m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM...

6
It So\u4i'o(\ m = IO kg = O = 1C Nl F= ma ro 10 V- Tires'- * O , 0 -- I X -- F orce - a, = O+OwiOXsi) = = d),

Transcript of m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM...

Page 1: m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM 203 Homework 1 Page 6/6 % THE DIFFERENTIAL EQUATION f The Right Hand Side1 function

It So\u4i'o(\

m = IO kg= O

= 1C Nl

F= ma ro 10

V-

Tires'- * O , 0 -- I

X --

Force

- a,

= O+OwiOXsi) =

= d),

Page 2: m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM 203 Homework 1 Page 6/6 % THE DIFFERENTIAL EQUATION f The Right Hand Side1 function

371

3 ^-Q

*r\X

a*•-•

ft Q"

ofcr oOt:

X

tl

rf

+

*•O2"

0

n

IT

X

f?

C/}

ct-

4-0

V3KT

»

..*• 4 CD

U-J

rt-

3lS

o 9

0-

§-^

$5.

.— IM^*X«?

0

iic^ft

<;

0

D-(X

IN

3CD

ii

3

»3

X:^1

m

1

cr

ncr

Page 3: m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM 203 Homework 1 Page 6/6 % THE DIFFERENTIAL EQUATION f The Right Hand Side1 function

TAM 203 Homework 1 Page 3/6

9.23)

120

100

80

60

40

20

0

-20

Xvs.T

Vvs.T

0

-2

-6

-8

-10

-12

Vvs.X

150

Vvs.X

Page 4: m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM 203 Homework 1 Page 6/6 % THE DIFFERENTIAL EQUATION f The Right Hand Side1 function

= MOO

*P

cons-bntsPu>=

I

= 1 ^ m-

AA-

r 5-"7 mm

G,

'

Page 5: m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM 203 Homework 1 Page 6/6 % THE DIFFERENTIAL EQUATION f The Right Hand Side1 function

TAM 203 Homework 1 Page 5/6

9.26)

function homework926 ( )% Problem 9.26 Solution% Jan 29, 2008

% VARIABLES (Assume consistent units)% +x = displacement% v = dx/dt% z = [x v] f z is the 'state vector1

% CONSTANTSc= 1 ; % drag constantpw= 1000; % density of water (kg/m^3)m= .002; % mass of bullet (kg)d= .0057; % diameter of bullet (m)

A- pi/4*dA2; % area of bullet (mA2)

% INTIAL CONDITIONSvO= 400; % initial velocityxO= 0; initial positionzO= [xO vO] ;

tspan =[0 1] ; %time interval of integration

error = le-4;% Set error tolerance and use 'event detection'options = odeset ( ' abstol ' , error, ' reltol ', error, ...

'events', @stopevent) ;

% Ask Matlab to SOLVE odes in function f rhs '[t zarray] = ode45 (@rhs, tspan, zO, options, c, pw,m, d) ;

The parameters m, c and g are passed to both% the 'rhs' function and the 'stopevent' function% Each row of zarray is the state z at one time.

%UNPACK the zarray (the solution) into sensible variablesx = zarray (:,1); x is the first column ofv = zarray (:, 2); is the second column ofdisp (x (end) ) ;

lot (t,x)itle(f Bullet Problem1)label ('Time, t'); ylabel (' Position, x')axis([0 inf -inf inf ] ) %inf self scales plot

end % end of main function

Page 6: m = IO kg F= ma = O - Andy Ruinaruina.tam.cornell.edu/Courses/Tam203_Spring08/hwsoln/Hw1.pdf · TAM 203 Homework 1 Page 6/6 % THE DIFFERENTIAL EQUATION f The Right Hand Side1 function

TAM 203 Homework 1 Page 6/6

% THE DIFFERENTIAL EQUATION f The Right Hand Side1

function zdot = rhs (t, z, c, pw,m, d)%UNPACK state vector z into sensible variablesx = z(l); y is the first element ofv = z(2); v is the second element

%Define Constant Area of BulletA= l/4*pi*dA2;

%The equationsxdot = v; % kinematic relation between x and vvdot = -l/2*c*pw*vA2*A/m; % F = m a

% Pack the rate of change of x, v into a rate of change% of state:zdot = [xdot vdot]1; % Has to be a column vectorend % end of rhs

^

function [value, isterminal, dir] = stopevent (t, z, c,pw,m, d)% Have to assign numbers to value, isterminal, dir%UNPACK z into sensible variablesx = z(l); x is the first element ofv = z(2); is the second element ofvalue = v-5; % stop integrating when v=isterminal = 1; 1 means stopdir = -1; -1 for decreasing, + 1 for increasing,

% 0 for any which way.end % end of stopevent

Output: The total penetration distance when the velocity has dropped to 5 m/s is 0.687 meters,Bullet Problem

co

!t±COoQ.

0.03