MA557/MA578/CS557 Lecture 30

32
1 Spring 2003 Prof. Tim Warburton [email protected] MA557/MA578/CS557 Lecture 30

description

MA557/MA578/CS557 Lecture 30. Spring 2003 Prof. Tim Warburton [email protected]. Special Edition of ANUM on Absorbing Boundary Conditions. Structure of PML Regions. PEC. How Thick Does the PML Region Need To Be. Suppose we consider the region in blue [a,a+delta] And we set:. PEC. - PowerPoint PPT Presentation

Transcript of MA557/MA578/CS557 Lecture 30

Page 1: MA557/MA578/CS557 Lecture 30

1

Spring 2003

Prof. Tim [email protected]

MA557/MA578/CS557Lecture 30

Page 2: MA557/MA578/CS557 Lecture 30

2

Special Edition of ANUM on Absorbing Boundary Conditions

Applied Numerical Mathematics

Volume 27, Issue 4, Pages 327-560 (August 1998)Special Issue on Absorbing Boundary ConditionsEdited by Eli Turkel

Page 3: MA557/MA578/CS557 Lecture 30

3

Structure of PML Regions

* * 0x y x y

* *0, , 0x x y y

* *0, , 0x x y y

*

*

0

, 0

y y

x x

*

*

0

, 0

y y

x x

* *, , , 0y y x x

* *, , , 0y y x x * *, , , 0y y x x

* *, , , 0y y x x

PEC

Page 4: MA557/MA578/CS557 Lecture 30

4

How Thick Does the PML Region Need To Be

• Suppose we consider the region in blue [a,a+delta] • And we set:

PEC

x=a

* *, 0n

x x y y

x aC

Page 5: MA557/MA578/CS557 Lecture 30

5

Good Papers on PML Stability

• Eliane Becache, Peter G. Petropoulosy and Stephen D. Gedney, “On the long-time behavior of unsplit Perfectly Matched Layers”.

• E.Turkel, A. Yefet, “Absorbing PML Boundary Layers for Wave-Like Equations”, Applied Numerical Mathematics, Volume 27, pp 533-557, 1998.

Page 6: MA557/MA578/CS557 Lecture 30

6

Today

• Last class we examined Berenger’s split field, PML, TE Maxwell’s equations.

• Berenger introduced anisotropic dissipative terms which allow plane waves to pass into an absorbing region without reflection.

• However – Abarbanel, Gottlieb, and Hesthaven later showed that the split PML may suffer explosive instability due to the fact that it is only weakly well posed:

• S. Abarbanel, D. Gottlieb and J. S. Hesthaven, “Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics”, Journal of Scientific Computing,vol. 17, no. 1-4, pp. 405-422, 2002.

• Yet – even later, Becache and Joly showed that the split PML has at worst a linearly growing solution in the late-time.

• E. Becache and P. Joly, “On the analysis of Berenger’s Perfectly Matched Layers for Maxwell’s equations”, Mathematical Modelling and Numerical Analysis, vol. 36, no. 1, pp.87-119, 2002.

• ftp://ftp.inria.fr/INRIA/publication/publi-pdf/RR/RR-4164.pdf

Page 7: MA557/MA578/CS557 Lecture 30

7

Catalogue of Some PMLs

• There are three well known PML formulations.

1) Berenger’s split PML

2) Ziolkowski’s PML based on a Lorentz material.

3) Abarbanel & Gottlieb’s mathematically derived PML.

Page 8: MA557/MA578/CS557 Lecture 30

8

Recall Berenger’s Split PML

z

*

*

, are defined so that H

:

zx zy zx zy

zx zyxy x

zx zyyx y

yzxx zx

zy xy zy

H H H H

and

H HEE

t y

H HEE

t xEH

Ht xH E

Ht y

Page 9: MA557/MA578/CS557 Lecture 30

9

Recall: Wave Speeds

• In the previous notation we looked at eigenvalues of linear combination of the flux matrices:

• The eigenvalues computed by Matlab:

• i.e. 0,0,1,-1 under constraint on(alpha,beta)

• So for Lax-Friedrichs wetake

0 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0,

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

A B C

1

Page 10: MA557/MA578/CS557 Lecture 30

10

Eigenvectors of C

• Using Matlab we can determine the eigenvectors of C

• So C does not have a full space of eigenvectors, which in turn means that C can not be diagonalized.

• So the split PML equations are hyperbolic but only weakly well posed.

2 2

2 2

2 2

0

0, ,

1

1

where = a

b b

a a

a a

b b

b

a a

a a

a

i.e.

Page 11: MA557/MA578/CS557 Lecture 30

11

Ziolkowski’s PML

• Ziolkowski proposed a method based on a physical polarized absorbing Lorenz material.

• R. W. Ziolkowski, “Time-derivative Lorentz material model-based absorbing boundary condition” IEEE Trans. Antennas Propagat., vol. 45, pp. 1530-1535, Oct. 1997.

Page 12: MA557/MA578/CS557 Lecture 30

12

Lorentz Material Model Based PML

• Introduce 3 new auxiliary variables K,Jx,Jy:

y x

x y

x y

x zx

y zy

x

x z

y z

y

y z

zz x

E H

t y

E H

t xEH E

tK

J H

t y

J H

t xK

Ht

E

E

Hy x

Page 13: MA557/MA578/CS557 Lecture 30

13

Ziolkowski’s Lorentz Material Model Based PML

• Modification proposed by Abarbanel and Gottlieb:

x z

y

xx y

z

y

y x

x

x

yx y x

x y z

y

xzx y z

E H

t y

E H

t xEEH

t y x

PE

tP

Et

E

E

H

KH

t

K

x x x x

y y y y

P J E

P J E

Set:

Page 14: MA557/MA578/CS557 Lecture 30

14

Reconfigured Lorentz Material Model Based PML

• Note that now the corrections are all lower order terms:

x z

y

xx y

z

y

y x

x

x

yx y x

x y z

y

xzx y z

E H

t y

E H

t xEEH

t y x

PE

tP

Et

E

E

H

KH

t

K

Page 15: MA557/MA578/CS557 Lecture 30

15

Abarbanel and Gottlieb’s PML

• Abarbanel and Gottlieb proposed a mathematically derived PML.

• Like the Ziolkowski’s PML it is constructed by adding lower order terms and auxiliary variables.

Page 16: MA557/MA578/CS557 Lecture 30

16

Abarbanel & Gottlieb’s PML

2

2

y x y y

x y x x

xx y

yy x

xx x y

y

x z

y z

yxyxx y

z

y y x

E H

t y

E H

t xEEH

t

E P

E P

ddQ Q

dx

PE

tP

EtQ

Q E

d

tQ

Q E

y y

t

x

Page 17: MA557/MA578/CS557 Lecture 30

17

Converting Berenger To An Unsplit PML

• It is possible to start from the Berenger split PML and return to the Maxwell’s TE equations with additional, lower order terms.

• See:

E.Turkel, A. Yefet, “Absorbing PML Boundary Layers for Wave-Like Equations”, Applied Numerical Mathematics, Volume 27, pp 533-557, 1998.

Page 18: MA557/MA578/CS557 Lecture 30

18

Berenger To Robust PML

• We will start with the Berenger PML equations:

z

*

*

H zx zy

x zy x

y zx y

yzxx zx

zy xy zy

H H

E HE

t y

E HE

t xEH

Ht xH E

Ht y

Page 19: MA557/MA578/CS557 Lecture 30

19

Berenger To Robust PML

• Next we Fourier transform in time:

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

zx y x

zy x y

yzx x zx

xzy y zy

Hi E E

y

Hi E E

x

Ei H H

x

Ei H H

y

ˆ i tf e f t dt

z

*

*

H zx zy

x zy x

y zx y

yzxx zx

zy xy zy

H H

E HE

t y

E HE

t xEH

Ht xH E

Ht y

Page 20: MA557/MA578/CS557 Lecture 30

20

Berenger To Robust PML

• Gather like terms:

ˆˆ 0

ˆˆ 0

ˆˆ 0

ˆˆ 0

zy x

zx y

yx zx

xy zy

Hi E

y

Hi E

x

Ei H

x

Ei H

y

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

ˆˆ ˆ

zx y x

zy x y

yzx x zx

xzy y zy

Hi E E

y

Hi E E

x

Ei H H

x

Ei H H

y

Page 21: MA557/MA578/CS557 Lecture 30

21

Berenger To Robust PML

• Multiply Hzx, Hzy terms with new factors:

ˆˆ 0

ˆˆ 0

ˆˆ 0

ˆˆ 0

zy x

zx y

yy x zx y

xx y zy x

Hi E

y

Hi E

x

Ei i H i

x

Ei i H i

y

ˆˆ 0

ˆˆ 0

ˆˆ 0

ˆˆ 0

zy x

zx y

yx zx

xy zy

Hi E

y

Hi E

x

Ei H

x

Ei H

y

Page 22: MA557/MA578/CS557 Lecture 30

22

Berenger To Robust PML• Eliminate split variables:

ˆˆ 0

ˆˆ 0

ˆˆ 0

ˆˆ 0

zy x

zx y

yy x zx y

xx y zy x

Hi E

y

Hi E

x

Ei i H i

x

Ei i H i

y

ˆˆ1 0

ˆˆ1 0

ˆˆˆ 1 1 0

y zx

x zy

y yx xy x z

Hi E

i y

Hi E

i x

EEi i H i i

i y i x

Page 23: MA557/MA578/CS557 Lecture 30

23

Berenger To Robust PML• Expand out Hz terms in 3rd equation:

ˆˆ1 0

ˆˆ1 0

ˆˆˆ 1 1 0

y zx

x zy

y yx xy x z

Hi E

i y

Hi E

i x

EEi i H i i

i y i x

2

ˆˆ1 0

ˆˆ1 0

ˆˆˆ 1 1 0

y zx

x zy

y yx xx y x y z

Hi E

i y

Hi E

i x

EEi i H i i

i y i x

Page 24: MA557/MA578/CS557 Lecture 30

24

Berenger To Robust PML• Expand out Hz terms in 3rd equation:

• Also divide 3rd by i*w:

2

ˆˆ1 0

ˆˆ1 0

ˆˆˆ 1 1 0

y zx

x zy

y yx xx y x y z

Hi E

i y

Hi E

i x

EEi i H i i

i y i x

ˆˆ1 0

ˆˆ1 0

ˆˆˆ 1 1 0

y zx

x zy

x y y yx xx y z

Hi E

i y

Hi E

i x

EEi H

i i y i x

Page 25: MA557/MA578/CS557 Lecture 30

25

Berenger To Robust PML• Create Auxiliary variables and substitute into PML

ˆˆ1 0

ˆˆ1 0

ˆˆˆ 1 1 0

y zx

x zy

x y y yx xx y z

Hi E

i y

Hi E

i x

EEi H

i i y i x

1ˆ ˆ:

1ˆ ˆ:

1ˆ ˆ:

x x

y y

z z

P Ei

P Ei

Q Hi

+

ˆˆ1 0

ˆˆ1 0

ˆ ˆ ˆ ˆˆ ˆ 0

y zx

x zy

x x x y y y

x y z x y z

Hi E

i y

Hi E

i x

E P E Pi H Q

y x

Page 26: MA557/MA578/CS557 Lecture 30

26

Berenger To Robust PML• Inverse Fourier transform:

ˆˆ1 0

ˆˆ1 0

ˆ ˆˆ 0

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆˆ ˆ

y zx

x zy

x y

x y z

x x

y y

z

y

x

z

x

x z

y y

Hi E

i y

Hi E

i x

E Ei H

y x

i P E

i P E

P PQ

i Q H

Page 27: MA557/MA578/CS557 Lecture 30

27

Berenger To Robust PML• Inverse Fourier transform:

0

0

0x

x zy x

y zx y

yxzx y z

y yx x

xx

yy

z

z

y

z

E HE

t y

E HE

t x

EEHH

t y x

PE

tP

Et

H

Q

Q

t

PP

Page 28: MA557/MA578/CS557 Lecture 30

28

Berenger To Robust PML• Change of variables:

• Manipulate equations:

x x x x

y y y y

x z

E E P

E E P

E H

y x x x x y x

x

x

y y y y x y

x y z x y z

xx x x

yy y y

zz

z

y z

y xz

E P

E P

H Q

PE P

tP

E H

t y

E H

t x

E EH

t

E P

x

H

y

tQ

t

Page 29: MA557/MA578/CS557 Lecture 30

29

Comments

• Notice that the additional auxiliary variables Px,Py,Qz are defined as solutions of ODEs.

• Corrections to TE Maxwell’s are linear corrections in Ex,Ey,Hz,Px,Py,Qz strongly hyperbolic equations well posed.

• Technically, one should verify that this is still a PML.

y x x x x y x

x

x

y y y y x y

x y z x y z

xx x x

yy y y

zz

z

y z

y xz

E P

E P

H Q

PE P

tP

E H

t y

E H

t x

E EH

t

E P

x

H

y

tQ

t

Page 30: MA557/MA578/CS557 Lecture 30

30

Surce Term Stability

• We can verify that the source matrix is a non-positive matrix:

Eigenvalues are:0,0, , , ,x x y y

Page 31: MA557/MA578/CS557 Lecture 30

31

Eigenvectors

Full set of vectors (at least in the corners):

0 0 0 0

0 0 0 0

0 0 0 0, , , , ,

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 1 0 0

y x x

y x x

x y

Page 32: MA557/MA578/CS557 Lecture 30

32

Message on Derivation of a General PML

• After reviewing the literature it appears that there is a certain art to constructing a PML for a given set of PDEs.

• For a possible generic approach see:

• Hagstrom et al:

• http://www.math.unm.edu/~hagstrom/papers/aero.ps• http://www.math.unm.edu/~hagstrom/papers/newpml.ps