Maasoglossum, a basal genus in Geoglossomycetes · Huhndorf 2010). In this paper we provide an...

8
Short communication Maasoglossum, a basal genus in Geoglossomycetes Vincent P. Hustad a,b,* , Andrew N. Miller b a Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA b Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA article info Article history: Received 19 January 2015 Received in revised form 22 May 2015 Accepted 24 May 2015 Available online 24 June 2015 Keywords: Ascomycota Earth tongues Geoglossum Phylogenetics Systematics abstract The genus Maasoglossum is examined using morphology, ecology, and molecular system- atics of the internal transcribed spacer region and large subunit of the nuclear ribosomal RNA gene, all of which support the placement of Maasoglossum among the basal members of Geoglossomycetes. The morphology of the genus extends the range of ascocarp and ascospore development in Geoglossomycetes. The ecology and conservational significance of the genus is discussed, a nomenclatural transfer of Geoglossum aseptatum to Maaso- glossum is made, and an emended description of Maasoglossum is provided. © 2015 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved. The class Geoglossomycetes is a basal ascocarp-producing member of the ‘Leotiomyceta(Schoch et al. 2009). Kirk et al. (2008) suggest 48 species in four genera belong in the class, while Index Fungorum lists over 200 names for these same four genera. Recent research indicates eight genera belong in the class: Geoglossum Pers., Glutinoglossum Hustad et al., Hem- ileucoglossum Arauzo, Leucoglossum S. Imai, Nothomitra Maas Geest., Sabuloglossum Hustad et al., Sarcoleotia S. Ito & S. Imai, and Trichoglossum Boud. (Hustad et al. 2013; Arauzo and Iglesias 2014). The prevalence of rarely collected species has made an accurate estimation of the number of species in the class difficult. The rare species, Geoglossum aseptatum Hakelier ex Nitare, is characterized by light brown, aseptate mature ascospores, a character not found in any other member of the genus Geo- glossum. Preliminary molecular analysis (data not shown) suggested that this fungus belonged in a separate lineage from Geoglossum and a review of the literature suggested a possible link between G. aseptatum and the genus Maasoglossum Thind & R. Sharma. The genus Maasoglossum was described by Thind and Sharma (1984) to accommodate a single species, M. verrucis- porum, described from a collection made in 1981 from the temperate Eastern Himalayan forest of Bhutan. The authors noted the macroscopic similarity of the ascocarp to that of Geoglossum, but that it differed in the hymenium of M. verru- cisporum contained small ridges and grooves that became more prominent upon drying, a character rarely encountered * Corresponding author. Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana IL 61801, USA. Tel.: þ01 618 843 0784; fax: þ01 217 265 4678. E-mail address: [email protected] (V.P. Hustad). Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/myc mycoscience 56 (2015) 572 e579 http://dx.doi.org/10.1016/j.myc.2015.05.003 1340-3540/© 2015 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.

Transcript of Maasoglossum, a basal genus in Geoglossomycetes · Huhndorf 2010). In this paper we provide an...

  • ww.sciencedirect.com

    my c o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9

    Available online at w

    journal homepage: www.elsevier .com/locate /myc

    Short communication

    Maasoglossum, a basal genus in Geoglossomycetes

    Vincent P. Hustad a,b,*, Andrew N. Miller b

    a Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana,

    IL 61801, USAb Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA

    a r t i c l e i n f o

    Article history:

    Received 19 January 2015

    Received in revised form

    22 May 2015

    Accepted 24 May 2015

    Available online 24 June 2015

    Keywords:

    Ascomycota

    Earth tongues

    Geoglossum

    Phylogenetics

    Systematics

    * Corresponding author. Department of PlantUSA. Tel.: þ01 618 843 0784; fax: þ01 217 265

    E-mail address: [email protected] (V.Phttp://dx.doi.org/10.1016/j.myc.2015.05.0031340-3540/© 2015 The Mycological Society of

    a b s t r a c t

    The genus Maasoglossum is examined using morphology, ecology, and molecular system-

    atics of the internal transcribed spacer region and large subunit of the nuclear ribosomal

    RNA gene, all of which support the placement of Maasoglossum among the basal members

    of Geoglossomycetes. The morphology of the genus extends the range of ascocarp and

    ascospore development in Geoglossomycetes. The ecology and conservational significance

    of the genus is discussed, a nomenclatural transfer of Geoglossum aseptatum to Maaso-

    glossum is made, and an emended description of Maasoglossum is provided.

    © 2015 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.

    The class Geoglossomycetes is a basal ascocarp-producing

    member of the ‘Leotiomyceta’ (Schoch et al. 2009). Kirk et al.

    (2008) suggest 48 species in four genera belong in the class,

    while Index Fungorum lists over 200 names for these same

    four genera. Recent research indicates eight genera belong in

    the class: Geoglossum Pers., Glutinoglossum Hustad et al., Hem-

    ileucoglossum Arauzo, Leucoglossum S. Imai, Nothomitra Maas

    Geest., Sabuloglossum Hustad et al., Sarcoleotia S. Ito & S. Imai,

    and Trichoglossum Boud. (Hustad et al. 2013; Arauzo and

    Iglesias 2014). The prevalence of rarely collected species has

    made an accurate estimation of the number of species in the

    class difficult.

    The rare species, Geoglossum aseptatum Hakelier ex Nitare,

    is characterized by light brown, aseptatemature ascospores, a

    Biology, University of Illi4678.

    . Hustad).

    Japan. Published by Else

    character not found in any other member of the genus Geo-

    glossum. Preliminary molecular analysis (data not shown)

    suggested that this fungus belonged in a separate lineage from

    Geoglossum and a review of the literature suggested a possible

    link between G. aseptatum and the genus Maasoglossum Thind

    & R. Sharma.

    The genus Maasoglossum was described by Thind and

    Sharma (1984) to accommodate a single species, M. verrucis-

    porum, described from a collection made in 1981 from the

    temperate Eastern Himalayan forest of Bhutan. The authors

    noted the macroscopic similarity of the ascocarp to that of

    Geoglossum, but that it differed in the hymenium of M. verru-

    cisporum contained small ridges and grooves that became

    more prominent upon drying, a character rarely encountered

    nois at Urbana-Champaign, 505 S. Goodwin Ave., Urbana IL 61801,

    vier B.V. All rights reserved.

    mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.myc.2015.05.003&domain=pdfwww.sciencedirect.com/science/journal/13403540www.elsevier.com/locate/mychttp://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • myc o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9 573

    in Geoglossum. Additionally, the one-celled, lightly-colored,

    warted ascospores precluded the placement of this fungus in

    Geoglossum. Since no other members of the Geoglossaceae

    sensu lato contain ornamented ascospores, they were unsure

    of the placement of this genus within Geoglossaceae sensu lato

    or Leotiomycetes (Microglossum). The genus is currently

    regarded as incertae sedis within Leotiomycetes (Lumbsch and

    Huhndorf 2010). In this paper we provide an in-depth

    assessment of the genus Maasoglossum based on

    morphology, ecology, and molecular systematics, and test the

    hypotheses that Maasoglossum is a basal member of Geo-

    glossomycetes and that G. aseptatum belongs in the genus

    Maasoglossum.

    For this study, the type specimens of both Geoglossum

    aseptatum and Maasoglossum verrucisporum were obtained and

    examined. Dried ascomata were hand-sectioned and squash

    mounted in 5% KOH andmicromorphological characters were

    observed. Images of pertinent micromorphological characters

    were captured using a QImaging QColor 3 digital camera

    mounted on an Olympus BX51 compound microscope using

    differential interference microscopy. Images were processed

    with Adobe Photoshop v. 7.0 (Adobe Systems Inc., Mountain

    View, California). A minimum of 30 measurements was made

    for each micromorphological character using NIH Image v.

    1.63 (National Institutes of Health, Bethesda, Maryland).

    Taxonomic novelties and associated data were deposited in

    MycoBank (Crous et al. 2004).

    Total genomic DNA was extracted from approximately

    0.5 cm2 of hymenium tissue from a single dried ascoma with

    the DNeasy Plant Mini Kit (QIAGEN Inc., Valencia, California)

    for recently-collected specimens (collected within 20 years).

    For older specimens, DNA was extracted from approximately

    0.2 cm2 of hymenium tissue using the EZNA Forensic DNA kit

    (Omega Bio-Tek, Norcross, Georgia). Gene fragments were PCR

    amplified following the methods outlined in Promputtha and

    Miller (2010) and purified using a Wizard SV Gel and PCR

    Clean-Up System (Promega Corp., Fitchburg, Wisconsin). Se-

    quenceswere generated on an ABI Applied Biosystems 3730XL

    high-throughput DNA capillary sequencer at the UIUC Keck

    Center for Comparative and Functional Genomics. Two re-

    gions of the nuclear rRNA gene were used for molecular

    phylogenetic analysis: the ca. 570 bp internal transcribed

    spacer (ITS) region, consisting of the ITS1, 5.8S, and ITS2 re-

    gions, was amplified and sequenced using a combination of

    the primers ITS5, ITS1, ITS2, ITS3, and ITS4 (White et al. 1990);

    and a ca. 630 bp fragment of the 28S large subunit (LSU) region

    was amplified and sequenced with the primers JS1 (Landvik

    1996) and LR3 (Vilgalys and Hester 1990). Due to the age of

    the material, attempts to PCR amplify single-copy protein

    coding genes (i.e. RPB1, RPB2, MCM7) were unsuccessful. Out-

    group species were chosen from closely related taxa based on

    previous studies (Wang et al. 2006; Hustad et al. 2013).

    Sequence alignments were created by eye in Sequencher

    5.0.1 (Gene Codes Corp., Ann Arbor, Michigan) and optimized

    if necessary using Muscle v. 3.8.31 (Edgar 2004) in SeaView v.

    4.4.2 (Gouy et al. 2010). Ambiguous regions were removed

    from each dataset using Gblocks 0.91b (Castresana 2000)

    under the following parameters: for ITS: minimum number of

    sequences for both conserved and flanking regions ¼ 15,maximum number of contiguous, nonconserved regions ¼ 2,

    minimum length of a block ¼ 2, and allowed gap positions in50% of sequences; for LSU: same as ITS except minimum

    number of sequences for both conserved and flanking

    regions ¼ 14.The GTR þ I þ G model was determined to be the best-fit

    model of evolution for both ribosomal regions using the

    Akaike Information Criterion (AIC) (Posada and Buckley 2004)

    in jModelTest 2.0 v. 0.1.1 (Guindon and Gascuel 2003; Darriba

    et al. 2012) on the XSEDE platform of the CIPRES Science

    Gateway Teragrid (Miller et al. 2010) and was used in phylo-

    genetic analyses of each individual dataset. Maximum likeli-

    hood (ML) analyses were performed using PhyML 3.0 (Guindon

    et al. 2010) on the ATGC server (http://www.atgc-montpellier.

    fr/phyml/). The best of subtree pruning and regrafting (SPR)

    and nearest neighbor interchange (NNI) was implemented

    during the heuristic search. Nonparametric bootstrap support

    (Felsenstein 1985) (BS) was determined with 1000 replicates.

    Clades with BS values of �70% were considered significant(Hillis and Bull 1993).

    Bayesian inference employing aMarkov ChainMonte Carlo

    (MCMC) algorithm was performed using MrBayes v. 3.2.2

    (Ronquist et al. 2012) on the XSEDE platform. Four indepen-

    dent chains of MCMC were run for 10 million generations.

    Clades with Bayesian posterior probability (BPP) values of

    �95% were considered significant (Alfaro et al. 2003). Tracer v.1.5 (Rambaut and Drummond 2009) was used to estimate

    effective sample size (ESS) using the standard deviation of

    split frequencies produced by Bayesian analysis.

    Individual ITS and LSU datasets were examined for po-

    tential conflict before concatenation into a single dataset for

    total evidence analysis (Kluge 1989; Eernisse and Kluge 1993).

    Individual gene phylogenies were considered to be incon-

    gruent if clades with significant ML BS and BPP support were

    conflicting in individual tree topologies (Wiens 1998; Alfaro

    et al. 2003; Lutzoni et al. 2004). Since no incongruencies were

    found among individual phylogenies, the ITS and LSU data-

    sets were concatenated and final ML and Bayesian analyses

    were performed on the combined dataset. Alignments and

    trees are deposited in TreeBASE (http://treebase.org) under

    submission ID 16591.

    Ten new sequences were generated in this study, five ITS

    and five LSU sequences (Table 1). These were analyzed

    together with 23 ITS and 21 LSU sequences from our previous

    studies (Hustad and Miller 2011; Hustad et al. 2011, 2013, 2014)

    along with sequences of Geoglossomycetes from previously

    published research (Pfister 1997; Zhao et al. 2001; Wang et al.

    2002, 2005, 2006, 2011; Peterson 2008; Brock et al. 2009;

    Ohenoja et al. 2010). Twenty-eight collections, representing a

    total of 15 Geoglossomycetes species (including sequences

    from type species of each genus in Geoglossomycetes except

    Sarcoleotia) and eleven outgroup species, were included in the

    analyses. Of the 28 collections included in the final dataset,

    none lack ITS and only two lack LSU, with sequences for both

    markers available for 93% of the collections (Table 1).

    The final combined data matrix had an aligned length of

    2712 bp, which was reduced to 1110 bp after the removal of

    1602 bp of ambiguously aligned regions by Gblocks. Of the

    1110 characters used in the final phylogenetic analyses, 554

    were constant and 556 were variable. A burn-in of 10% was

    estimated using Tracer v. 1.5 to be sufficient to remove the

    http://www.atgc-montpellier.fr/phyml/http://www.atgc-montpellier.fr/phyml/http://treebase.orghttp://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • Table 1 e List of taxa, locality, collection/strain numbers of voucher specimens, fungarium accession numbers, andGenBank accession numbers for specimens used in this study.

    Species Locality Voucher Fungarium no. GenBank Accession no.

    ITS 28S

    Aspergillus fumigatus USA, Connecticut C. Thom 118 ATCC 1022 EF669931 U28460

    A. nidulans USA, Texas 97-726 GenBank AF078899 AF109338

    Geoglossum difforme USA, North Carolina ASM 10498 ILLS 67349 KC222124 KC222137

    G. glabrum Czech Republic J. Gaisler s.n. ILLS 72358 KP657559 KP657564

    G. simile USA, New York TJB 9613 ILLS 71160 KF944381 KF944383

    Glutinoglossum glutinosum Czech Republic J. Gaisler s.n. ILLS 67353 KC222128 KC222141

    G. heptaseptatum Czech Republic J. Gaisler s.n. ILLS 63754 KC222130 KC222143

    Graddonia coracina USA, Tennessee ANM 2018 ILLS 60491 JQ256423 JN012009

    Hemileucoglossum alveolatum USA, Michigan Imshaug 3640 MICH s.n. KP657560 KP657565

    H. littorale Denmark Lœssøe 32VNJ2704 C: 35673 KP657561 KP657566Leucoglossum durandii China s.n. HMAS 70090 HQ222875 N/A

    Maasoglossum aseptatum Sweden J. Nitare s.n. UPS: F-118883 KP657562 KP657567

    M. verrucisporum Bhutan Sharma 17725 CUP-IN-000606 KP657563 KP657568

    Microglossum olivaceum Unknown FH-DSH97-103 GenBank AY789398 AY789397

    M. rufum Unknown Ingo-Clark-Geo 163 GenBank DQ257360 DQ470981

    Nothomitra cinnamomea France Moingeon s.n. ILLS 61042 JQ256424 JQ256439

    Orbilia auricolor United Kingdom AFTOL-ID 906 CBS 547.63 DQ491512 DQ470953

    O. delicatula USA, Maine DHP 108 GenBank U72595 N/A

    Peziza phyllogena USA, Massachusetts WZ-Geo44-Clark GenBank AY789329 AY789328

    P. varia Unknown WZ-Geo94-Clark GenBank AY789392 AY789391

    Sabuloglossum arenarium The Netherlands CFR 181007 ILLS 61043 JQ256426 JQ256440

    S. arenarium Finland Ohenoja s.n. OULU-F077201 GU324765 GU324764

    Sarcoleotia globosa USA, Washington Trappe 26123 OSC 63633 AY789410 AY789409

    S. globosa Unknown s.n. MBH 52476 AY789429 AY789428

    Spathularia flavida Unknown wz95 GenBank AF433155 AF433144

    Thuemenidium atropurpureum United Kingdom S. Kelly s.n. K(M): 135612 EU784253 AY789307

    Trichoglossum hirsutum USA, Tennessee ANM 2233 ILLS 67355 KC222132 KC222145

    T. octopartitum USA, Tennessee ANM 2227 ILLS 67356 KC222134 KC222147

    Collector acronyms: ANM ¼ Andrew N. Miller, ASM ¼ Andrew Methven, CFR ¼ Kees Roobeek, DHP ¼ Donald Pfister, DSH ¼ David Hibbett,TJB¼ Timothy Baroni, WZ¼ ZhengWang. Fungarium acronyms: ATCC¼ American Type Culture Collection, C¼University of Copenhagen, CBS¼ Centraalbureau voor Schimmelcultures, CUP ¼ Cornell University, HMAS ¼ Kunming University, ILLS ¼ Illinois Natural History Survey,K(M)¼Kew (Mycology), MBH¼Marlborough College, MICH¼University ofMichigan, OSC¼Oregon State University, OULU¼University of Oulu,UPS ¼ Uppsala University. Newly generated sequences are in bold. All other sequences are from GenBank. s.n. ¼ sine numero (no voucher orfungarium number is available).

    my c o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9574

    pre-stationary posterior probability distribution, resulting in

    an ESS value of 2894.54. The standard deviation of split fre-

    quencies was 0.000284 at the end of the Bayesian analysis.

    Fig. 1 represents themost likely tree produced by PhyML of the

    final combined dataset.

    Geoglossomycetes was supported as a clade with 90% ML

    BS, although with less than 0.95 BPP. Maasoglossum was

    recovered as a distinct genus within Geoglossomycetes, with

    the clade containing the generaMaasoglossum,Nothomitra, and

    Sarcoleotia well-supported (99% ML BS, 1.0 BPP) and distinct

    from the remaining members of Geoglossomycetes. Maaso-

    glossum appears most closely related to Sarcoleotia, although

    branch support is lacking. Geoglossum aseptatum and M. ver-

    rucisporum appear as separate species in the Maasoglossum

    clade, with 12% ITS and 9% LSU sequence divergence between

    these two species (data not shown).

    Maasoglossum K.S. Thind & R. Sharma emend. Hustad & A.N.

    Mill., Kavaka 12: 37 (1984)

    Mycobank no.: MB 25055.

    Ascomata scattered to gregarious, black, glabrous,

    becoming slightly longitudinally rugulose upon drying,

    2e8 cm tall, up to 2 mm wide. Stipe terete, glabrous, textura

    porrecta, with dark-colored narrow hyphae intertwining

    inflated longitudinal cells. Paraphyses longer than the asci,

    hyaline to light brown, straight to curved or circinate, enlarged

    at the apex (up to 15 mm broad), agglutinated into an epi-

    thecum by a light brown amorphous matter above. Asci

    clavate to clavate-cylindric, up to 165 mm in length and 16 mm

    wide, mostly 8-spored, tip Jþ in Melzer's. Ascospores lightbrown in maturity, cymbiform to ellipsoid, straight to slightly

    curved, aseptate, occasionally with 1e2 oil drops. Growing in

    soil, often in disturbed habitats.

    The light brown, aseptate ascospores separate this genus

    from other members of Geoglossomycetes. Sabuloglossum also

    has aseptate ascospores, althoughmature, septate ascospores

    are rarely encountered and the ascospores in that genus are

    typically hyaline except for occasional yellowish to light

    brown pigments in mature ascospores. Maasoglossum can be

    distinguished from Hemileucoglossum in that the paraphyses,

    while strongly agglutinated into an epithecum of brown

    amorphousmatter, are often curved to circinate at the apex in

    Maasoglossum, whereas the paraphyses are straight in Hemi-

    leucoglossum. Furthermore, the agglutinating material in

    Maasoglossum is a paler brown than in Hemileucoglossum.

    Hemileucoglossum also has ascospores that long remain

    http://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • Geoglossum glabrum ILLS 72358Geoglossum difforme ILLS 67349

    79

    Geoglossum simile ILLS 7116097

    Leucoglossum durandii HMAS 7009092

    Sabuloglossum arenarium ILLS 61043Sabuloglossum arenarium OULU-F077201

    Trichoglossum hirsutum ILLS 67355Trichoglossum octopartitum ILLS 67356

    100

    Glutinoglossum glutinosum ILLS 67353Glutinoglossum heptaseptatum ILLS 63754

    97

    Hemileucoglossum alveolatum Imshaug 3640Hemileucoglossum littorale C: 35673

    100

    87

    Maasoglossum aseptatum UPS: F-118883Maasoglossum verrucisporum CUP-IN-000606

    100

    Sarcoleotia globosa OSC 63633Sarcoleotia globosa MBH 52476

    91

    Nothomitra cinnamomea ILLS 61042

    99

    90

    Microglossum rufum Ingo-Clark-Geo 163Thuemenidium atropurpureum K(M): 135612

    90

    Microglossum olivaceum FH-DSH97-10397

    Spathularia flavida wz95Graddonia coracina ILLS 60491

    9297

    Aspergillus fumigatus NRRL 163Aspergillus nidulans 97-726

    100

    90

    73

    Orbilia delicatula DHP 108Orbilia auricolor AFTOL-ID 906

    91

    Peziza phyllogena WZ-Geo44-ClarkPeziza varia ZW-Geo94-Clark

    100

    0.01

    Geoglossomycetes

    Fig. 1 e PhyMLmaximum likelihood phylogeny showing the position ofMaasoglossumwithin Geoglossomycetes based on a

    combined dataset (1110 bp) of ITS and LSU nrDNA sequences ((-ln)L score¼ 9595.503). Numbers at nodes indicate significantBS values (≥70%) based on 100 replicates; thickened branches indicate significant BPP (≥95%). Numbers associated withtaxon names are fungarium accession numbers or strain numbers obtained from GenBank. Type species for genera in the

    Geoglossomycetes are shown in bold.

    myc o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9 575

    hyaline, but the ascospores rapidly develop septation and

    some species (e.g. Hemileucoglossum littorale (Rostr.) Arauzo)

    have pigmented mature ascospores. Sarcoleotia produces a

    pileate ascocarp and ascospores that remain hyaline and

    develop up to five septa at maturity.

    Maasoglossum aseptatum (Hakelier ex Nitare) Hustad & A.N.

    Mill. comb. nov.

    Basionym ¼ Geoglossum aseptatum Hakelier ex Nitare, Wind-ahlia 14: 40 (1984) [as “asaeptatum”].

    Mycobank no.: MB 811291 Fig. 2.

    Type: SWEDEN, €Orebro, N€arke, Axberg, Vitmossen, on soil

    in moss in the drip line of a small building, 1 Sep 1977, leg. N.

    Hakelier s.n. (holotype, UPS:F-116948).

    Etymology: Refers to the aseptate mature ascospores.

    Ascomata black throughout, lanceolate-linear, becoming

    slightly longitudinally rugulose upon drying, 3.1e8.2 cm tall,

    0.1e0.5 cm wide. Stipe smooth, black, terete, not distinctly

    different from fertile hymenium, up to 13 mm wide. Paraphy-

    seshyaline to subhyaline, straight to curvedor circinate at tips,

    often enlarged at the apex (Fig. 2C), longer than asci, the upper

    portions strongly agglutinated by a light brown amorphous

    matter (Fig. 2E). Asci clavate, (80e)104e131(e141) � (9.6e)10.5e13.1(e14.2) mm (average 117.12 ± 13.21 � 11.8 ± 1.23 mm,n ¼ 30), 8-spored, having zero or at most two uniseriate asco-spores below, biseriate or triseriate above (Fig. 2A), ascus tip

    lightly Jþ in Melzer's (Fig. 2D). Ascospores cymbiform toobovoid or clavate, often enlarged at one end, (16.2e)

    23.1e29.9(e35.0) � (4.9e)5.4e6.3(e6.9) mm (average25.47 ± 2.54 � 5.96 ± 0.48 mm, n ¼ 30), aseptate, hyaline to lightgolden brown, sometimes with one or two oil drops (Fig. 2B).

    Distribution: Finland (Bonsdorff von et al. 2012), the

    Netherlands (Nitare 2012; www.gbif.org), Sweden (Nitare 1982,

    1984, 2012, www.gbif.org).

    Specimens examined: Holotype (UPS:F-118883); SWEDEN,

    V€astra G€otaland, Bohusl€an, G€oteborg; G€oteborgs Botaniska

    Tr€adgård (Gothenburg Botanic Garden), in soil among moss, 1

    Sep 1987, J. Nitare s.n.

    Macroscopically, Maasoglossum aseptatum is hardly distin-

    guishable from other species in Geoglossum. The ascocarp is

    within normal size ranges of other species of Geoglossum and

    is black throughout. Upon drying, the hymenium becomes

    slightly longitudinally rugulose. The small, light brown,

    aseptate ascospores are the most noticeable difference be-

    tween this species and other Geoglossum. Additionally, the

    paraphyses are slightly agglutinated with an amorphous

    brown material. This combination of characters led Nitare

    (1982) to suggest M. aseptatum as a potential link between

    the genus Geoglossum and Thuemenidium atropurpureum

    (Batsch) Kuntze, a fungus formerly considered to belong in

    Geoglossaceae but which is now considered to belong in

    Leotiomycetes (Ohenoja et al. 2010; Hustad et al. 2013).

    Maasoglossum aseptatum was described from collections

    made byNils Hakelier froma single location in central Sweden

    in 1977 (Nitare 1984). To date, the fungus has only been found

    in four sites: two locations in Sweden (Bohusl€an, in the

    Gothenburg Botanic Garden and the type locality in N€arke),

    one location in Finland (Tavastia, H€ameenlinna, Levonkallio),

    and one location in the Netherlands (Gelderland, Voorst,

    Gietelse Bos). Each location where ascocarps of M. aseptatum

    were found fruiting in disturbed soil has a history of cultiva-

    tion, gardening, forestry, or other soil disturbance. The species

    http://www.gbif.orghttp://www.gbif.orghttp://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • Fig. 2 e Maasoglossum aseptatum from dried holotype material (UPS:BOT:F-116948). A: Ascus; B: Ascospores; C: Paraphyses;

    D: Ascus tip lightly Jþ; E: Hymenium. Bars: 10 mm.

    Fig. 3 e Maasoglossum verrucisporum from dried isotype

    material (CUP-IN 000606). A: Ascospores; B: Paraphyses; C:

    Ascus; D: Transverse section of axial stipe hyphae. Bars:

    10 mm.

    my c o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9576

    has been reported from gardens and forests and possible as-

    sociations may exist between the fungus and plants including

    Rumex acetosa L., Luzula pilosa (L.) Willd., mosses including

    Atrichumundulatum (Hedw.) P. Beauv. and Fissidens adianthoides

    Hedw., and trees including Prunus padus L.,Ulmus glabraHuds.,

    and Picea abies (L.) H. Karst. (Nitare 1984, 2012; Bonsdorff von

    et al. 2012). Nitare (2012) suggested that the fungus acts as a

    decomposer in these ecosystems, although he also hypothe-

    sized the possibility that the fungus may form ericoid

    mycorrhizae with shrubs and trees.

    Although Maasoglossum aseptatum is regarded as Data

    Deficient in regional red lists of Swedish Fungi (G€ardenfors

    2010), this fungus should almost certainly be regarded as

    Critically Endangered due to the rarity of occurrence and the

    fragility of its habitat. Of the two Swedish localities for M.

    aseptatum, the site at the Gothenburg Botanic Garden was

    destroyed during renovations and the fungus has not been

    collected there since 2005 (G€ardenfors 2010; Nitare 2012). The

    site in the Netherlands was also destroyed. Of the four

    known locations of M. aseptatum in the world, only the type

    location in Sweden (N€arke) and the location in Finland

    remain.

    Maasoglossum verrucisporum K.S. Thind & R. Sharma, Kavaka

    12: 37 (1984) [as “verrucosporum”].

    Mycobank no.: MB 544188 Fig. 3.

    Type: BHUTAN, Thimphu, Dochula, on soil among mosses

    in mixed forest, 10,000 feet elev., 3 Aug 1984, R. Sharma 17725,

    (holotype PAN 17725, isotype CUP-IN-000606).

    Etymology: Refers to the warted ascospores.

    http://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • myc o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9 577

    Ascomata scattered to gregarious, black throughout,

    cylindrical-clavate, distinctly rugose with longitudinal ridges

    especially prominent in dried specimens, 2e6 cm tall,

    0.1e0.5 cm wide. Stipe smooth, black, terete, not distinctly

    different from fertile hymenium, up to 1.5 mm wide. Pa-

    raphyses hyaline to subhyaline, straight to curved at tips,

    somewhat enlarged at the apex (Fig. 3B), longer than asci, the

    upper portions agglutinated by a light brown amorphous

    matter. Asci clavate-cylindric, (112e)130e151(e165) � (10.2e)12.5e14.4(e16.0) mm (average 141.2 ± 10.1 � 13.3 ± 0.9 mm,n ¼ 30), 8-spored (occasionally 4-spored), ascospores biseriate(Fig. 3C), ascus tip Jþ in Melzer's. Ascospores cymbiform toobovoid or clavate, (23.9e)26.1e30.0(e32.0) � (5.8e)6.2e7.3(e7.9) mm (average 28.05 ± 1.95� 6.78 ± 0.52 mm, n¼ 30),aseptate, hyaline to light brown, distinctly covered with

    minute, profuse warts (Fig. 3A).

    Distribution: Bhutan (Thind and Sharma 1984).

    Specimen examined: Isotype, CUP-IN-000606.

    Maasoglossum verrucisporum is known only from the type

    collection found in Bhutan. The continuous, light brown,

    warted ascospores distinguish this species from all other

    members of Geoglossomycetes. The fungus is not named in

    the 2009 Biodiversity Action Plan for Bhutan (NBSAP 2009),

    although it should certainly be regarded as Critically Endan-

    gered due to the extreme rarity of occurrence.

    Our results suggest that Maasoglossum belongs in Geo-

    glossomycetes and is likely most closely related to Nothomitra

    and Sarcoleotia, although the long-branch connecting Maaso-

    glossum to these genera suggests that Maasoglossum has long

    been evolving independently of Nothomitra and Sarcoleotia.

    These three genera have ecological and morphological simi-

    larities. Each of these genera is characterized by mature as-

    cospores that are hyaline or lightly colored and are aseptate,

    although they can become 1- to 3-septate when overmature in

    Nothomitra and 3- to 5-septate when overmature in Sarcoleotia.

    The derived members of Geoglossomycetes are characterized

    by ascospores that are more consistently darkly pigmented

    and generally multiseptate when mature. These species may

    also be ecologically linked by fruiting in response to soil

    disturbance.

    Production of fruiting bodies following soil disturbance is

    common in several fungi (Sagara 1992). Many discomycetous

    fungi are known to fruit following soil disturbance (e.g. Geo-

    pyxis (Pers.) Sacc., Octospora Hedw., Peziza Dill. ex Fries, and

    Trichophaea Cooke & W. Phillips) (Petersen 1970; Dix and

    Webster 1995). Production of fruiting bodies in response to

    disturbance appears to be a basal character in Geo-

    glossomycetes, with Sarcoleotia globosa (Sommerf.: Fr) Korf

    being most commonly encountered on recently disturbed soil

    (Schumacher and Sivertsen 1987; Jumpponen et al. 1997).

    Petch (1922) described the genus Phaeoglossum Petch in

    Geoglossaceae to accommodate the species Phaeoglossum

    zeylanicum Petch from Sri Lanka. While we have not seen

    material of this species, we concur with Nitare (1984) that this

    genus name does not apply to Maasoglossum based on differ-

    ences in morphology and habitat between the two genera.

    Petch's Phaeoglossum was described as a black club-shapedfungus with white internal hyphae not known to be present

    in Geoglossomycetes. It is also described as growing on

    decaying Loranthus L. fruits, a habitat not found in other

    members of Geoglossomycetes. Lastly, the name Phaeoglossum

    Petch is illegitimate pursuant to Article 53.1 of the ICN

    (McNeill 2012) as it is a later homonym of Phaeoglossum

    Skottsb., a brown alga described by Skottsberg (1907).

    Maasoglossum has previously been misidentified as Thue-

    menidium (Geoglossum) atropurpureum (Nitare 2012) and more

    collections of it may exist under that misnomer in fungaria in

    Northern Europe. Both species of Maasoglossum and T. atro-

    purpureum possess hyaline paraphyses that are agglutinated

    into an epithecum, although in T. atropurpureum the epi-

    thecum is a vinous-brown compared to a light brown in both

    species ofMaasoglossum. The ascomata of T. atropurpureum are

    distinctly purplish-brown when fresh, and the fertile portion

    is often irregular to spathulate and distinct from the sterile

    stipe. Maasoglossum and T. atropurpureum are also easily

    separated based on ascospore morphology: ascospores in T.

    atropurpureum are initially continuous but become multi-

    guttulate and finally septate when overmature and remain

    hyaline throughout development, whereas in both species of

    Maasoglossum the ascospores are continuous and light brown

    with distinct warts present in M. verrucisporum.

    The hyphae at the apex of the stipe in Maasoglossum

    contain inflated, hyaline, longitudinal elements and an

    anastomosing network of brown, narrow hyphae intertwining

    them (Fig. 3D). The more derived members of Geo-

    glossomycetes also contain anastomosing hyphae in the stipe,

    but the longitudinal cells are not as strongly inflated. The

    inflated longitudinal cells and narrower binding hyphae in the

    axial stipe of Maasoglossum are similar to those found in

    Thuemenidium atropurpureum, but different from Microglossum

    (Maas Geesteranus 1964). In Microglossum, the axial stipe hy-

    phae are comprised primarily of agglutinated, narrower lon-

    gitudinal elements, with binding hyphae very rarely observed.

    Nothomitra and Sarcoleotia also contain a densely interwoven

    internal stipe hyphal system, although the longitudinal ele-

    ments are not inflated as they are in Maasoglossum.

    In summary, our study supported the inclusion of Maa-

    soglossum as a basal member of Geoglossomycetes. Our

    findings suggest that genera with hyaline- to lightly-pig-

    mented and aseptate ascospores form the base of the Geo-

    glossomycetes clade, with the more derived members of the

    clade exhibiting darkly-pigmented and multiseptate asco-

    spores (e.g. Geoglossum and Trichoglossum). The ascocarp of

    Maasoglossum is morphologically similar to the more derived

    members of Geoglossomycetes, with the fertile hymenium

    intergrading entirely with the sterile stipe. The morphology

    of the ascospores and internal stipe hyphae of Maasoglossum

    hints at the common ancestry between Geoglossomycetes

    and stalked earth tongues in Leotiomycetes, such as

    Thuemenidium.

    Acknowledgments

    We wish to thank the following for graciously providing

    specimens for study: T Baroni, T Læssøe, P Lizon, AS Methven,

    J-M Moingeon, CF Roobeek, and the fungaria at CUP, MICH,

    SAV, and WTU. The authors wish to acknowledge the

    following sources of funding to VPH: American Society of

    http://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • my c o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9578

    Plant Taxonomists, Discover Life in America, the Graduate

    College at the University of Illinois at Urbana-Champaign,

    Mycological Society of America, and the North American

    Mycological Association.

    r e f e r e n c e s

    Alfaro ME, Zoller S, Lutzoni F, 2003. Bayes or bootstrap? Asimulation study comparing the performance of BayesianMarkov Chain Monte Carlo sampling and bootstrapping inassessing phylogenetic confidence. Molecular Biology andEvolution 20: 255e266. http://dx.doi.org/10.1093/molbev/msg028.

    Arauzo S, Iglesias P, 2014. La familia Geoglossaceae ss. str. en laPeninsula Ib�erica y la Macaronesia (in Spanish and Basque).Errotari 11: 166e259.

    Bonsdorff von T, Niskanen T, Kyt€ovuori I, Liimatainen K, Vauras J,Kokkonen K, Huhtinen S, Puolasmaa A, Kosonen L, 2012. Newnational and regional biological records for Finland 1.Contributions to agaricoid and ascomycetoid taxa of fungi.Memoranda Societatis pro Fauna et Flora Fennica 88: 53e60.

    Brock PM, D€oring H, Bidartondo MI, 2009. How to know theunknown fungi: the role of a herbarium. New Phytologist 181:719e724. http://dx.doi.org/10.1111/j.1469-8137.2008.02703.x.

    Castresana J, 2000. Selection of conserved blocks from multiplealignments and their use in phylogenetic analysis. MolecularBiology and Evolution 17: 540e552. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334.

    Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G, 2004.MycoBank: an online initiative to launch mycology into the21st century. Studies in Mycology 50: 19e22.

    Darriba D, Taboada GL, Doallo R, Posada D, 2012. jModelTest 2:more models, new heuristics and parallel computing. NatureMethods 9: 772. http://dx.doi.org/10.1038/nmeth.2109.

    Dix NJ, Webster J, 1995. Fungal ecology. Chapman and Hall,London.

    Edgar R, 2004. MUSCLE: multiple sequence alignment with highaccuracy and high throughput. Nucleic Acids Research 32:1792e1797. http://dx.doi.org/10.1093/nar/gkh340.

    Eernise DJ, Kluge AG, 1993. Taxonomic congruence versus totalevidence, and amniote phylogeny inferred from fossils,molecules, and morphology. Molecular Biology and Evolution 10:1170e1195.

    Felsenstein J, 1985. Confidence limits on phylogenies: anapproach using the bootstrap. Evolution 39: 783e791. http://dx.doi.org/10.2307/2408678.

    G€ardenfors U, 2010. R€odlistade arter i Sverige 2010 (in Swedish).Artdatabanken SLU, Uppsala.

    Gouy M, Guindon S, Gascuel O, 2010. SeaView version 4: amultiplatform graphical user interface for sequence alignmentand phylogenetic tree building. Molecular Biology and Evolution27: 221e224. http://dx.doi.org/10.1093/molbev/msp259.

    Guindon S, Dufayard JF, Lefort V, Anisomova M, Hordijk W,Gascuel O, 2010. New algorithms and methods to estimatemaximum-likelihood phylogenies: assessing the performanceof PhyML 3.0. Systematic Biology 59: 307e321. http://dx.doi.org/10.1093/sysbio/syq010.

    Guindon S, Gascuel O, 2003. A simple, fast and accurate methodto estimate large phylogenies by maximum-likelihood.Systematic Biology 52: 696e704. http://dx.doi.org/10.1080/10635150390235520.

    Hillis DM, Bull JJ, 1993. An empirical test of bootstrapping as amethod for assessing confidence in phylogenetic analysis.Systematic Biology 42: 182e192. http://dx.doi.org/10.2307/2992540.

    Hustad VP, Ku�cera V, Ryb�arikov�a N, Lizon P, Gaisler J, Baroni TJ,Miller AN, 2014. Geoglossum simile of North America andEurope: distribution of a widespread earth tongue species anddesignation of an epitype. Mycological Progress 13: 857e866.http://dx.doi.org/10.1007/s11557-014-0969-z.

    Hustad VP, Miller AN, 2011. Phylogenetic placement of fourgenera within the Leotiomycetes. North American Fungi 6: 1e13.

    Hustad VP, Miller AN, Dentinger BTM, Cannon PF, 2013. Genericcircumscriptions in Geoglossomycetes. Persoonia 31: 101e111.http://dx.doi.org/10.3767/003158513X671235.

    Hustad VP, Miller AN, Moingeon J-M, Priou J-P, 2011. Inclusion ofNothomitra in Geoglossomycetes.Mycosphere 2: 646e654. http://dx.doi.org/10.5943/mycosphere/2/6/5.

    Jumpponen A, Weber NS, Trappe JM, C�azares E, 1997. Distributionand ecology of the ascomycete Sarcoleotia globosa in the UnitedStates. Canadian Journal of Botany 75: 2228e2231.

    Kirk PM, Cannon PF, Minter DW, Stalpers JA, 2008. Dictionary of thefungi, 10th edn. CAB International, Wallingford.

    Kluge AG, 1989. A concern for evidence and phylogenetichypothesis of relationships among Epicrates (Boidae,Serpentes). Systematic Biology 38: 7e25. http://dx.doi.org/10.1093/sysbio/38.1.7.

    Landvik S, 1996. Neolecta, a fruit-body producing genus of thebasal ascomycetes, as shown by SSU and LSU rDNAsequences. Mycological Research 100: 199e202. http://dx.doi.org/10.1016/S0953-7562(96)80122-5.

    Lumbsch HT, Huhndorf SM, 2010. Myconet Volume 14. Part 1.Outline of Ascomycotad2009. Part two. Notes on ascomycetesystematics Nos. 4751e5113. Fieldiana Life and Earth Sciences 1:1e64; http://dx.doi.org/10.3158/1557.1.

    Lutzoni F, Kauff F, Cox CJ, McLaughlin D, Celio G, Dentinger B,Padamsee M, Hibbett D, James TY, Baloch E, Grube M, Reeb V,Hofstetter V, Schoch C, Arnold AE, Miadlikowska J, Spatafora J,Johnson D, Hambleton S, Crockett M, Shoemaker R, Sung G-H,Lucking R, Lumbsch T, O'Donnell K, Binder M, Diederich P,Ertz D, Gueidan C, Hansen K, Harris RC, Hosaka K, Lim Y-W,Matheny B, Nishida H, Pfister D, Rogers J, Rossman A, Schmitt I,Sipman H, Stone J, Sugiyama J, Yahr R, Vilgalys R, 2004.Assembling the fungal tree of life: progress, classification, andevolution of subcellular traits. American Journal of Botany 91:1446e1480. http://dx.doi.org/10.3732/ajb.91.10.1446.

    Maas Geesteranus RA, 1964. On some white-sporedGeoglossaceae. Persoonia 3: 81e96.

    McNeill J, 2012. International code of nomenclature for algae, fungi, andplants (Melbourne Code): adopted by the Eighteenth InternationalBotanical Congress Melbourne Australia, July 2011. KoeltzScientific Books, K€onigstein.

    Miller MA, Pfeiffer W, Schwartz T, 2010. Creating the CIPRESScience Gateway for inference of large phylogenetic trees. In:Proceedings of the Gateway Computing Environments Workshop(GCE), New Orleans, November 14, pp 1e8.

    NBSAP Bhutan, 2009. National biodiversity action plan for Bhutan.National Biodiversity Center, Ministry of Agriculture,Thimphu.

    Nitare J, 1982. Geoglossum arenarium, en problematisk jordtunga(in Swedish). G€oteborgs Svampklubbs Årsskrift 1981: 61e68.

    Nitare J, 1984. Geoglossum asaeptatum n. sp., a new earth tonguewith brown continuous spores. Windahlia 14: 37e42.

    Nitare J, 2012. Geoglossum aseptatum, slat jordtunga (in Swedish).Artdatabanken, Uppsala. http://www.artfakta.se/artfaktablad/Geoglossum_Aseptatum_700.pdf. Accessed 15 Jan 2015.

    Ohenoja E, Wang Z, Townsend JP, Mitchell D, Voitk A, 2010.Northern species of the earth tongue genus Thuemenidiumrevisited, considering morphology, ecology and molecularphylogeny. Mycologia 102: 1089e1095. http://dx.doi.org/10.3852/09-317.

    Petch T, 1922. Additions to Ceylon fungi (II). Annals of the RoyalBotanic Gardens of Peradeniya 7: 279e322.

    http://dx.doi.org/10.1093/molbev/msg028http://dx.doi.org/10.1093/molbev/msg028http://refhub.elsevier.com/S1340-3540(15)00032-7/sref2http://refhub.elsevier.com/S1340-3540(15)00032-7/sref2http://refhub.elsevier.com/S1340-3540(15)00032-7/sref2http://refhub.elsevier.com/S1340-3540(15)00032-7/sref2http://refhub.elsevier.com/S1340-3540(15)00032-7/sref2http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://refhub.elsevier.com/S1340-3540(15)00032-7/sref3http://dx.doi.org/10.1111/j.1469-8137.2008.02703.xhttp://dx.doi.org/10.1093/oxfordjournals.molbev.a026334http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334http://refhub.elsevier.com/S1340-3540(15)00032-7/sref6http://refhub.elsevier.com/S1340-3540(15)00032-7/sref6http://refhub.elsevier.com/S1340-3540(15)00032-7/sref6http://refhub.elsevier.com/S1340-3540(15)00032-7/sref6http://dx.doi.org/10.1038/nmeth.2109http://refhub.elsevier.com/S1340-3540(15)00032-7/sref8http://refhub.elsevier.com/S1340-3540(15)00032-7/sref8http://dx.doi.org/10.1093/nar/gkh340http://refhub.elsevier.com/S1340-3540(15)00032-7/sref10http://refhub.elsevier.com/S1340-3540(15)00032-7/sref10http://refhub.elsevier.com/S1340-3540(15)00032-7/sref10http://refhub.elsevier.com/S1340-3540(15)00032-7/sref10http://refhub.elsevier.com/S1340-3540(15)00032-7/sref10http://dx.doi.org/10.2307/2408678http://dx.doi.org/10.2307/2408678http://refhub.elsevier.com/S1340-3540(15)00032-7/sref12http://refhub.elsevier.com/S1340-3540(15)00032-7/sref12http://refhub.elsevier.com/S1340-3540(15)00032-7/sref12http://refhub.elsevier.com/S1340-3540(15)00032-7/sref12http://dx.doi.org/10.1093/molbev/msp259http://dx.doi.org/10.1093/sysbio/syq010http://dx.doi.org/10.1093/sysbio/syq010http://dx.doi.org/10.1080/10635150390235520http://dx.doi.org/10.1080/10635150390235520http://dx.doi.org/10.2307/2992540http://dx.doi.org/10.2307/2992540http://dx.doi.org/10.1007/s11557-014-0969-zhttp://refhub.elsevier.com/S1340-3540(15)00032-7/sref18http://refhub.elsevier.com/S1340-3540(15)00032-7/sref18http://refhub.elsevier.com/S1340-3540(15)00032-7/sref18http://dx.doi.org/10.3767/003158513X671235http://dx.doi.org/10.5943/mycosphere/2/6/5http://dx.doi.org/10.5943/mycosphere/2/6/5http://refhub.elsevier.com/S1340-3540(15)00032-7/sref21http://refhub.elsevier.com/S1340-3540(15)00032-7/sref21http://refhub.elsevier.com/S1340-3540(15)00032-7/sref21http://refhub.elsevier.com/S1340-3540(15)00032-7/sref21http://refhub.elsevier.com/S1340-3540(15)00032-7/sref21http://refhub.elsevier.com/S1340-3540(15)00032-7/sref22http://refhub.elsevier.com/S1340-3540(15)00032-7/sref22http://dx.doi.org/10.1093/sysbio/38.1.7http://dx.doi.org/10.1093/sysbio/38.1.7http://dx.doi.org/10.1016/S0953-7562(96)80122-5http://dx.doi.org/10.1016/S0953-7562(96)80122-5http://dx.doi.org/10.3158/1557.1http://dx.doi.org/10.3732/ajb.91.10.1446http://refhub.elsevier.com/S1340-3540(15)00032-7/sref27http://refhub.elsevier.com/S1340-3540(15)00032-7/sref27http://refhub.elsevier.com/S1340-3540(15)00032-7/sref27http://refhub.elsevier.com/S1340-3540(15)00032-7/sref28http://refhub.elsevier.com/S1340-3540(15)00032-7/sref28http://refhub.elsevier.com/S1340-3540(15)00032-7/sref28http://refhub.elsevier.com/S1340-3540(15)00032-7/sref28http://refhub.elsevier.com/S1340-3540(15)00032-7/sref28http://refhub.elsevier.com/S1340-3540(15)00032-7/sref29http://refhub.elsevier.com/S1340-3540(15)00032-7/sref29http://refhub.elsevier.com/S1340-3540(15)00032-7/sref29http://refhub.elsevier.com/S1340-3540(15)00032-7/sref29http://refhub.elsevier.com/S1340-3540(15)00032-7/sref29http://refhub.elsevier.com/S1340-3540(15)00032-7/sref30http://refhub.elsevier.com/S1340-3540(15)00032-7/sref30http://refhub.elsevier.com/S1340-3540(15)00032-7/sref30http://refhub.elsevier.com/S1340-3540(15)00032-7/sref31http://refhub.elsevier.com/S1340-3540(15)00032-7/sref31http://refhub.elsevier.com/S1340-3540(15)00032-7/sref31http://refhub.elsevier.com/S1340-3540(15)00032-7/sref31http://refhub.elsevier.com/S1340-3540(15)00032-7/sref32http://refhub.elsevier.com/S1340-3540(15)00032-7/sref32http://refhub.elsevier.com/S1340-3540(15)00032-7/sref32http://www.artfakta.se/artfaktablad/Geoglossum_Aseptatum_700.pdfhttp://www.artfakta.se/artfaktablad/Geoglossum_Aseptatum_700.pdfhttp://dx.doi.org/10.3852/09-317http://dx.doi.org/10.3852/09-317http://refhub.elsevier.com/S1340-3540(15)00032-7/sref35http://refhub.elsevier.com/S1340-3540(15)00032-7/sref35http://refhub.elsevier.com/S1340-3540(15)00032-7/sref35http://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

  • myc o s c i e n c e 5 6 ( 2 0 1 5 ) 5 7 2e5 7 9 579

    Petersen PM, 1970. Danish fireplace fungi. An ecologicalinvestigation on fungi on burns. Dansk Botanisk Arkiv 27: 1e97.

    Peterson SW, 2008. Phylogenetic analysis of Aspergillus speciesusing DNA sequences from four loci. Mycologia 100: 205e226.http://dx.doi.org/10.3852/mycologia.100.2.205.

    Pfister DH, 1997. Castor, pollux and life histories of fungi.Mycologia 89: 1e23. http://dx.doi.org/10.2307/3761168.

    Posada D, Buckley TR, 2004. Model selection and model averagingin phylogenetics: advantages of Akaike information Criterionand Bayesian approaches over likelihood ratio tests. SystematicBiology 53: 793e808. http://dx.doi.org/10.1080/10635150490522304.

    Promputtha I, Miller AN, 2010. Three new species ofAcanthostigma (Tubeufiaceae, Dothidiomycetes) from the GreatSmoky Mountains National Park. Mycologia 102: 574e587.http://dx.doi.org/10.3852/09-051.

    Rambaut A, Drummond AJ, 2009. Tracer v.1.5. http://tree.bio.ed.ac.uk/software/tracer. Accessed 15 Jan 2015.

    Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A,H€ohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP, 2012.MrBayes 3.2: efficient Bayesian phylogenetic inference andmodel choice across a large model space. Systematic Biology 61:539e542. http://dx.doi.org/10.1093/sysbio/sys029.

    Sagara N, 1992. Experimental disturbances and epigeous fungi. In:Carroll GC, Wicklow DT (eds), The fungal community, 2nd edn.Marcel Dekker, New York, pp 427e454.

    Schoch CL, Wang Z, Townsend JP, Spatafora JW, 2009.Geoglossomycetes cl. nov., Geoglossales ord. nov. and taxaabove class rank in the Ascomycota tree of life. Persoonia 22:129e138. http://dx.doi.org/10.3767/003158509X461486.

    Schumacher T, Sivertsen S, 1987. Sarcoleotia globosa (Sommerf.:Fr.) Korf, taxonomy, ecology, and distribution. In: Laursen GA,Ammirati JF, Redhead SA (eds), Arctic and Alpine mycology, vol.2. Plenum Press, New York and London, pp 163e176.

    Skottsberg C, 1907. Zur Kenntnis der subantarktischen undantarktischen Meeresalgen. I. Phaeophyceen (in German).Lithographisches Institut des Generalstabs, Stockholm.

    Thind KS, Sharma R, 1984. Maasoglossum, a new genus ofGeoglossaceae from the Eastern Himalayas. Kavaka 12:37e40.

    Vilgalys R, Hester M, 1990. Rapid identification and mapping ofenzymatically amplified ribosomal DNA from severalCryptococcus species. Journal of Bacteriology 172: 4238e4246.

    Wang Z, Binder M, Hibbett DS, 2002. A new species of Cudoniabased on morphological and molecular data. Mycologia 94:641e650. http://dx.doi.org/10.2307/3761715.

    Wang Z, Binder M, Hibbett DS, 2005. Life history and systematicsof the aquatic discomycete Mitrula (Helotiales, Ascomycota)based on cultural, morphological, and molecular studies.American Journal of Botany 92: 1565e1574. http://dx.doi.org/10.3732/ajb.92.9.1565.

    Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW,Hibbett DS, 2006. Evolution of Helotialean fungi(Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny.Molecular Phylogenetics and Evolution 41: 295e312. http://dx.doi.org/10.1016/j.ympev.2006.05.031.

    Wang Z, Nilsson RH, Lopez-Giraldez F, Zhuang W, Dai Y,Johnston PR, Townsend JP, 2011. Tasting soil fungal diversitywith earth tongues: phylogenetic test of SAT�e alignments forenvironmental ITS data. PLoS One 6: e19039.

    White TJ, Bruns T, Lee S, Taylor JW, 1990. Amplification and directsequencing of fungal ribosomal RNA genes for phylogenetics.In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCRProtocol: a guide to methods and applications. Academic Press, SanDiego, pp 315e322.

    Wiens JJ, 1998. Combining data sets with different phylogenetichistories. Systematic Biology 47: 568e581. http://dx.doi.org/10.1080/106351598260581.

    Zhao J, Kong F, Li R, Wang X, Wan Z, Wang D, 2001. Identificationof Aspergillus fumigatus and related species by nested PCRtargeting ribosomal DNA internal transcribed spacer regions.Journal of Clinical Microbiology 39: 2261e2266. http://dx.doi.org/10.1128/JCM.39.6.2261-2266.2001.

    http://refhub.elsevier.com/S1340-3540(15)00032-7/sref36http://refhub.elsevier.com/S1340-3540(15)00032-7/sref36http://refhub.elsevier.com/S1340-3540(15)00032-7/sref36http://dx.doi.org/10.3852/mycologia.100.2.205http://dx.doi.org/10.2307/3761168http://dx.doi.org/10.1080/10635150490522304http://dx.doi.org/10.1080/10635150490522304http://dx.doi.org/10.3852/09-051http://tree.bio.ed.ac.uk/software/tracerhttp://tree.bio.ed.ac.uk/software/tracerhttp://dx.doi.org/10.1093/sysbio/sys029http://refhub.elsevier.com/S1340-3540(15)00032-7/sref43http://refhub.elsevier.com/S1340-3540(15)00032-7/sref43http://refhub.elsevier.com/S1340-3540(15)00032-7/sref43http://refhub.elsevier.com/S1340-3540(15)00032-7/sref43http://dx.doi.org/10.3767/003158509X461486http://refhub.elsevier.com/S1340-3540(15)00032-7/sref45http://refhub.elsevier.com/S1340-3540(15)00032-7/sref45http://refhub.elsevier.com/S1340-3540(15)00032-7/sref45http://refhub.elsevier.com/S1340-3540(15)00032-7/sref45http://refhub.elsevier.com/S1340-3540(15)00032-7/sref45http://refhub.elsevier.com/S1340-3540(15)00032-7/sref46http://refhub.elsevier.com/S1340-3540(15)00032-7/sref46http://refhub.elsevier.com/S1340-3540(15)00032-7/sref46http://refhub.elsevier.com/S1340-3540(15)00032-7/sref47http://refhub.elsevier.com/S1340-3540(15)00032-7/sref47http://refhub.elsevier.com/S1340-3540(15)00032-7/sref47http://refhub.elsevier.com/S1340-3540(15)00032-7/sref47http://refhub.elsevier.com/S1340-3540(15)00032-7/sref48http://refhub.elsevier.com/S1340-3540(15)00032-7/sref48http://refhub.elsevier.com/S1340-3540(15)00032-7/sref48http://refhub.elsevier.com/S1340-3540(15)00032-7/sref48http://dx.doi.org/10.2307/3761715http://dx.doi.org/10.3732/ajb.92.9.1565http://dx.doi.org/10.3732/ajb.92.9.1565http://dx.doi.org/10.1016/j.ympev.2006.05.031http://dx.doi.org/10.1016/j.ympev.2006.05.031http://refhub.elsevier.com/S1340-3540(15)00032-7/sref52http://refhub.elsevier.com/S1340-3540(15)00032-7/sref52http://refhub.elsevier.com/S1340-3540(15)00032-7/sref52http://refhub.elsevier.com/S1340-3540(15)00032-7/sref52http://refhub.elsevier.com/S1340-3540(15)00032-7/sref52http://refhub.elsevier.com/S1340-3540(15)00032-7/sref53http://refhub.elsevier.com/S1340-3540(15)00032-7/sref53http://refhub.elsevier.com/S1340-3540(15)00032-7/sref53http://refhub.elsevier.com/S1340-3540(15)00032-7/sref53http://refhub.elsevier.com/S1340-3540(15)00032-7/sref53http://refhub.elsevier.com/S1340-3540(15)00032-7/sref53http://dx.doi.org/10.1080/106351598260581http://dx.doi.org/10.1080/106351598260581http://dx.doi.org/10.1128/JCM.39.6.2261-2266.2001http://dx.doi.org/10.1128/JCM.39.6.2261-2266.2001http://dx.doi.org/10.1016/j.myc.2015.05.003http://dx.doi.org/10.1016/j.myc.2015.05.003

    Maasoglossum, a basal genus in GeoglossomycetesAcknowledgmentsReferences