M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition:...

18
2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations Mobile Movement Mathematics: Exploring the gestures students make while explaining FrActions. Michael I. Swart, Ben Friedman, Sor Kornkasem, Sue Hollenburg , Susan Lowes and John B. Black Teachers College Columbia University Jonathan M. Vitale University of California Berkeley Sandra Sheppard and Frances Nankin WNET Thirteen: Cyberchase ABSTRACT Twenty 3 rd and 4 th grade students from an afterschool program in Harlem, New York City participated in an exploratory study about mathematical fractions. In a quasiexperimental posttest only design, researcher’s conducted clinical interviews to capture students’ gestures produced during explanations of fractions concepts. Using McNeill’s (1992) gestural dimensions taxonomy, student’s iconic (representative of an object or process) and metaphorical (of mathematical operations) gestures were significantly correlated to higher performance on fractions problems (r=.59, p< .0061). Granular analysis revealed students’ gestures enacting processes of shading, slicing, swiping, spanning, tracing, delineating, encircling, and drawing in the air among many. Educators can leverage these gestures as grounded and embodied (Lakoff & Johnson, 1980; Barsalou, 1999; 2008; Glenberg, 2000) representations for learning mathematical fractions. DESCRIPTORS: mathematics, gestures, fractions, embodiment, clinical interview, case study This work is supported by Teachers College Columbia University Institute for Learning Technologies and NSF Cyberlearning Exploratory Grant 1217093. OBJECTIVE There is a growing theme in mathematics education integrating cognition research into instructional design and curricular development. Understanding that mathematics is grounded in the world around us (Dehaene, 1997) and its operations are embodied by our interactions therein (Glenberg, 2000; Lakoff & Núñez, 2001), investigators are probing deeper into how learners cognize mathematical concepts and, in turn, making mathematics more accessible to everyone. Recent advents in technologies like smart phones, tablets, and gaming systems are creating new opportunities for learning in the forms of rich, robust and dynamic games, simulations and tools to help engage learners and embolden their conceptual understandings of mathematics. Consequently, the design processes for these new technologies should be informed both by theory as well as formative research (Samara and Clements, 2004). With this in mind, the current research explored the gestures associated with learners’ conceptualizations (Goldin Meadow, Alibali, & Church, 1993; Goldin Meadow, 2000; Roth, 2002) of mathematical fractions for the purpose of developing a user interface for a tablet based gaming environment. THEORETICAL FRAMEWORK Math is in the world around us. It’s that one red apple hanging, the basket we

Transcript of M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition:...

Page 1: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

Mobile  Movement  Mathematics:  Exploring  the  gestures  students  make  while  explaining  FrActions.    Michael  I.  Swart,  Ben  Friedman,  Sor  Kornkasem,  Sue  Hollenburg  ,    Susan  Lowes  and  John  B.  Black  Teachers  College  Columbia  University    Jonathan  M.  Vitale  University  of  California  Berkeley    Sandra  Sheppard  and  Frances  Nankin  WNET-­‐  Thirteen:  Cyberchase        ABSTRACT  Twenty   3rd     and   4th   grade   students   from   an  afterschool   program   in   Harlem,   New   York   City  participated   in   an   exploratory   study   about  mathematical   fractions.   In   a   quasi-­‐experimental  post-­‐test  only  design,  researcher’s  conducted  clinical  interviews   to   capture   students’   gestures   produced  during   explanations   of   fractions   concepts.   Using  McNeill’s   (1992)   gestural   dimensions   taxonomy,  student’s   iconic   (representative   of   an   object   or  process)   and   metaphorical   (of   mathematical  operations)  gestures  were  significantly  correlated  to  higher  performance  on  fractions  problems  (r=.59,  p<  .0061).     Granular   analysis   revealed   students’  gestures   enacting   processes   of   shading,   slicing,  swiping,   spanning,   tracing,   delineating,   encircling,  and  drawing   in  the  air  among  many.    Educators  can  leverage   these  gestures  as  grounded  and  embodied  (Lakoff   &   Johnson,   1980;   Barsalou,   1999;   2008;  Glenberg,   2000)   representations   for   learning  mathematical  fractions.        DESCRIPTORS:   mathematics,   gestures,   fractions,  embodiment,  clinical  interview,  case  study    This  work   is   supported   by   Teachers   College   Columbia  University  Institute   for   Learning   Technologies   and   NSF   Cyberlearning  Exploratory  Grant  1217093.  

 OBJECTIVE  

There   is   a   growing   theme   in  mathematics   education   integrating  cognition   research   into   instructional  design  and  curricular  development.    Understanding  that  mathematics   is  grounded   in   the  world  

around   us   (Dehaene,   1997)   and   its  operations   are   embodied   by   our  interactions  therein  (Glenberg,  2000;  Lakoff  &   Núñez,   2001),   investigators   are   probing  deeper   into   how   learners   cognize  mathematical  concepts  and,  in  turn,  making  mathematics  more  accessible  to  everyone.      

Recent   advents   in   technologies   like  smart  phones,   tablets,  and  gaming  systems  are  creating  new  opportunities   for   learning  in   the   forms   of   rich,   robust   and   dynamic  games,   simulations   and   tools   to   help  engage   learners   and   embolden   their  conceptual  understandings  of  mathematics.  Consequently,   the   design   processes   for  these  new  technologies  should  be  informed  both   by   theory   as   well   as   formative  research   (Samara   and   Clements,   2004).      With   this   in   mind,   the   current   research  explored   the   gestures   associated   with  learners’   conceptualizations   (Goldin-­‐Meadow,   Alibali,   &   Church,   1993;   Goldin-­‐Meadow,   2000;   Roth,   2002)   of  mathematical   fractions   for   the   purpose   of  developing   a   user   interface   for   a   tablet-­‐based  gaming  environment.            THEORETICAL  FRAMEWORK  

Math  is  in  the  world  around  us.    It’s  that  one   red  apple  hanging,   the  basket  we  

Page 2: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 2

put  it   in  and  the  delicious  halves  we  split   it  into.     These   are   the   roots   of   our   number  sense   (Dehaene,   1997).     From   infancy,  people  are  endowed  with  a  numerical  sense  that  can  subitize  quantities  up  to  3  or  4  and  approximate   magnitudes   and   arithmetic  operations  (McCrink  and  Wynn,  2004;  2007;  McCrink,   Dehaene   and   Dehaene-­‐Lambertz,  2007).     In   the   brain,   frontal   and   parietal  areas   quantify,   meter,   and   compare   -­‐   a  concert  of  visuospatial  and  motoric  activity  (Dehaene,   1997;   Dehaene,   Spelke,   Pinel,  Stanescu   and   Tsivkin,   1999;   Siegler,   Fazio,  Bailey  &  Zhou,  2013).    The  number  sense  is  the   combination   of   the   actions   human  perform,  like  traversing  distances  to  collect,  compare,   sort,   contain,   carry   or   consume  objects.     It   is   the   connection   of   our   digits  (on   our   hands)   to   the   digits   (numbers)   we  use  to  enumerate.    These  are  the  embodied  sources   of   human   mathematical  understandings  (Lakoff  &  Núñez,  2001)-­‐  the  anchors   grounding   human   perceptual  experiences   (Glenberg,   2000;   Barsalou,  1999).     Just   as   Saxe   (1988)   found   informal  arithmetic   amongst   the   young   street  traders   in   Brazil,   mathematical  understanding   is   in   our   nature   and   our  nurture.     Concepts   formed   in   action   are  expressed   through   both   verbal   and   non-­‐verbal   communications.     Fortunately,   non-­‐verbal   gesture   represents   an   important,  easily  accessible  bridge  between  action  and  communication   that   educators   can   use   to  bring   the   body   and   the   mind   together   to  better   understand   mathematics   (Goldin-­‐Meadow,   Cook,   and   Mitchell,   2009;  Meadow,   Alibali   &   Church,   1993;   Roth,  2002).      

Human   beings   have   communicated  via   gesture   since   long   before   formalized  language   developed   (Hewes   et   al.,   1973;  Corballis,   1999).     While   most   people  conceive  of  gestures  as  physical  movements  that   accompany   speech,   research   has  

demonstrated   that   gesture   often   precedes  speech   (Acredolo   &   Goodwyn,   1988;  Iverson  &  Goldin-­‐Meadow,   2005;  Ozcliskan  &   Goldin-­‐Meadow,   2005).     Because  gestures   are   integral   in   communication  across   languages   and   cultures,   they  represent  a  robust  a  means  for  educators  to  help   learners   reactivate   (simulate)   the  perceptual   states   associated   with   the  concept   and   pose   the   potential   to   reveal  underlying   strategies   (Alibali   &   Nathan,  2007;   2009;     Alibali   &   Goldin-­‐Meadow,  1993;  Goldin-­‐Meadow,  1999).    

In   learning   of   mathematics,   Goldin-­‐Meadow,   Cook,   and   Mitchell   (2009)  demonstrated   that   a   pairing   gesture   could  facilitate   learners’   performances   with  arithmetic   equations.     Alibali,   Bossok,  Solomon,   Syc   and   Goldin-­‐Meadow   (1999)  posit   that   spontaneous   gestures   are   often  embodiments   of   their   mental  representations  of  math  problems.    A  study  by   Segal   (2011)   effectively   demonstrated  that   gestures   that   are   congruent   with   the  mathematical   concepts   being   learned  produce   better   learning   outcomes   than  non-­‐congruent   gestures.     Gestures  determined   to   embody   fraction   concepts  emphasize   the   congruency   between   one’s  physical  state  and  one’s  mental  state.    This  conforms   with   Hostetter’s   and  Alibali’s    (2008)   theory   of   Gestures   as  Simulated  Action.      

The   current   study   explores   the  gestures  that  learners  of  fractions  use  when  explaining   their   responses   to   fraction  problems   of   identity,   magnitude   and  equivalency   (Schneider   &   Siegler,   2010;  Lakoff  &  Nunez,  2000).  The  current  research  anticipated   an   array   of   responses   ranging  from   relevant   and   irrelevant   to   fractions  concepts.  Moreover,   amongst   the   gestures  denoted  as  relevant  to  fractions,  some  were  conceptually   congruent   to   the   process   of  fracturing  and  others  were  not.    The  goal  is  

Page 3: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 3

to   develop   game-­‐based   simulations   that  map   students’   gestures   onto   the   2-­‐dimensional   touch-­‐based   interface   to  accompany   simulated   activities   that  represent   real-­‐world   actions   associated  with   fractions   (Martin,   Svihla   &   Smith,  2012)    METHODS  Participants.  A   total   of   twenty   participants  from  grades   3   (n3rd=8)   and  4   (n4th=12)   of   a  public   elementary   after-­‐school   program   in  Harlem,   New   York   provided   parental  consent   to   participate   in   an   exploratory  study   that   investigated   student’s  conceptions   of   fractions   (Mean   age   =   9.7  [.61],  60%  female).    Procedure.    Four  researchers  collaborated  in  conducting   35-­‐55   minute   scripted   clinical  interviews   of   elementary   students  working  on   fractions   mathematics   problems.    Students   were   assigned   to   condition   by  grade   level   and   completed   either   an  individual   interview   (1-­‐on-­‐1)   or   a   group  interview   as   a   part   of   triad   (1-­‐on-­‐3)   (see  Lesh,  1981).    All  interviews  were  conducted  in   a   specially   designated   classroom   and  were   videotaped.     Videos   were  subsequently   reviewed   and   student’s  gestures  were   coded.    Upon  completion  of  the   interviews,   students   completed   a   10-­‐item  post-­‐test  assessing  basic  knowledge  of  magnitude,   identity   and   equivalency   of  fractions.        MATERIALS.  Data   in   the   current   study   was   both  quantitative   and   qualitative   from   two  primary   sources:   (1)   scripted   clinical  interview   (Appendix   A)   and   (2)   post-­‐test  (Appendix  B).    Students’  initial  responses  in  the   clinical   interviews   were   coded   as  

correct   or   incorrect.   After   data   collection  was   completed,   researchers   reviewed   the  videos  and  coded  student’s  gestures.    Scripted  Clinical  Interview.  

Section   I:   Open-­‐Ended   Assessment.     A  simple   blank  paper-­‐pencil   assessment   in  which   students   answered   three  questions   about  magnitude   and   identity  of   fractions   and   five   conceptual  questions   about   fractions.   Researchers  prompted   students   to   “draw”   their  answers   and   subsequently   probed   for  them  to  “explain  why”  and  “show  how”.    

 Section   II:   Scaffolded   Assessment.     A  

second   paper-­‐pencil   task   prompted  students  to  make  equivalency  judgments  between  fractions  using  a  set  of  6  equal-­‐sized   containers   illustrated   on   a   single  sheet  of  8.5”  x  11”  paper  (see  Figure  1).      Section   III:   Proscriptive   activity.       As  

math   investigators,   students   used   two  sets   of   manipulatives   (i.e.,   either  partitioned  strings  or  cups;  see  Figure  1)  to   answer   more   fractions   problems  about   equivalency.     Their   duty   was   to  order   a   given   set   of   three   fractions   by  determining   comparatively   if   each  fraction   was   less   than,   equal   to   or  greater  than  the  others.      Section  IV:  Post-­‐Test.      After  completing  

the   clinical   interview,   students   were  given  a  10-­‐item  post-­‐test   to  assess   their  knowledge   of   simple   fractions   (i.e.,  excluding   improper   or   compound).     The  test   comprised   of   three   sections:   (1)  fractional   magnitude   (3   items),   (2)  identity   (3   items);     (3)   equivalency   (4-­‐items)  (see  Hecht  &  Fischler,  2012).      

Page 4: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 Figure   1.   Clinical   Interview   Materials:   (a)   the   “tray   of   brownies”   as   depicted   for   the   students   for  equivalency  evaluations,  (b)  an  illustrated  example  of  the  strings  and  (c)  the  cups  that  students  used  to  make  magnitude,  identity  and  equivalency  judgments.    RESULTS  Conceptual   Models   and   Coding.   McNeill’s  (1992)  taxonomy  of  gestures  highlights  that  gestures  cannot  often  be  singularly  defined  as  a  particular  kind  of  gesture;  rather,   they  exist   along   a   continuum   (a.k.a.,   “Kendon’s  Continuum”)   and   are   more   appropriately  considered   as   dimensions.     The   current  study   uses   McNeill’s   quartet   of   semiotic  gestural   dimensions:   (1)   iconic   -­‐  representative   of   concrete   entities   and/or  actions,   (2)   metaphoric   -­‐   represent   of  abstract   entities   or   processes   (e.g.,  spanning   gesture   to   represent   arithmetic  summation),   (3)  deictic   -­‐   typically   an   index  pointing   to   a   referent,   but   can   be  performed  with   any   part   of   the   body,   and  (4)  beat  -­‐  accompany  the  prosody  of  speech  and  can  also  be  used   for  emphasis  of   time  and   context.     Additionally,   a   fifth  dimension,  enactive,  was  also  used  to  clarify    when   a   gesture   represented   a   process   or  procedure  as  well  as  a  sixth  dimension,    symbolic,   to   denote   when   gesticulations  were   of   actual   abstract   mathematical  formalisms  (i.e.,  drawing  the  number  3  in      

   the   air,   or   writing   a   numerical   fraction   in  the   air).     These   six   dimensions   were  combined   to   develop   the   gesture   coding  system  used  (see  Table  1).  Two  raters  coded  4   transcripts   (8   students)   in   common   and  pooled   the   codes   to   establish   inter-­‐rater  reliability   that   was   high   and   statistically  reliable   (Cohen’s  κ  =   .83,  n  =  10  codes,  p  <  .01).    Summary   Variables.   From   the   interview  logs,   researchers   coded   students’   gestures  as   either   relevant   or   irrelevant   to   fractions  concepts.     Gestures   that   were   iconic,  enactive,  or  metaphorical  of   the  process  of  fracturing  or  mathematical  operations  were  considered   relevant.     The   resulting  percentage   ratio   of   relevant   gestures   to  total   gestures   was   significantly   positively  correlated   to   student’s   overall   initial  accuracy  scores  during  the  clinical  interview  (r   =   .49,   p   <   .048).       Moreover,   students’  relevant  gestures  ratio  was  also  significantly  positively   correlated   to   higher   scores   on  clinical   interview  equivalency  problems  (r  =  .502,  p  <  .025)  (see  Figure  2).      

 

Page 5: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 5

 GESTURE   CODE   DESCRIPTION  BEAT   B   A  beat  gesture  with  no  specific  referent  that  accompanies  speech  

BEAT  DEICTIC   BD   A  beat  gestures  that  points  but  to  no  entity  in  particular  

BEAT  ENACTIVE   BE   A  beat  gesture  that  accompanies  speech  about  a  process  but  with  no  specific  referent  or  depiction  

BEAT  REFERENT   BR   A  beat  gesture  that  accompanies  discussion  about  an  object  

DEICTIC  REFERENT   DR   A  pointing  gesture  that  specifically  references  an  entity,  real  or    imagined  

DEICTIC  METAPHORICAL  

DM   A  pointing  gesture,  the  motion  of  which,  is  indicative  of  a  mathematical  operation  

ICONIC   I   A  gesture  that  depicts  a  specific  entity  or  process  ICONIC  METAPHORICAL  

IM   A   gesture   that   depicts   a   specific   entity   or   process   that   represents   a   mathematical  operation  

SYMBOLIC   S   A  gesture  that  depicts  an  actual  abstract  symbol  (i.e.,  drawing  the  number  3)  NON-­‐GESTURAL  ACTION   NON   An  action  performed  by  the  student  whereby  they  physically  manipulate  an  object  or  

perform  a  process  Table  1.  Codes  of  Gestures  

   

a) b)  c) Figure  2.  Three  scatterplots  contrasting  (a)  Total  Gestures  x  Total  Initially  Correct  (r  =  -­‐.032,  p  =  ns);  to  (b)  Ratio  of  Relevant  Gestures  to  Total  Initially  Correct  (r  =  .49,  p  <  .048;  to  (c)  Ratio  of  Relevant  Gestures  to  Clinical  Interview  Equivalency  Problems  (r  =  .502,  p  <  .025)        

 Determining   equivalency   between  

fractions   is   more   complicated   since   it  involves  both   judgments  of  magnitude  and  identity   as   well   as   arithmetic   operations  (Siegler  et  al,  2013;  Hecht  et  al.,  2012).    As  a  result,   4th   graders,   having   completed   a  curriculum   that   offered   them   more  instruction   and   experience   determining  equivalency   between   fractions   than   3rd  graders,   should   demonstrate   more  advanced   conceptual   and   procedural  understanding   of   fractions.     One-­‐way  

ANOVAs   confirmed   significant   differences  between   3rd   (M   =   3.22,   SD   =   1.48)   and   4th  (M   =   4.82,   SD   =.   784)   graders   on  equivalency   problems   from   the   clinical  interview  (F(1,18)=9.009,  p  <   .009)  as  well  as  equivalency   problems   from   the   post-­‐test  (F(1,18)=5.79,  p  <  .028)  with  3rd  (M  =  1.11,  SD  =  3.33)  and  4th  (M  =  1.91,  SD  =.944).      Looking   at   the   Gestures.     Table   2  emphasizes   how   conceptually   related  gestures   are   associated   with   better  

Page 6: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 6

understanding   of   fractions.     Beyond   the  taxonomic   classification   of   students’  gestures,   a   more   detailed   analysis   reveals  an   extensive   set   of   gesticulations   that  represent  different  actions,  procedures  and  concepts  (see  Table  3).      

GESTURES   TOTAL   %   RANK  BD   10   1.40%   7  BE   6   0.84%   9  BEAT   25   3.50%   5  BR   2   0.28%   10  DM   129   18.07%   3  DR   186   26.05%   2  ICONIC   9   1.26%   8  IM   283   39.64%   1  NON   51   7.14%   4  SYMBOLIC   13   1.82%   6  

 714   100.00%  

         CONCEPTUAL   427   59.80%        TABLE   2.     Rank  order   of   total   gestures   and   ratio   of  conceptual  gestures.    Qualitative   Analysis:   Findings   from   two  Cases.   A   median   split   on   initial   score  (Mdn=14)   and   ratio   of   relevant   gestures  (Mdn=   .6125)   revealed   a   significant  difference   between   groups   on   (t(18)   =   -­‐2.7154,   p   <   0.02).     Given   these   two  independent   variables   of   interest,   fracture  problem  accuracy  and   the   ratio  of   relevant  gestures   –   four   possible   categories   of  students  may  emerge:   (1)   those  who  make  few   gestures   and   demonstrate   low   initial  accuracy,  (2)  those  who  make  few  gestures  and   demonstrate   high   initial   accuracy,   (3)  those   who   make   many   gestures   and  demonstrate   low   initial   accuracy,   and   (4)  those   who   make   many   gestures   and  demonstrate   high   initial   accuracy.     The  following   two   cases   contrast   low   and   high  accuracy   between   two   students   producing  many  gestures.  

Student   DM   (Low   Accuracy,   Many  Gestures).     This   student   demonstrated  lower   conceptual   understanding   (INITIAL  CORR  =  9,  z=-­‐1.22)  with  a  very  high  rate  of  gesture  (TOTAL  GEST=45,  z=1.42;  RELEVANT  GEST=22,  z=.6;).    For  relevant  gestures,  this  student   had   the   lowest   ratio   amongst   the  participant   pool   (RATIO=.49,   z=.41).  Identifying   this   pattern   presents   an  opportunity   for   teachers   to   utilize  conceptually   relevant   gestures   (Alibali   &  Nathan,  2007)  and  capitalize  on  any  existing  ones.       Despite   low   accuracy,   this   student  still   employed   conceptually   relevant  gestures   included   encircling,   pointing   to  count,   delineating   boundaries,   grasping  objects  and  spanning  gestures.        Student   AW   (High   Accuracy,   Many  Gestures)   This   student   demonstrated   high  conceptual   understanding   (INITIAL   CORR   =  16,   z=.58,   ns)   and   a   high   rate   of   gesture  (TOTAL   GEST=40,   z=.98;   RELEVANT  GEST=30,   z=1.63;).     A   closer   look   reveals  that   this   student   had   the   second   highest  ratio   of   relevant   gestures   amongst   the  participant   pool   (RATIO=.75,   z=.53).     This  student's   gestural   vocabulary   was   very  robust,   including   aligning,   chopping,  cusping,   delineating,   denoting,   drawing,  encircling,   grasping,   measuring,   pointing,  shading,   slicing,   spanning,   sweeping   and  swooping.    Interestingly,  this  student,  when  waiting   to   answer,   would   engage   in   self-­‐discussion   that   included   conceptual  gestures.     Peculiarly   enough-­‐   this   student,  with   so   many   gestures,   never   gestured   to  count,   which   may   be   another   marker   of  conceptual  development  and  mathematical  understanding   (Ginsburg,   1977;   Gelman   &  Gallistel,  1978).        

Page 7: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 TABLE  3.  Detailed  List  of  Gesture  with  Descriptions,  Frequencies  and  Rank  Order.    *Note:  Table  3  contains  overlap  between  non-­‐gestural  actions  and  the  gestural  action/functions  they  performed.    

GESTURAL)CODE

GESTURAL)ACTION/FUNCTION EXEMPLAR TOTAL % RANK

DRPOINTING

"pointing0Individuated0Fingers0represent0different0parts" 248 33.74% 1

IM ENCIRCLING "encircles0the0entire0object0to0represent0the0whole" 73 9.93% 2

IMSHADING

"Simulate0shading0of0the0parts0to0represent0the0numerator" 52 7.07% 3

IM SLICING "Uses0pencil0as0tool0simulate0slicing0the0object" 50 6.80% 4

IEMDRAWING

"uses0middle0finger0to0draw0an0imaginary0object0denoting0a0whole0and0equality" 38 5.17% 5

IMSPANNING

"singleXhanded0finger0span0(thumb0and0index)0for0comparison0referencing0the0part" 34 4.63% 6

DMGRASPING

"grasps0w00index0and0thumb0to0ident0the0pieces0of0the0string" 32 4.35% 7

DMDELINEATING

"delineates0boundaries0of0each0quantity0for0comparison0to0express0difference0using0index0finger" 31 4.22% 8

BBEAT

"iterative0gesture0indicating0the0succession0of0counting0parts0but0with0do0definitive0referent" 31 4.22% 9

DMDENOTING

"uses0pen0as0tool0to0point0at0each0object0denoting0marks0for0comparison" 16 2.18% 10

NON ALIGNING "physically0aligns0cups0side0by0side0for0comparison" 15 2.04% 11

SSYMBOL

"scribes0the0formal0symbolic0representation0of01/20in0the0air" 12 1.63% 12

IM SPREADING"spreading0motion0using0both0hands0to0indicate0the0fracturing0thereof" 11 1.50% 13

IMOCCLUDING

"occludes0portions0of0the0whole,0leaving0the0remaining0part" 10 1.36% 14

NONPHYSICAL0ACT0(nonXgestural) "picks0up0the0strings0to0inspect0them" 9 1.22% 15

IM CHOPPING "two0handed0chopping0motion0to0break0up0whole" 9 1.22% 16DM COUNTING "pointing0to0count0the0tic0marks0on0the0cups" 8 1.09% 17

NONMOVE

"student0gets0low0to0have0a0level0view0of0the0waterlines0for0comparison" 8 1.09% 18

NON PICKSXUP"physically0picks0up0string0and0points0with0index0to0determine0number0of0parts0in0the0whole" 8 1.09% 19

IMTRACING

"traces0the0perimeter0of0the0rectangle0he0has0drawn0to0denote0the0whole" 8 1.09% 20

IMSWEEPING

"sweeps0using0hand0to0denote0removing0excess0in0order0to0isolate0a0piece" 7 0.95% 21

IMSWOOPING

"clockwise0SWOOPING0motion0DRAWING0a0curvilinear0line0across0all0the0parts0to0indicate0the0whole" 5 0.68% 22

IMCOMBINING

"combines0hands0together0from0far0apart0to0represent0synthesis0of0entire0object 4 0.54% 23

ICUSPING

"two0hands0cusp0together0gesture0to0signify0an0object 3 0.41% 24

IMMEASURING

"uses0two0hands0to00measure0of0the0pieces0to0compare0them" 3 0.41% 25

BESTRIKING

"Accompanying0speech0with0striking0forward0motion0indicating0equivalency0between0numerator0and0denominator" 3 0.41% 26

I ICONICATING"places0both0hands0open0flat0onto0the0table0top0to0represent0whole0fraction" 2 0.27% 27

IM PINCHING"pinches0a0thumb0and0index0together0to0measure0the0shaded0region" 2 0.27% 28

IMSWIPING

"swipes0across0using0index0to0moves0linearly0from0zero0point0to0qty0of0fraction" 2 0.27% 29

IM SCOOPING "scooping0gesture0away0from0an0imaginary0object" 1 0.14% 30735 100.00%

Page 8: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 8

SIGNIFICANCE  Understanding   how   to   use   gestures  

to   access   mathematical   thinking   (Alibali   &  Nathan,  2012)  will  help  researchers  develop  contexts   that   are   more   engaging,  informative   and   conducive   to   math  learning.     Since   simply   performing   the  actions   (i.e.,   interacting   with   a  manipulative)   does   note   guarantee   correct  interpretations   (Martin,   Svihla   &   Smith,  2012),   what   is   developed   must   be   an  effective   combination   of   actions   (i.e.,  gesture   as   simulated   action)   with   proper  interpretation   of   how   gestures   aid  mathematical  understanding.  

Researchers   in   the   current   study  explored   students’   concepts   of   fractions  through   the   gestures   they   made   in   their  explanations.     They   found   significant  correlations   between   conceptual   gestures  and  produced  logs  with  detailed  accounts  of  3rd   and   4th   graders   explaining   how   they  conceive   of   mathematical   fractions,   the  processes   of   making   fractions,   parts,  wholes,   numerators,   denominators.   This  research  will  inform  future  work  developing  gesture-­‐based   learning   technologies   in  hopes   of   creating   new   learning  environments   that   can   bridge   between  formal   and   informal   settings,   and  between  structured   and   unstructured   curricula  (Peppler,  2013).  

 REFERENCES  Acredolo,  L.  P.,  &  Goodwyn,  S.  W.  (1988).  Symbolic  

gesturing  in  normal  infant.  Child  Development,  59,  450  –  466.  

Alibali,  M.,  Bassok,  M.,  Solomon,  K.O.  ,  Syc,  S.E.  and  Goldin-­‐Meadow,  S.  (1999).  Illuminating  Mental  Representations  through  Speech  and  Gesture.  Psychological  Science,  Vol.  10(4).  327-­‐333.  

Alibali,  M.W.  and  Nathan,  M.J.  (2007).  Teachers’  Gestures  as  a  Means  of  Scaffolding  Students’  Understanding:  Evidence  from  an  Early  Algebra  Lesson.  In  R.  Goldman,  R.  Pea,  B.  Barron,  &  S.  J.  Derry  (Eds.),  Video  Research  in  the  Learning  Sciences.  Mahwah,  

NJ:  Erlbaum.  Alibali,  M.W.  and  Nathan,  M.J.  (2012).  Embodiment  

in  Mathematics  Teaching  and  Learning:  Evidence  From  Learners’and  Teachers’  Gestures.    The  Journal  of  the  Learning  Sciences,  21,  247–286.  

Bailey,  D.H.,  Hoard,  M.K.,  Nugent,  L.,  and  Geary,  D.C.  (2012).  Competence  with  fractions  predicts  gains  in  mathematics  achievement.  Journal  of  Experimental  Child  Psychology,  113,  447–455.  

Boroditsky,  L.  (2000).  Metaphoric  Structuring:  Understanding  time  through  spatial  metaphors.  Cognition,  75(1),  1-­‐28.  

Bulgar,  S.  (2003).    Children’s  sense-­‐making  of  division  of  fractions.  Journal  of  Mathematical  Behavior,  22,  319–334.  

Clark,  M.R.,  Berenson,  S.B.  and  Cavey,  L.O.  (2003).  A  comparison  of  ratios  and  fractions  and  their  roles  as  tools  in  proportional  reasoning.  Journal  of  Mathematical  Behavior,  22,  297–317.  

Corballis,  M.C.  (1999).  The  gestural  origins  of  language.  American  Scientist  87(2).    

Davis,  G.E.  (2003)  From  parts  and  wholes  to  proportional  reasoning.  Journal  of  Mathematical  Behavior,  22,  213–216.    

Dehaene,  S.  (1997).  The  number  sense:  How  the  mind  creates  mathematics.  New  York:  Oxford  University  Press.  

Dehaene,  S.,  Spelke,  E.,  Pinel,  P.,  Stanescu,  R.,  and  Tsivkin,  S.  (1999).  Sources  of  Mathematical  Thinking:  Behavioral  and  Brain-­‐Imaging  Evidence,  Science,  284.  970-­‐974.  

Edwards,  L.D.  (2009).  Gestures  and  Conceptual  Integration  in  Mathematical  Talk.  Educational  Studies  in  Mathematics:  Gestures  and  Multimodality  in  the  Construction  of  Mathematical  Meaning,  70(2),  127-­‐141.    

Gelman,  R.  and  Gallistel,  C.R.  (1978).    The  Child’s  Understanding  of  Number.    Cambridge,  Mass.:  Harvard  University  Press.  

Ginsburg,  H.P.  (1977).  Children’s  Arithmetic.  New  York:  D.  Van  Nostrand  Co.  

Ginsberg,  H.P.  (1997).  Entering  the  Child's  Mind:  The  Clinical  Interview  In  Psychological  Research  and  Practice.    New  York,  NY:  Cambridge  University.  

Glenberg,  A.M.  and  Robertson,  D.A.  (2000).  Symbol  Grounding  and  Meaning:  A  Comparison  of  High-­‐Dimensional  and  Embodied  Theories  of  Meaning.  Journal  of  Memory  and  Language,  43,  379–401.  

Page 9: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 9

Goldin-­‐Meadow  S.  (1998).  The  development  of  gesture  and  speech  as  an  integrated  system.  New  Directions  in  Child  Development,  (79),  29-­‐42.  

Goldin-­‐Meadow,  S.  (2000).    Beyond  Words:  The  Importance  of  Gesture  to  Researchers  and  Learners.  Child  Development,  71(1),  231-­‐239.  

Goldin-­‐Meadow,  S.,  Alibali,  M.  W.,  &  Church,  R.  B.  (1993).  Transitions  in  concept  acquisition:  Using  the  hand  to  read  the  mind.  Psychological  Review,  100,  279–297.  

Goldin-­‐Meadow,  S.,  Cook,  S.W.,  and  Mitchell,  Z.A.  (2009).    Gesturing  Gives  Children  New  Ideas  About  Math,  Psychological  Science,  20(3),  p.  267-­‐272.  

Goldin-­‐Meadow,  S.,  Nusbaum,  H.,  Kelly,  S.  D.,  &  Wagner,  S.  (2001).  Explaining  math:  Gesturing  lightens  the  load.  Psychological  Science,  12(6),  516-­‐522.  

Hecht,  S.A.,  Fischler,  A.S.  (2012).    Patterns  of  Strengths  and  Weaknesses  in  Children’s  Knowledge  about  Fractions,  Journal  of  Experimental  Child  Psychology,  111(2),  212–229.  

Hewes,  G.W.  (1973).  Primate  Communication  and  the  Gestural  Origin  of  Language.  Current  Anthropology,  14(1)  5-­‐24.  

Iverson,  J.  &  S.  Goldin-­‐Meadow.  (1998).  Why  people  gesture  when  they  speak.  Nature,  396,  228.  

Iverson,  J.M.  and  Goldin-­‐Meadow,  S.  (2005).  Gesture  Paves  the  Way  for  Language  Development,  Psychological  Science,  16(5),  367-­‐371.  

Kendon,  A.  (1972).  Some  relationships  between  body  motion  and  speech.  In  A.  Siegman  &  B.  Pope  (Eds.),  Studies  in  dyadic  communication  (pp.  177-­‐210).  New  York:  Pergamon  Press.  

Kendon,  A.  (1980).  Gesticulation  and  speech:  Two  aspects  of  the  process  of  utterance.  In  M.  R.  Key  (Ed.),  The  relation  between  verbal  and  nonverbal  communication  (pp.  207-­‐227).  The  Hague:  Mouton.  

Lakoff,  George  and  Johnson,  Mark  (1980)  Metaphors  We  Live  By.  University  of  Chicago  Press.  

Langdon,  D.  McKittrick,  G.,  Beede,  D.,  Khan,  B.  and  Doms,  M.  (2011).  STEM:  Good  jobs  now  for  the  future,  U.S.  Department  of  Commerce:  Economics  and  Statistics  Registration.  Retrieved  online:  June  03,  2013:  http://meteorology.rutgers.edu/STEM.pdf  

Lesh  (1985).  Processes,  Skills,  and  Abilities  Needed  to  Use  Mathematics  in  Everyday  Situations,  Education  and  Urban  Society,  17,  439.  

Lesh,  R.  (1981).  Applied  Mathematical  Problem  Solving.  Educational  Studies  in  Mathematics,  12  (2),  235-­‐264.  

Martin,  T.,  &  Schwartz,  D.  L.  (2005).  Physically  distributed  learning:  Adapting  and  reinterpreting  physical  environments  in  the  development  of  fraction  concepts.      Cognitive  Science,  29,  587-­‐625.  

Martin,  T.,  Svihla,  V.,  and  Smith,  C.P.  (2012).  The  Role  of  Physical  Action  in  Fraction  Learning.    Journal  of  Education  and  Human  Development,  5(1),  2012  

McCrink,  K.  and  Wynn,  K.  (2004).  Large-­‐Number  Addition  and  Subtraction  by  9-­‐Month-­‐Old  Infants.  Psychological  Scicence,  15  (11),  776-­‐781.  

McCrink,  K.  and  Wynn,  K.  (2007).  Ratio  Abstraction  by  6-­‐Month-­‐Old  Infants.  Psychological  Science,  18(8),  741-­‐745.  

McCrink,  K.,  Dehaene,  S.  and  Dehaene-­‐Lambertz,  G.  (2007).  Moving  along  the  number  line:  Operational  momentum  in  nonsymbolic  arithmetic.  Perception  &  Psychophysics,  69  (8),  1324-­‐1333.  

McNeill,  D.  (1985).  So  you  think  gestures  are  nonverbal?  Psychological  Review,  92,  350-­‐371.  

McNeill,  D.  (1992).  Hand  and  Mind:  What  Gestures  Reveal  About  Thought.  Chicago:Chicago  University  Press.  

Nabors,  W.K.  (2003).  From  fractions  to  proportional  reasoning:  a  cognitive  schemes  of  operation  approach.  Journal  of  Mathematical  Behavior,  22,  133–179.  

National  Science  Board  (2010).  “Preparing  the  next  generation  of  stem  innovators:  Identifying  and  Developing  our  nation’s  human  capital.”  Retrieved  online:  June  03,  2013:  http://www.nsf.gov/nsb/publications/2010/nsb1033.pdf  

Núñez,  R.  (2008).  A  Fresh  Look  at  the  Foundations  of  Mathematics:  Gesture  and  the  Psychological  Reality  of  Conceptual  Metaphor.  In  Cienki,  A.  &  C.  Müller,  eds.  Metaphor  and  Gesture.  Amsterdam:  John  Benjamins.  

Ozcliskan,  S.,  &  Goldin-­‐Meadow,  S.  (2005).  Gesture  is  at  the  cutting  edge  of  early  language  development.  Cognition,  96,  101  –  113.  

Pantarza  &  Philippou  (2012).    Levels  of  students’  “conception”  in  frations.  Educational  Studies  in  Math,  79,  61-­‐83.  

Peppler,  K.  (2013).  Evidence  of  Interest  Driven  Learning.  CIRCL:  Synthesis  &  Envisioning  

Page 10: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 10

Meeting.  Arlington,  VA.  Perry,  M.,  Church,  R.  B.,  and  Goldin-­‐Meadow,  S.  

(1992).  Is  Gesture-­‐Speech  Mismatch  A  General  Index  of  Transitional  Knowledge?  Cognitive  Development,  7,  p.  109-­‐122.  

Roth,  W-­‐M.  (2002).  F  rom  action  to  discourse:  The  bridging  function  of  gestures.  Cognitive  Systems  Research,  3,  535–554.  

Sarama,  J.  and  Clements,  D.H.  (2004).  Building  Blocks  for  early  childhood  mathematics  Early  Childhood  Research  Quarterly,  19.  181–189.    

Saxe,  G.  (1988)  The  Mathematics  of  Street  Vendors.  Child  Development,  59,  1415-­‐1425.    

Schneider,  M.  and  Siegler,  R.S.  (2010).  Representations  of  the  Magnitudes  of  Fractions,  Journal  of  Experimental  Psychology:  Human  Perception  and  Performance,  36  (5),  p.  1227–1238.  

Schwartz,  D.L.,  Martin,  T.  and  Pfaffman,  J.  (2005).  How  Mathematics  Propels  the  Development  of  Physical  Knowledge.  Journal  of  Cognition  and  Development,  6(1),  65–86.  

Segal,  A.  (2011).  Embodied  Interaction:  Congruent  gestures  and  direct  touch  promote  performance  in  math.    Unpublished  doctoral  dissertation,  Teachers  College  Columbia  University,  New  York,  NY.    Retrieved  June  20,  2011.  

Siegler,  R.S.,  Duncan,  G.J.,  Davis-­‐Kean,  P.E.,  Duckworth,  K.,  Claessens,  A.  Engel,  M.,  Susperreguy,  M.I.  and  Chen,  M.  (2012)  Early  Predictors  of  High  School  Mathematics  Achievement.  Psychological  Science,  23(7),  691-­‐697.  

 Siegler,  R.S.,  Fazio,  L.,  Bailey,  D.H.  and  Zhou,  X.  (2013).  Fractions:  the  new  frontier  for  theories  of  numerical  development.  Trends  in  Cognitive  Sciences,  17(1),  13-­‐19.    

Stafylidou,  S.  and  Vosniadou,  S.  (2004).  The  development  of  students’  understanding  of  the  numerical  value  of  fractions.  Learning  and  Instruction,  14,  503–518.

Page 11: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

Appendix  A:  Clinical  Interview  Script  (Questions  not  covered  in  the  interviews  are  greyed  out)  

 Interviews.          Common  Core  Standards        –                3.NF.A.3a                  3.NF.A.3b                    3.NF.A.3d                        _                          Common  Core  Standards        –                3.NF.A.1                  3.NF.A.2a                    3.NF.A.2b                                _    Paper  &  Pencil  Pre-­‐Test.    This  test  consists  of  blank  sheets  of  paper  and  a  pencil.    Below  are  the  items  and  the  script  for  the  study.    EXP:     Ok.    Here  is  a  piece  of  paper  and  a  pencil  for  you  to  draw  with.        Identity  &  Magnitude  Exp:    Principally,  we  are  looking  at  the  number  of  partitions,  but  if  need,  we  can  inquire  about  the  comparable  sizes  of  their  partitions    Use  the  following  question  sequence  for  each  of  the  three  sets  below:    EXP:     Draw  me  a  picture  that  shows…                       Why  is  that  _________  (e.g.  one-­‐half)?                         Show  me  how  you  know?      [Scaffolding]  If  they  are  unable  to  think  of  an  object  to  draw,  suggest  a  divisible  object  (i.e.,  an  object,  a  collection  of  objects,  a  container,  a  path  or  a  unitized  container,  examples  include  a  pizza,  skittle,  a  train,  an  ice  tray,  a  glass)    SET  1  (To  evoke  gestures  in  their  explanations)  1.  1/2  of  something;             ❐  Correct    ❐  Incorrect  2.  1/3  of  something;             ❐  Correct    ❐  Incorrect      3.  1/4  of  something.             ❐  Correct    ❐  Incorrect    SET  2  4.  2/3  of  something;             ❐  Correct    ❐  Incorrect  5.  3/4  of  something.             ❐  Correct    ❐  Incorrect        SET  3  6.  3/3  of  something;             ❐  Correct    ❐  Incorrect      7.  4/4  of  something;             ❐  Correct    ❐  Incorrect      8.  What  about  1/1?               ❐  Correct    ❐  Incorrect    Paper  &  Pencil:    General  Questions.    EXP:  Have  you  done  “fractions”  in  your  math  class?      [YES]  Okay  then  …what  is  a  “fraction”?    (This  question  is  open  ended  enough  to  explore  what  they  will  include  in  their  definitions)  

Page 12: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 12

   [Scaffolding]  If  they  say  no,  then  move  on  to  next  question  below.    EXP:  What  is  a  “whole”  of  something?    EXP:  What  does  it  mean  to  have  a  “whole”  of  something?                       ❐  Correct    ❐  Incorrect    (This  goal  here  is  not  complex,  nor  tricky-­‐  simply  for  them  to  iterate  something  like  “it’s  the  whole  thing.”)    EXP:  What  about  a  “part”?    EXP:  What  does  it  mean  to  have  a  “part”  of  something?                       =❐  Correct    ❐  Incorrect    (These  question  is  to  explore  their  conceptions  of  parts  to  whole?  If  they  do  not  have  conception  of  parts  being  equal  in  size,  this  will  be  an  important  insight  into  their  understanding)      [Scaffolding]  If  they  encounter  difficulty  with  these  questions,  use  a  clay  manipulative  to  facilitate  these  q’s,  replace  something  with  a  divisible  object  (e.g.,  a  pizza,  a  watermelon,  a  cake)  rephrase  the  questions.      EXP:  What  is  a  “numerator”?             ❐  Correct    ❐  Incorrect  EXP:  What  is  a  “denominator”?             ❐  Correct    ❐  Incorrect      (These  questions  are  designed  to  see  if  the  students  can  express  in  words,  what  they  understand  of  the  formal  representation  of  a  fraction  as  a  mathematical  symbol,  If  there  is  a  discrepancy  between  their  parts/whole  knowledge  and  their  formal  understandings,  then  we  can  identify  a  source  of  contention  in  fractions  learning)      [Scaffolding]  At  this  point,  the  experimenter  can  write  a  formal  representation  of  a  fraction  (e.g.,  ½)  if  the  student  is  unable  to  verbalize  what  these  elements  are,  and  then  point  to  the  fraction  as  written  and  ask  the  same  questions,  pointing  to  each  as  a  referent  as  the  question  is  asked.    Paper  &  Pencil:  Equivalency.    (A  group  of  fractions  that  they  must  evaluate  their  magnitude,  identify  their  fraction  representation,  and  compare  all  three  fractions.)    EXP:     Here  is  a  sheet  of  paper  with  five  tray’s  of  brownies.    

Page 13: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 13

             The  first  one  is  a  whole  tray  of  brownies.         The  second  is  the  same  tray  split  for  two  people.     The  third  is  the  same  tray  split  for  four  people.     The  fourth  is  the  same  tray  split  for  six  people.       The  fifth  and  sixth  trays  are  the  same  and  both  split  for  eight  people.                      EXP:  Are  the  parts  all  the  same  size  for  each  dish/pan?                         ❐  Correct    ❐  Incorrect  EXP:  Explain  it  to  me?      [Scaffolding]  If  they  do  not  answer  this  correctly,  point  out  to  the  learner  that  as  you  increase  the  number  of  parts,  the  size  of  each  changes.    Have  them  identify  if  the  size  is  getting  smaller  or  bigger?    Next,  we  use  their  illustrations  of  the  dishes/pans  (A  and  B)  and  their  resulting  fractions  {(2/2),  (4/4),  (6/6),  (8/8)}  to  inquire  the  following:  (Comparisons:  (1)  A  pcs.  >  B  pcs.;  then  (2)  A  pcs.  <  B  pcs.;  (3)  A  pcs  =  B  pcs)      EXP:  So,  using  the  all  these  trays  of  food,  let’s  see  what  we  can  figure  out…      EXP:  If  one  person  gets  __  part(s)  from  this  food  (e.g.,  2/2)  and  another  person  gets  __  parts  from  this  food  (e.g.,  8/8),  who’s  eating  more?  How  do  you  know?    Show  me.       1.  1  part;  (of  the  2/2  tray)  vs.  3  parts;  (of  the  8/8  tray)?     ❐  Correct    ❐  Incorrect     2.  4  parts;  (of  the  6/6  tray)  vs.  3  parts;  (of  the  4/4  tray)?       ❐  Correct    ❐  Incorrect     3.  1  part  (of  the  4/4  tray)  vs.  2  parts;  (of  the  8/8  tray)?     ❐  Correct    ❐  Incorrect    General  Questions.  (These  question  are  open  ended  to  explore  their  conceptualizations  without  scaffolding  their  representations)    EXP:  What  does  it  mean  for  two  different  fractions  to  be  equal?                       ❐  Correct    ❐  Incorrect  (This  is  an  open  ended  question  to  see  what  they  know  about  equivalency.)      [Scaffolding]  The  experimenter  can  use  question  3  above  as  a  reference  if  the  student  is  unable  to  answer  or  understand  this  question.  

 Proscriptive  Activity.      

 

Page 14: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 14

In  these  activities,  students  are  given  numeric  representations  of  fractions  and  allowed  to  choose  from  three  different  representations  of  numbers  (strings  (paths),  cups  (unitized  containers)  or  clay  bars  (segmented  object).    

 [Differentiation]  If  students  demonstrate  immediate  proficiency,  the  researcher  can  move  from  denominators  based  in  2n  to  other  denominators  (indicated  by  the  OR  set)  

 Manipulatives:  Unitized  {1/1,  2/2,  3/3,  4/4,  5/5,  6/6,  7/7,  8/8,  9/9,  10/10,  12/12,14/14,  16/16,  18/18}     a)  Number  line/Path  –  equally-­‐lengthened  segments  of  string,  varying  tic  marks,  to  be  colored  with     marker       b)  Containers  –  equal-­‐sized  clear  containers,  varying  tic  marks;  to  be  filled  with  liquid          GIVEN:  the  whole  of  any  manipulative  are  the  same  size,  such  that  x/x=1;    GOALS:       1.  demonstrate  equivalency  between  various  symbolic  representations,  such  that  (a/b)  =  (c/d)              (e.g.,  6/10  =  3/5     2.  identify  the  whole;  enumerate  its  parts  

a)    (b/b)  ,  where  b  represents  the  whole  b)    (a/b)  ,  where  a  represents  the  part  (container/unitized  container)  c)    (a/b)  =  (c/d)  (e.g.,  6/10  =  3/5)    

       PROBLEMS:  

  1.  Set  1A  {1/2,  3/4,  2/3};  Set  1B  {5/8,  3/4,  7/14}     2.  [Time  Permitting]  Set  2A  {4/10,  3/9,  5/12};  Set  2B  {4/10,  3/9,  5/12}     3.  Set  3A  {1/2,  7/14,  7/8};  Set  3B  {2/3,  7/10,  8/12}    

    EXP:     Okay,  in  this  activity,  we  are  going  to  be  mathematicians.  

We  are  going  to  get  some  numbers  and  figure  out  what  they  mean.  As  mathematicians,  we  can’t  just  know  it  ourselves;  we  have  to  explain  it  to  our  fellow  mathematicians.      We  have  to  make  sure  our  co-­‐workers  understand  what  we  are  thinking  to  find  out  if  they  agree  or  disagree  with  us.  

              Here  is  our  first  collection  of  numbers.        EXP:     [Within  the  Group]                         Okay,  do  we  have  all  the  fractions?               Okay,  before  we  even  start,  let’s  look  at  the  numbers.    

Can  you,  as  a  group,  make  a  prediction  (smallest  to  biggest)  about  these  fractions  just  from  the  numbers?    

     EXP:     [To  the  group:  choose  a  manipulative]    

Page 15: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 15

                    Okay,  which  one  of  these  (strings,  cups,  or  clay)  do  you  want              to  use?        [Scaffolding]  Suggest  a  manipulative  if  they  are  indecisive.    EXP:     [To  the  group:  Determining  the  whole]    

Now  each  of  you  pick  the  _________(string,  cup,  clay)  from  the  set  that  you  can  use  to  represent  each  of  the          three  fractions.  

 [Scaffolding]  If  they  have  trouble  figuring  out  which  to  use,  you  can  help  each  participant  select  and  then  continue.          EXP:     [To  the  group:  Determining  the  parts]                  All  right,  everybody  got  his  or  her  card  with  your  fraction  on  it.                 Let’s  find  out  about  these  numbers.          EXP:     [Ask  each  participant]           (Researcher’s  goal  is  to  get  the  learner  to  discuss  the  whole  and  its  part)         How  many  parts  are  in  your  whole  fraction?     ❐  Correct    ❐  Incorrect         Show  me  how  you  know  by  using  your  (cup,  string,  clay)?        

[Scaffolding]  Point  to  the  denominator  of  their  fraction  as  written.  Help  them  count  the  number  of  parts  if  they  need  assistance.    

    EXP:     How  many  parts  out  of  your  whole  fraction  do  you  need?                         ❐  Correct    ❐  Incorrect                           Show  me  how  you  know  by  using  your  (cup,  string,  clay)?      [Scaffolding]  Point  to  the  numerator  as  a  reference  to  determine  the  number  they  need  and  count  the  total  number  of  partitions  with  the  learner.    Help  them  map  the  number  onto  the  parts.    

    EXP:     STRING:     a)  Color  in  the  number  of  parts  on  the  string                     U.CONT       b)  Fill  in  your  cup  with  the  right  amount  of  liquid.                                         ❐  Correct    ❐  Incorrect    

[Scaffolding]  If  they  are  unable  to  complete  this  task  as  a  group,  assist  them  in  using  their  manipulative  and  determining  their  correct  quantity.    

     [Scaffolding]  If  the  students  do  not  mention  denominators  or  numerators,  you  can  provide  these  labels  for  them  and  associate  them  to  their  quantities  in  each  fraction.    

  EXP:     Cool,  now  everyone  has  their  fractions.                       For  our  research,  we  need  to  figure  out  how  these  fractions  compare  to  one  another.                       Lets  use  our  (cups,  strings,  clay)  to  compare  their  sizes.                     Show  me  which  is  smallest,  the  biggest,  and  the  one  in  between?  

Page 16: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 16

 [Scaffolding]  If  they  are  unable  to  complete  this  task  as  a  group,  assist  them  in  using  their  manipulative  and  determining  their  correct  quantity.    Have  them  reference  their  fractions,  show  them  the  relations  between  the     numbers  and  the  size  of  their  manipulative,  and  have  them  physically  compare  the  manipulatives  to  one  another.         EXP:     Which  is  the  biggest?               ❐  Correct    ❐  Incorrect                   The  smallest?                 ❐  Correct    ❐  Incorrect                         Which  one  is  in  between?           ❐  Correct    ❐  Incorrect                     Are  any  of  them  equal?             ❐  Correct    ❐  Incorrect                     How  do  you  know?               [Open  Questioning]      

EXP:  As  a  means  for  exploring  more  about  the  kids  own  conceptions  of  their  gestures,  at  the  end  of  this  interview,  the  experimenter  can  ask  open  questions  about  any  specific  gestures  that  they  learner  provided.        For  example-­‐    Exp:  “I  noticed  that  you  use  this  gesture  a  lot.    Tell  me  why  you  use  that  gesture  when  you  talk  about  fractions?”          

Page 17: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 17

Appendix  B:  Post-­‐Test    

 Name:  ______________________           Date  of  Birth:  ______________  DIRECTIONS:  Write  the  fraction  that  describes  the  shaded  section  of  each  figure  below.    

1.  

     

2.  

                                                                                 

3.  

                                                                                                                                                                                                                                                                                                                                   

DIRECTIONS:  Shade  each  figure  below  to  match  the  given  fraction  next  to  it.    

4.  

     

5.  

   

6.  

               

Page 18: M3 AERA Paper F · 2014-04-25 · 2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations (3(to’ develop’ gameFbased’ simulations’

2014 AERA National Conference: Mathematical Cognition: Strategies, Working Memory, and Representations

 

 18

DIRECTIONS:  For  each  pair  of  fractions  below,  circle  the  one  that  is  larger  .  If  the  fractions  are  equal,  put  an  equals  sign  between  them.  OR,  you  can  use  the  symbols    <  ,  >  ,  =    

7.  

       

8.  

       

 9.    

           

10.