynamic systems to sinusoidal inputs Transfer functions Bode plots Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html Laplace Transform of Initial Condition Response Laplace Transform of a Dynamic System ! ! x(t ) = F !x(t ) + G !u(t ) + L!w(t ) System equation Laplace transform of system equation s!x( s ) "!x(0) = F !x( s ) + G! u( s ) + L!w( s ) dim(!x) = (n " 1) dim(!u) = (m " 1) dim(!w) = (s " 1) Laplace Transform of a Dynamic System Rearrange Laplace transform of dynamic equation s!x( s ) " F! x( s ) = !x(0) + G! u( s ) + L!w( s ) sI ! F [ ] "x( s ) = "x(0) + G" u( s ) + L"w( s ) !x( s ) = sI " F [ ] "1 !x(0) + G !u( s ) + L!w( s ) [ ] Initial Condition Control/Disturbance Input

description

aviations

Transcript of Mae 331 Lecture 15

Page 1: Mae 331 Lecture 15

Transfer Functions andFrequency Response

Robert Stengel, Aircraft Flight Dynamics

MAE 331, 2010

• Frequency domain view of initial

condition response

• Response of dynamic systems

to sinusoidal inputs

• Transfer functions

• Bode plots

Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

http://www.princeton.edu/~stengel/FlightDynamics.html

Laplace Transform ofInitial Condition Response

Laplace Transform of

a Dynamic System

!!x(t) = F!x(t) +G!u(t) + L!w(t)

• System equation

• Laplace transform of system equation

s!x(s) " !x(0) = F!x(s) +G!u(s) + L!w(s)

dim(!x) = (n "1)

dim(!u) = (m "1)

dim(!w) = (s "1)

Laplace Transform of

a Dynamic System

• Rearrange Laplace transform of dynamic equation

s!x(s) " F!x(s) = !x(0) +G!u(s) + L!w(s)

sI ! F[ ]"x(s) = "x(0) +G"u(s) + L"w(s)

!x(s) = sI " F[ ]"1

!x(0) +G!u(s) + L!w(s)[ ]Initial

Condition

Control/Disturbance

Input

Page 2: Mae 331 Lecture 15

4th-Order Initial

Condition Response

• Longitudinal dynamic model (time domain)

!x(s) = sI " F[ ]"1!x(0)

! !V (t)

! !" (t)

! !q(t)

! !#(t)

$

%

&&&&&

'

(

)))))

=

*DV *g *Dq *D#

LVVN

0Lq

VN

L#VN

MV 0 Mq M#

* LVVN

0 1 * L#VN

$

%

&&&&&&&&

'

(

))))))))

!V (t)

!" (t)

!q(t)

!#(t)

$

%

&&&&&

'

(

)))))

,

!V (0)

!" (0)

!q(0)

!#(0)

$

%

&&&&&

'

(

)))))

given

• Longitudinal model (frequency domain)

!V (s)

!" (s)

!q(s)

!#(s)

$

%

&&&&&

'

(

)))))

= sI * FLon[ ]

*1

!V (0)

!" (0)

!q(0)

!#(0)

$

%

&&&&&

'

(

)))))

Elements of the CharacteristicMatrix Inverse

sI ! FLon

" #Lon(s)

= s4+ a

3s3+ a

2s2+ a

1s + a

0

Adj sI ! FLon( ) =

nVV(s) n"

V(s) nq

V(s) n#

V(s)

nV"(s) n"

"(s) nq

"(s) n#

"(s)

nVq(s) n"

q(s) nq

q(s) n#

q(s)

nV#(s) nV

#(s) nV

#(s) nV

#(s)

$

%

&&&&&&

'

(

))))))

sI ! FLon[ ]!1

=Adj sI ! FLon( )sI ! FLon

=Adj sI ! FLon( )

"Lon (s)(4 x 4)

• Denominator is scalar

• Numerator is an (n x n) matrix

Characteristic Matrix InverseDistributes Effects of Initial Condition

sI ! FLon[ ]

!1=

nV

V(s) n"

V(s) n

q

V(s) n#

V(s)

nV

"(s) n"

"(s) n

q

"(s) n#

"(s)

nV

q(s) n"

q(s) n

q

q(s) n#

q(s)

nV

#(s) n

V

#(s) n

V

#(s) n

V

#(s)

$

%

&&&&&&

'

(

))))))

s4+ a

3s3+ a

2s2+ a

1s + a

0

(4 x 4)

• Denominator determines the modes of motion

• Numerator distributes the initial condition to eachelement of the state

!x(s) =Adj sI " FLon( )sI " FLon

!x(0)

Relationship to State

Transition Matrix• Initial condition response

!x(s) = sI " F[ ]"1!x(0)

!x(t) = " t,0( )!x(0)Time

Domain

Frequency

Domain

• !x(s) is the Laplace transform of !x(t)

!x(s) = sI " F[ ]"1!x(0) = L !x(t)[ ] = L # t,0( )!x(0)$% &'

sI ! F[ ]!1= L " t,0( )#$ %&

• Therefore,

Page 3: Mae 331 Lecture 15

Initial Condition Response of aSingle State Element

• Define A s( ) ! sI ! F[ ]

!1

• Typical (ijth) element of A(s)

aij (s) =kijnij (s)

!(s)=kij s

q+ bq"1s

q"1+ ...+ b

1s + b

0( )sn+ an"1s

n"1+ ...+ a

1s + a

0( )

=kij s " z1( )

ijs " z

2( )ij... s " zq( )

ij

s " #1( ) s " #

2( )... s " #n( )

Initial Condition Response of aSingle State Element

pi (s) = ki1 sq1 + ...+ b

0( )1!x

1(0) + ki2 s

q2 + ...+ b0( )2!x

1(0) +!+ kin s

qn + ...+ b0( )

n!xn (0)

= kpi sqmax + ...+ b

0( )

• Terms sum to produce a single numerator polynomial

!xi(s) = a

i1s( )!x1(0) + ai2 s( )!x1(0) +!+ a

ins( )!xn (0) "

pis( )

! s( )

• Initial condition response of !xi(s)

Partial Fraction Expansion ofthe Initial Condition Response

• Scalar response can be expressed with n parts,each containing a single mode

!xi (s) =pi s( )

! s( )=

d1

s " #1( )+

d2

s " #2( )

+!dn

s " #n( )

$

%&'

()i

, i = 1,n

where, for each i, the (possibly complex) coefficients are

d j = s ! " j( )pi s( )

# s( )s=" j

, j = 1,n

Partial Fraction Expansion ofthe Initial Condition Response

• Time response is the inverse Laplace transform

!xi(t) = L

"1 !xi(s)[ ] = L"1

d1

s " #1( )+

d2

s " #2( )

+!dn

s " #n( )

$

%&

'

()i

= d1e#1t + d

2e#2 t +!+ d

ne#nt( )

i, i = 1,n

... and the time response contains every mode of the system

Page 4: Mae 331 Lecture 15

Scalar and MatrixTransfer Functions

Response to a Control Input

• State response to control

s!x(s) = F!x(s) +G!u(s) + !x(0), !x(0) ! 0

!x(s) = sI " F[ ]"1G!u(s)

• Output response to control

!y(s) = Hx!x(s) +Hu!u(s)

= Hx sI " F[ ]"1G!u(s) +Hu!u(s)

Transfer Function Matrix

• Frequency-domain effect of all inputs on alloutputs

• Assume control effects do not appear directlyin the output: Hu = 0

• Transfer function matrix

H (s) = HxsI ! F[ ]

!1G =

HxAdj sI ! F( )G

sI ! F

r ! n( ) n ! n( ) n ! m( )

= r ! m( )

First-OrderTransfer Function

y s( )

u s( )= H (s) = h s ! f[ ]

!1g =

hg

s ! f( )(n = m = r = 1)

• Scalar transfer function(= first-order lag)

!x t( ) = fx t( ) + gu t( )

y t( ) = hx t( )

• Scalar dynamic system

Page 5: Mae 331 Lecture 15

Second-Order

Transfer Function

H(s) = HxsI ! F[ ]

!1G =

h11 h12

h21 h22

"

#$$

%

&''

adjs ! f11 ! f12! f21 s ! f22

"

#$$

%

&''

dets ! f11 ! f12! f21 s ! f22

(

)**

+

,--

g11 g12

g21 f22

"

#$$

%

&''

(n = m = r = 2)

• Second-order transfer function matrix

r ! n( ) n ! n( ) n ! m( )

= r ! m( ) = 2 ! 2( )

!x t( ) =!x1t( )

!x2t( )

!

"

##

$

%

&&=

f11

f12

f21

f22

!

"

##

$

%

&&

x1t( )

x2t( )

!

"

##

$

%

&&+

g11

g12

g21

f22

!

"

##

$

%

&&

u1t( )

u2t( )

!

"

##

$

%

&&

y t( ) =y1t( )

y2t( )

!

"

##

$

%

&&=

h11

h12

h21

h22

!

"

##

$

%

&&

x1t( )

x2t( )

!

"

##

$

%

&&

• Second-order dynamic system

Longitudinal Transfer

Function Matrix

• With Hx = I, and assuming– Elevator produces only a pitching moment

– Throttle affects only the rate of change of velocity

– Flaps produce only lift

HLon(s) = H

xLonsI ! F

Lon[ ]!1G

Lon

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

"

#

$$$$

%

&

''''

nV

V(s) n(

V(s) n

q

V(s) n)

V(s)

nV

((s) n(

((s) n

q

((s) n)

((s)

nV

q(s) n(

q(s) n

q

q(s) n)

q(s)

nV

)(s) n(

)(s) n

q

)(s) n)

)(s)

"

#

$$$$$$

%

&

''''''

0 T*T 0

0 0 L*F /VN

M*E 0 0

0 0 !L*F /VN

"

#

$$$$$

%

&

'''''

+Lon

s( )

Pilatus TurboPorter PC-6

Longitudinal TransferFunction Matrix

HLon (s) =

n!EV(s) n!T

V(s) n!F

V(s)

n!E"(s) n!T

"(s) n!F

"(s)

n!Eq(s) n!T

q(s) n!F

q(s)

n!E#(s) n!T

#(s) n!F

#(s)

$

%

&&&&&&

'

(

))))))

s2+ 2*P+nPs ++nP

2( ) s2 + 2*SP+nSPs ++nSP

2( )

• There are 4 outputs and 3 inputs

!V (s)

!" (s)

!q(s)

!#(s)

$

%

&&&&&

'

(

)))))

= HLon(s)

!*E(s)

!*T (s)

!*F(s)

$

%

&&&

'

(

)))

• Input-output relationship

Douglas AD-1 Skyraider

Scalar Transfer Function from!uj to !yi

Hij (s) =kijnij (s)

!(s)=kij s

q+ bq"1s

q"1+ ...+ b

1s + b

0( )sn+ an"1s

n"1+ ...+ a

1s + a

0( )

# zeros = q

# poles = n

• Denominator polynomial contains n roots

• Each numerator term is a polynomial with q zeros,where q varies from term to term and ! n – 1

=kij s ! z1( )

ijs ! z

2( )ij... s ! zq( )

ij

s ! "1( ) s ! "

2( )... s ! "n( )

Page 6: Mae 331 Lecture 15

Scalar Frequency ResponseFunction

Hij (j! ) =kij j! " z

1( )ijj! " z

2( )ij... j! " zq( )

ij

j! " #1( ) j! " #

2( )... j! " #n( )

• Substitute: s = j!

• Frequency response is a complex function ofinput frequency, !

– Real and imaginary parts

– Amplitude ratio and phase angle

= a(! ) + jb(! )" AR(! ) e j# (! )

Transfer Function Matrix forShort-Period Approximation

• Transfer Function Matrix (with Hx = I, Hu = 0)

HSP (s) = HxsI ! F[ ]

!1G =

s ! Mq( ) !M"

! 1!LqVN

#$%

&'(

s +L"VN( )

)

*

++++

,

-

.

.

.

.

!1

M/E

!L/EVN

)

*

+++

,

-

.

.

.

= HxsI ! F[ ]

!1{ }G =

s +L"VN( ) M"

1!LqVN

#$%

&'(

s ! Mq( )

)

*

+++++

,

-

.

.

.

.

.

s ! Mq( ) s + L"VN( ) ! M" 1!

LqVN

#$%

&'(

M/E

!L/EVN

)

*

+++

,

-

.

.

.

!!xSP =! !q! !"

#

$%%

&

'(()

Mq M"

1*LqVN

+,-

./0

* L"VN

#

$

%%%

&

'

(((

!q!"

#

$%%

&

'((+

M1E

*L1EVN

#

$

%%%

&

'

(((!1E

• Dynamic equation

Transfer Function Matrix forShort-Period Approximation

HSP (s) =

M!E s +L"VN( ) # L!EM"

VN

$%&

'()

M!E 1#LqVN

*+,

-./# L!E

VN( ) s # Mq( )$%&

'()

$

%

&&&&&

'

(

)))))

s2+ #Mq +

L"VN( )s # M" 1#

LqVN

*+,

-./+ Mq

L"VN

$%&

'()

=

M!E s +L"VN

# L!EM"VNM!E

( )$%&

'()

# L!EVN( ) s +

VNM!E

L!E

1#LqVN

*+,

-./# Mq

$

%&

'

()

012

32

452

62

$

%

&&&&&

'

(

)))))

7SP s( )

HSP (s) !

kqn!Eq(s)

k"n!E"(s)

#

$

%%

&

'

((

s2+ 2)SP*nSP

s +*nSP

2=

+q(s)+!E(s)

+"(s)+!E(s)

#

$

%%%%%

&

'

(((((

• In this case, transfer function matrix dimension is (2 x 1)

Short-Period Motions

Dornier Do-128 Demonstrationhttp://www.youtube.com/watch?v=3hdLXE0rc9Q

Simulator Demonstration of Short Period Response to Elevator Deflection

http://www.youtube.com/watch?v=1O7ZqBS0_B8

Dornier Do-128D

• Rapid damping

• Pitch angle and rate response

• Flight path angle reoriented by differencebetween pitch angle and angle of attack

Page 7: Mae 331 Lecture 15

Scalar Transfer

Functions for Short-

Period Approximation

!q(s)!"E(s)

=

M"E s +L#VN

$ L"EM#VNM"E

( )%&'

()*

s2+ $Mq +

L#VN( )s $ M# 1$

LqVN

+,-

./0+ Mq

L#VN

%

&'(

)*

=kq s $ zq( )

s2+ 21SP2nSP

s +2nSP

2

!q(s)

!"(s)

#

$%%

&

'((=

!q(s)!)E(s)

!"(s)!)E(s)

#

$

%%%%

&

'

((((

!)E(s)

!"(s)!#E(s)

=

$ L#EVN( ) s +

VNM#E

L#E

1$LqVN

%&'

()*$ Mq

+

,-

.

/0

123

43

563

73

s2+ $Mq +

L"VN( )s $ M" 1$

LqVN

%&'

()*+ Mq

L"VN

+,-

./0

=k" s $ z"( )

s2+ 28SP9nSP

s +9nSP

2

• Pitch Rate Transfer Function

• Angle of Attack Transfer Function

Short Period

Frequency Response

Pitch-rate frequency response

Angle-of-attack frequency

response

!q( j" )

!#E( j" )=

kq j" $ zq( )$" 2

+ 2%SP"nSPj" +"nSP

2

= ARq (" ) ej&q (" )

!"( j# )

!$E( j# )=

k" j# % z"( )%# 2

+ 2&SP#nSPj# +#nSP

2

= AR" (# ) ej'" (# )

Bode Plot

Angle and RateResponse of a

DC Motor overWide Input-FrequencyRange

! Long-term responseof a dynamic systemto sinusoidal inputsover a range offrequencies

! Determineexperimentally or

! from the Bode plotof the dynamicsystem

Very low damping

Moderate damping

High damping

Page 8: Mae 331 Lecture 15

Bode Plot Portrays Response

to Sinusoidal Control Input

• Express amplitude ratio in decibels

AR(dB) = 20log10 AR original units( )[ ]

20 dB = factor of 10

!q( j")

!#E( j")=

kq j" $ zq( )$" 2

+ 2% SP"nSPj" + "nSP

2= ARq (") e

j&q (" )

• Plot AR(dB) against log10(!input)

• Plot phase angle, " (deg) againstlog10(!input)

Products in original units

are sums in decibels

# zeros = 1

# poles = 2

Constant Gain Bode Plot

H( j!) =1

H( j!) =10

H( j!) =100

• Amplitude ratio, AR(dB)= constant

• Phase angle, " (deg) = 0

y t( ) = hu t( )

Integrator Bode Plot

H( j!) =1

j!

H( j!) =10

j!

• Slope of AR(dB)= –20 dB/decade

• " (deg) = –90°

y t( ) = h u t( )dt0

t

!

Differentiator Bode Plot

H( j!) = j!

H( j!) =10 j!

• Slope of AR(dB)= +20 dB/decade

• " (deg) = +90°

y t( ) = hdu t( )

dt

Page 9: Mae 331 Lecture 15

Bode Plots of First-Order Lags

H( j!) =10

j! +10( )

H( j!) =100

j! +10( )

H( j!) =100

j! +100( )

Bode Plots of First-Order Lags

• General shape of amplituderatio governed byasymptotes

• Slope of asymptoteschanges by multiples of ±20dB/dec at poles or zeros

• Phase angle of a real,negative pole

– When ! = 0, " = 0°

– When ! = #, " =–45°

– When " -> ", " -> –90°

• AR asymptotes of a real pole– When ! = 0, slope = 0

dB/dec

– When ! # #, slope = –20dB/dec

Bode Plots of Second-Order Lags

Effect of

Damping Ratio

Hgreen ( j!) =10

2

j!( )2

+ 2 0.1( ) 10( ) j!( ) +102

Hblue ( j!) =10

2

j!( )2

+ 2 0.4( ) 10( ) j!( ) +102

Hred ( j!) =10

2

j!( )2

+ 2 0.707( ) 10( ) j!( ) +102

Bode Plots of Second-Order Lags

Hred ( j! ) =10

2

j!( )2+ 2 0.1( ) 10( ) j!( ) +102

Hgreen ( j! ) =10

3

j!( )2+ 2 0.1( ) 10( ) j!( ) +102

Hblue( j! ) =100

2

j!( )2+ 2 0.1( ) 100( ) j!( ) +1002

Effects of Gain and Natural Frequency

Page 10: Mae 331 Lecture 15

Amplitude Ratio Asymptotes

of Second-Order Bode Plots

• AR asymptotes of apair of complex poles

– When ! = 0, slope= 0 dB/dec

– When ! # !n,slope = –40dB/dec

• Height of resonantpeak depends ondamping ratio

Phase Angles of Second-Order

Bode Plots

• Phase angle of a pairof complex negativepoles

– When ! = 0, " = 0°

– When ! = !n, " =–90°

– When " -> ", " ->–180°

• Abruptness of phaseshift depends ondamping ratio

FrequencyResponse AR

Departures in theVicinity of Poles

• Difference betweenactual amplitude ratio(dB) and asymptote =departure (dB)

• Results for multipleroots are additive

• from McRuer, Ashkenas,and Graham, AircraftDynamics and AutomaticControl, PrincetonUniversity Press, 1973

• Zero departures haveopposite sign

First- and Second-Order Departures

from Amplitude Ratio Asymptotes

First- and Second-

Order Phase Angles

Phase Angle

Variations in theVicinity of Poles

• Results for multipleroots are additive

• from McRuer, Ashkenas,and Graham, AircraftDynamics and AutomaticControl, PrincetonUniversity Press, 1973

• LHP zero variations haveopposite sign

• RHP zeros have samesign

Page 11: Mae 331 Lecture 15

Next Time:Configuration and Power Effects

on Flight StabilitySupplementary

Material

Bode Plots of 1st- and 2nd-Order Lags

Hred ( j!) =10

j! +10( )

Hblue ( j!) =100

2

j!( )2

+ 2 0.1( ) 100( ) j!( ) +1002

Bode Plots of 3rd-Order Lags

Hblue ( j!) =10

j! +10( )

"

# $

%

& '

1002

j!( )2

+ 2 0.1( ) 100( ) j!( ) +1002

"

#

$ $

%

&

' '

Hgreen ( j!) =10

2

j!( )2

+ 2 0.1( ) 10( ) j!( ) +102

"

#

$ $

%

&

' '

100

j! +100( )

"

# $

%

& '

Page 12: Mae 331 Lecture 15

Bode Plot of a 4th-Order Systemwith No Zeros

H ( j! ) =12

j!( )2+ 2 0.05( ) 1( ) j!( ) +12

"

#$$

%

&''

1002

j!( )2+ 2 0.1( ) 100( ) j!( ) +1002

"

#$$

%

&''

• Resonant peaks andlarge phase shifts ateach natural frequency

• Additive AR slope shiftsat each naturalfrequency

# zeros = 0

# poles = 4

Left-Half-Plane Transfer Function Zero

H ( j! ) = j! +10( )

• Zeros are numerator singularities H (j! ) =k j! " z

1( ) j! " z2( )...

j! " #1( ) j! " #

2( )... j! " #n( )

• Single zero in left halfplane

• Introduces a +20dB/dec slope

• Produces phase leadin vicinity of zero

Right-Half-Plane Transfer Function Zero

H ( j! ) = " j! "10( )

• Single zero in right halfplane

• Introduces a +20 dB/decslope

• Produces phase lag invicinity of zero

Second-Order Transfer Function Zero

H( j!) = j! " z( ) j! " z*( ) = j!( )

2+ 2 0.1( ) 100( ) j!( ) +100

2[ ]

• Complex pair ofzeros produces anamplitude ratio“notch” at its“natural frequency”

Page 13: Mae 331 Lecture 15

4th-Order Transfer Function with

2nd-Order Zero

H( j!) =j!( )

2+ 2 0.1( ) 10( ) j!( ) +10

2[ ]j!( )

2+ 2 0.05( ) 1( ) j!( ) +1

2[ ] j!( )2

+ 2 0.1( ) 100( ) j!( ) +1002[ ]

Elevator-to-Normal-VelocityFrequencyResponse

!w(s)

!"E(s)=n"Ew(s)

!Lon (s)#

M"E s2+ 2$%ns +%n

2( )Approx Ph

s & z3( )

s2+ 2$%ns +%n

2( )Ph

s2+ 2$%ns +%n

2( )SP

0 dB/dec

+40 dB/dec

0 dB/dec

–40 dB/dec

–20 dB/dec

• (n – q) = 1

• Complex zeroalmost (butnot quite)cancelsphugoidresponse

Short PeriodPhugoid