Lunar Station IAC 2014-Final Master-1 - NASA

14
IAC14,D3,1,4,x22217 Lunar Station, V1.2 Page 1 of 14 Lunar Station: The Next Logical Step In Space Development By Mr. Robert Bruce Pittman* Ms. Lynn Harper** Mr. Mark Newfield** and Dr. Daniel J. Rasky** * Space Portal, Lockheed; ** Space Portal, NASA Ames September, 2014 The International Space Station (ISS) is the product of the efforts of sixteen na tions over the course of several decades. It is now complete, operational, and has been continuously occupied since No vember of 2000 1 . Since then the ISS has been carrying out a wide variety of re search and technology development ex periments, and starting to produce some pleasantly startling results 2 . The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pres surized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for ex ploring architectures for beyond low earthorbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either 1 http://www.nasa.gov/mission_pages/station/main 2 See Microgravity Imperative Report, Office of the Chief Technologist, 2014 putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered mate rials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under devel opment and are expected to be available within the next 35 years, will be exam ined. This paper will explore how best practices and expertise gained from de veloping and operating the ISS and other relevant programs can be applied to effec tively developing Lunar Station. Why Lunar Station? – A Lunar Station can provide many benefits to NASA and the country. It would serve as a very use ful development step between our cur rent capabilities in LEO, and our aspira tions to oneday travel in person to Mars. It can provide a testing and proving ground for a variety of important ad vanced technologies and capabilities, in cluding robotics, ISRU, resource depots, deep space crew habitats, closed loop life support, inspace propulsion, optical communication and space additive manu facturing to name a few. The large permanently shaded craters in the pole regions of the Moon have tem peratures as low as 40 °K (minus 388 °F) 3 , and offer opportunities for new scientific observations, exploration, inves tigation, and learning. The Moon has re 3 http://www.space.com/7311mooncraterscoldest placesolarsystem.html

Transcript of Lunar Station IAC 2014-Final Master-1 - NASA

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  1  of  14    

Lunar  Station:    The  Next  Logical  Step  In  Space  Development  By  

Mr.  Robert  Bruce  Pittman*  Ms.  Lynn  Harper**  Mr.  Mark  Newfield**  

and  Dr.  Daniel  J.  Rasky**  *  -­‐  Space  Portal,  Lockheed;  **  -­‐  Space  Portal,  NASA  Ames  

 September,  2014  

 The   International   Space   Station   (ISS)   is  the   product   of   the   efforts   of   sixteen   na-­‐tions   over   the   course   of   several   decades.    It   is   now   complete,   operational,   and   has  been   continuously   occupied   since   No-­‐vember  of   20001.     Since   then   the   ISS  has  been   carrying   out   a   wide   variety   of   re-­‐search   and   technology   development   ex-­‐periments,   and   starting   to   produce   some  pleasantly  startling  results2.    The  ISS  has  a  mass  of  420  metric  tons,  supports  a  crew  of  six  with  a  yearly  resupply  requirement  of   around   30  metric   tons,   within   a   pres-­‐surized  volume  of  916  cubic  meters,  and  a  habitable  volume  of  388  cubic  meters.    Its  solar  arrays  produce  up  to  84  kilowatts  of  power.     In   the   course   of   developing   the  ISS,  many  lessons  were  learned  and  much  valuable  expertise  was  gained.    Where  do  we  go  from  here?    The   ISS   offers   an   existence   proof   of   the  feasibility  of  sustained  human  occupation  and   operations   in   space   over   decades.   It  also   demonstrates   the   ability   of   many  countries   to   work   collaboratively   on   a  very   complex   and   expensive   project   in  space  over  an  extended  period  of   time  to  achieve   a   common   goal.     By   harvesting  best  practices  and  lessons  learned,  the  ISS  can   also   serve   as   a   useful   model   for   ex-­‐ploring   architectures   for   beyond   low-­‐earth-­‐orbit  (LEO)  space  development.        This   paper   will   explore   the   concept   and  feasibility  for  a  Lunar  Station.    The  Station  concept   can   be   implemented   by   either  

                                                                                                               1  http://www.nasa.gov/mission_pages/station/main  2  See  Microgravity  Imperative  Report,  Office  of  the  Chief  Technologist,  2014  

putting   the   equivalent   capability   of   the  ISS   down   on   the   surface   of   the  Moon,   or  by   developing   the   required   capabilities  through  a  combination  of  delivered  mate-­‐rials   and   equipment   and   in   situ   resource  utilization  (ISRU).    Scenarios  that  leverage  existing   technologies   and   capabilities   as  well   as   capabilities   that   are   under  devel-­‐opment   and   are   expected   to   be   available  within   the   next   3-­‐5   years,   will   be   exam-­‐ined.     This   paper   will   explore   how   best  practices   and   expertise   gained   from   de-­‐veloping  and  operating   the   ISS  and  other  relevant  programs  can  be  applied  to  effec-­‐tively  developing  Lunar  Station.        Why   Lunar   Station?   –   A   Lunar   Station  can   provide   many   benefits   to   NASA   and  the  country.    It  would  serve  as  a  very  use-­‐ful   development   step   between   our   cur-­‐rent   capabilities   in   LEO,   and   our   aspira-­‐tions  to  one-­‐day  travel  in  person  to  Mars.    It   can   provide   a   testing   and   proving  ground   for   a   variety   of   important   ad-­‐vanced   technologies   and   capabilities,   in-­‐cluding   robotics,   ISRU,   resource   depots,  deep  space  crew  habitats,  closed  loop  life  support,   in-­‐space   propulsion,   optical  communication  and  space  additive  manu-­‐facturing  to  name  a  few.        The   large   permanently   shaded   craters   in  the   pole   regions   of   the   Moon   have   tem-­‐peratures   as   low   as   40   °K (minus  388  °F)3,  and  offer  opportunities  for  new  scientific  observations,  exploration,  inves-­‐tigation,   and   learning.    The  Moon  has   re-­‐

                                                                                                               3  http://www.space.com/7311-­‐moon-­‐craters-­‐coldest-­‐place-­‐solar-­‐system.html  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  2  of  14    

sources,   including   large  quantities  of  wa-­‐ter   in   the   permanently   shaded   craters,  which   could  be  very  useful   for   lunar   and  eventual  Mars  missions  and  activities.        Lunar   Station   would   establish   important  infrastructure  in  transportation,  high  val-­‐ue   extraterrestrial   resources,   power   and  communications,  crew  habitats  and  facili-­‐ties   that   would   significantly   lower   tech-­‐nical   and   financial   risks   for  missions   be-­‐yond   the   Moon.       And   it   would   give   our  space   program   a   much-­‐needed   clear,  timely  and  logical  next  step  to  strengthen  our   relevance   with   the   public,   maintain  our   international   space   leadership,   and  hone  our  technical  cutting  edge.    US  Lunar  Exploration  –  A  Brief  History    President   Kennedy   launched   the   Apollo  Program  in  May  1961.    This  program  sent  12  Americans   to   the   surface  of   the  Moon  between   July   1969   and  December  19724.  The   Apollo-­‐17   astronauts   were   the   last  humans   to   visit   the   Moon.     A   recent   as-­‐sessment  put  the  program  cost  for  Apollo  at   $174   billion   in   today’s   dollars 5 .    Planned  missions  beyond  Apollo-­‐17  were  cancelled,  even  though  the  Saturn-­‐5  rock-­‐ets   had   been   built   and  were   operational,  because  of   the   large  cost  of   the  program.    Despite   the   unquestionable   success   of  Apollo,  many  people  now  realize   that   the  suite  of  conditions  that  enabled  it  was  an  anomaly   that   is  not   likely   to  be  repeated.    No   one   has   been   back   to   the   Moon,   or  even  travelled  beyond  LEO,  in  42  years.        After   the   Apollo   program,   the  Moon  was  mostly   ignored   for  many  years.    The   first  US  mission   to   the  Moon  after  Apollo  was  the   Clementine   mission   in   19946.     This  was   a   low   cost  mission   that  mapped   the  

                                                                                                               4  http://www.nasa.gov/mission_pages/apollo/  5  http://beforeitsnews.com/space/2014/03/nasa-­‐end-­‐manned-­‐space-­‐flight-­‐2-­‐2476914.html  6  http://www.nasa.gov/mission_pages/LCROSS/searchforwater/clementine.html  

lunar   surface   and   returned   tantalizing  hints  of  the  presence  of  water  in  the  per-­‐manently   shadowed   lunar   craters.     The  Lunar   Prospector7  mission   in   1998   con-­‐firmed  these  initial  observations.    In  Oct.  2009,  the  LCROSS  mission  impact-­‐ed   one   of   these   permanently   shadowed  craters   and   the   data   obtained   from   this  project   confirmed   the   presence   of   large  quantities   of   water,   as   well   as   methane,  ammonia,   carbon   dioxide   and   carbon  monoxide8;   all   very   useful   materials   for  future  lunar  activities.    NASA   has   pursued   other   lunar   orbital  missions,   including   the   Lunar   Resource  Orbiter   (LRO)9  that   is   currently   in   orbit  around   the  Moon,   and  most   recently   the  Lunar   Atmosphere   and   Dust   Environment  Explorer   (LADEE)10  mission   which   ended  its  mission  with   an   impact   on   lunar   sur-­‐face  on  April  17th  of   this  year.    NASA  and  other   space   organizations   are   also  work-­‐ing   on   a   lunar   rover   mission   called   the  Resource   Prospector   Mission   (RPM)   11 .      This   mission   has   the   Regolith   and   Envi-­‐ronment   Science   and   Oxygen   and   Lunar  Volatile  Extraction  (RESOLVE)  device  as  a  primary   payload,   and   a   tentative   launch  date  of  2018.    Returning  To  The  Moon  –  Some  Failed  Attempts    On  July  20th  1989,  the  20th  anniversary  of  the   Apollo   11   landing,   President   George  H.W.  Bush   initiated  the  Space  Exploration  Initiative  to  return  Americans  to  the  Moon  and  eventually  to  Mars12.    A  NASA  “90  Day  

                                                                                                               7  http://www.nasa.gov/centers/ames/missions/archive/lunarprospector.html  8  http://www.nasa.gov/mission_pages/LCROSS/main/index.html  9  http://lunar.gsfc.nasa.gov/  10  http://www.nasa.gov/mission_pages/ladee/main  11  http://www.spacenews.com/article/civil-­‐space/39307nasa-­‐planning-­‐for-­‐mission-­‐to-­‐mine-­‐water-­‐on-­‐the-­‐moon  12  http://history.nasa.gov/sei.htm  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  3  of  14    

Study”   group  was   formed   to   explore   op-­‐tions   to   carry   out   this   assignment.       The  price   tag   for   this   20-­‐30   year   program  came  out  to  be  a  whopping  $400-­‐500  bil-­‐lion.    The  program  quietly  died  in  the  ear-­‐ly  1990’s.        On   February   1st   2003   the   Space   Shuttle  Columbia  disintegrated  upon  reentry  over  Texas   killing   all   seven   astronauts   on  board.    Responding  to  this  disaster  Presi-­‐dent   George   W.   Bush   rolled   out   an   ex-­‐traordinary   Vision   for   Space   Exploration  (VSE)13  on  January  14,  2004.    The  VSE  had  been   carefully   developed   and   had   four  major  thrusts:  

1. Implement  a  sustained  and  affordable  human   and   robotic   program   to   ex-­‐plore  the  solar  system  and  beyond.  

2. Extend   human   presence   across   the  solar   system,   starting   with   a   human  return  to  the  Moon  by  the  year  2020,  in   preparation   of   human   exploration  of  Mars  and  other  destinations.  

3. Develop   the   innovative   technology,  knowledge   and   infrastructures   both  to   explore   and   to   support   decisions  about   the  destinations   for   human  ex-­‐ploration.  

4. Promote   international   and   commer-­‐cial   participation   in   exploration   to  further   U.S.   scientific,   security   and  economic  interests.  

There   were   several   important   new   ele-­‐ments  in  the  VSE  as  well:  

1. Direct   references   to   sustainable,   af-­‐fordable  and  flexible  exploration.  

2. The   realization   that   infrastructure  would  be  needed   to  enable   this   long-­‐term  exploration.  

3. The  focus  on  using  lunar  and  asteroid  materials   to   reduce   the   mass   that  must  be  transported  from  Earth.  

4. The  instruction  to  “Pursue  commercial  opportunities  for  providing  transporta-­‐tion  and  other  services  support   for  the  International  Space  Station  and  explo-­‐

                                                                                                               13  http://history.nasa.gov/sep.htm  

ration   missions   beyond   low   Earth   or-­‐bit”.  

5. Return  US  astronauts  to  surface  of  the  Moon  by  2020.  

To   fulfill   the  VSE,  new  NASA  Administra-­‐tor  Mike  Griffin  initiated  the  Constellation  Program14.    Constellation  consisted  of  two  launch   vehicles:   the  Ares-­‐1   for   launching  crew,   and   the   Ares-­‐5,   a   large   heavy   lift  launch   vehicle   for   cargo.     In   addition   to  the  launch  vehicles,  there  was  also  a  new  crew   capsule   (Orion)   and   a   large   lunar  lander   (Altair)   proposed.     Following   the  program  rollout  in  the  autumn  of  2005,  a  number   of   criticisms   quickly   arose   re-­‐garding   the   viability   of   the   proposed  launch   systems,   particularly   the   Ares-­‐1.    Work  proceeded  on  Constellation  despite  these  criticisms.        In   May   2009   newly   elected   President  Barack   Obama   commissioned   a   “Review  of   the   US   Human   Spaceflight   Plan   Com-­‐mittee”  (the  Augustine  Committee15).    The  Committee   spent   five   months   reviewing  the  Constellation  program  and  concluded  that,   contrary   to   the   VSE   guidelines,   the  program  was   not   “sustainable”.     On   Feb-­‐ruary  1st,  2010  with  the  rollout  of  the  his  FY   2011   NASA   budget,   President   Obama  cancelled   the   Constellation   program   and  retargeted  NASA  to  send  astronauts  to  an  asteroid  and  eventually  onto  Mars,  rather  than  returning  them  to  the  Moon.    The  cancellation  of  the  Constellation  pro-­‐gram   and   the   re-­‐vectoring   of   US   human  space  program  to  visiting  an  asteroid  and  eventually  Mars,   rather   than  returning   to  the  Moon,   was   a  major   blow   to  many   in  the  aerospace  community.     It  was  a  blow  to   a   number   of   members   of   Congress   as  well.     Congress   reacted   by   demanding   a  standup   of   a   new   heavy   lift   rocket   pro-­‐gram,  the  Space  Launch  System  or  SLS  (es-­‐

                                                                                                               14  http://www.nasa.gov/mission_pages/constellation/main/index2.html  15  http://www.nasa.gov/offices/hsf/home/  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  4  of  14    

sentially   the   Ares-­‐5   launch   vehicle),   to  take  the  place  of  Constellation.    SLS  along  with   the   Orion   crew   capsule   remain   the  NASA   principle   programs   of   record   for  human  exploration  beyond  LEO  as  of   the  time   of   this   writing.     The   current   public  program  objective  of  SLS/Orion  is  to  pro-­‐vide   transport   for   astronauts   to   an   un-­‐specified   asteroid   in   the   mid   to   late  2020’s   that   will   be   moved   to   a   cis-­‐lunar  location,  and  eventually  on  to  Mars  in  the  2030’s.            Engaging  Emerging  Commercial  Space    At   the   time   that   the   Constellation   pro-­‐gram   was   being   pursued,   NASA   made   a  very  wise   decision   to   engage   the   emerg-­‐ing   commercial   space   industry.     The  Commercial   Orbital   Transportation   Ser-­‐vices  (COTS)  program  was  instrumental  in  developing  new  US   launch   capabilities   at  very  low  cost  and  risk  to  the  government.    COTS  is  used  in  this  paper  as  a  model  for  future  space  capability  development.        In   January   2006,   NASA   announced   the  COTS  program.    The  objective  of   the  pro-­‐gram  was  to  demonstrate  the  capability  of  commercial   providers   to   deliver   cargo  and   potentially   crew   to   the   International  Space   Station   (ISS)   at   a   lower   cost   than  traditional   aerospace   operating   under  standard  contracting  approaches.      An  ini-­‐tial   program  budget  of   $500M  was  made  available  and  awards  were  made  through  competitively   selected   NASA   funded  Space  Act  Agreements   (SAA).    The  use  of  the  SAA  is  important  because  it  offered  an  alternative  to  the  cost  plus  contracts  that  were   typically   used   by   NASA   for   large  space   development   projects.     The   SAA’s  utilized   performance-­‐based   milestones:  Companies   would   only   be   paid   a   previ-­‐ously   agreed   amount   upon   successful  completion   of   milestone.     This   model  turned  out  to  be  very  effective  and  is  now  

referred   to   in   this   document   as   the  “Commercial  Leverage  Model.”16      Twenty-­‐one   proposals   were   received   in  response   to   the   COTS   program   solicita-­‐tion,   and   initial   award   selection   went   to  two   companies:   SpaceX 17  run   by   Elon  Musk   and   RocketPlane   Kistler18  run   by  George  French.    The  program  was  execut-­‐ed   using   pre-­‐negotiated,   firm   fixed   price  milestones   and   associated   payments.      SpaceX  met  all  of  their  milestones  leading  to  the  development  and  successful  launch  of   a   Falcon-­‐9   rocket   in   June   2010,   and   a  demonstration   flight   of   their   Dragon  spacecraft  to  the  ISS  in  May  2012  –  an  his-­‐torical  first  for  a  private  company.        Rocketplane   Kister   did   not   fare   as   well.    After   completing   some   early   milestones,  they  were  unable  to  meet  a  key-­‐financing  milestone.     Their   agreement   with   NASA  was  eventually  canceled  in  October  2007.      The  funds  made  available  by  this  cancela-­‐tion  were  then  re-­‐competed  and  this  time  Orbital   Sciences19  (Orbital)   received   an  award.       Similar   to   SpaceX,   Orbital   pro-­‐ceeded  to  meet  all  their  milestones  and  in  April   2013   successfully   demonstrated  their  new  Antares  launch  vehicle.    Then  in  September   of   2013,   Orbital   became   the  second   private   company   to   successfully  launch   and   berth   their   resupply  module,  Cyngus,  to  the  ISS.        A   formal  assessment  of   the  COTS  program  by  NASA20  showed  unambiguously  that  the  commercial   leverage   model   could   reduce  development   costs   by   an   order   of   magni-­‐tude   over   traditional   cost-­‐plus   contract  development  methods.    

 While   both   SpaceX   and   Orbital   were  working  to  complete  their  COTS  program  milestones,   NASA   awarded   them   two  

                                                                                                               16  Pittman,  Rasky,  Harper,  IAC-­‐12,  D3,2,4,x14203  17  http://www.spacex.com/  18  http://www.kistler.co/  19  https://www.orbital.com/  20  http://www.nasa.gov/pdf/586023main_8-­‐3-­‐11_NAFCOM.pdf  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  5  of  14    

large,   competitively   selected   service   con-­‐tracts   under   the   Commercial   Resupply  Services  (CRS)  program21.      The  award  was  for  eight  ISS  cargo  flights  valued  at  about  $1.9  billion  from  Orbital  Sciences,  and  12  cargo   flights   valued   at   about   $1.6   billion  from   SpaceX.     Added   to   the   financial   in-­‐centive   from   the   COTS   program,   these  additional   contract   awards   were   very  welcome   news   to   the   companies   as   they  worked  to  develop  and  demonstrate  their  cargo  launch  capabilities  for  the  ISS.      

 Since  2009,   following   the  very   successful  COTS   and   CRS   example,   NASA   has   been  pursuing   a   similar   approach   to   establish  commercial  based  crew  transportation  to  the   ISS.     The   Commercial   Crew   Program  (CCP),  used  the  same  commercial  leverage  model   that  was   used   for   COTS.     The  CCP  was   divided   into   four   phases.     On   Sep-­‐tember   16,   2014   the   final   Commercial  Crew   Transportation   Capability   (CCtCap)  phase  was  announced  with  awards  going  to   Boeing   and   SpaceX.       This   phase   will  fund   the   two   companies,   $4.2   billion   for  Boeing   and   $2.6   billion   to   SpaceX,   to  demonstrate  crew  to  ISS  transfer  of  up  to  seven  astronauts  by   late  2017.      The  cap-­‐sules  will  also  serve  a  lifeboat  function  at  the  ISS  and  will  allow  the  crew  size  to  in-­‐crease  from  six  to  at  least  seven.    Regarding   the   Moon,   in   January   2014  NASA  issued  a  called  for  proposals  for  the  Lunar   Cargo   Transportation   and   Landing  by   Soft   Touchdown   (Lunar   CATALYST)22  program.  This   program   sought   ideas   and  recommendations   from   commercial   enti-­‐ties   that   are   interested   in   developing   a  lunar   landing   capability   that   NASA   could  eventually   purchases   services   from.    NASA   offered   to   provide   technical   and  facility  support  to  help  put  such  a  capabil-­‐ity   in-­‐place.     Currently   three   organiza-­‐tions,   Astrobotic   Technologies23,   Masten                                                                                                                  21  http://www.nasaspaceflight.com/2008/12/spacex-­‐and-­‐orbital-­‐win-­‐huge-­‐crs-­‐contract-­‐from-­‐nasa/  22  http://www.nasa.gov/lunarcatalyst/#.VCXbmI1dUfI  23  http://www.astrobotic.com/  

Space  Systems24,  and  Moon  Express25,  are  working  with   NASA   on   this   program   un-­‐der   no-­‐exchange-­‐of-­‐funds   space   act  agreements.      

 Private  Space  Attempts  for  the  Moon    At   the   time   that   NASA  was   pursuing   the  COTS   program,   the   privately   funded  Google  Lunar  XPRIZE  was   announced26  in  September   2007.     With   a   prize   purse   of  $30   million,   it   was   an   audacious   chal-­‐lenge:     Send   a   robotic   spacecraft   to   the  Moon,  land  safely,  traverse  across  the  sur-­‐face   at   least   500   meters   and   send   back  video   and   other   information   from   the  Moon  to  the  Earth.    The  first  private  team  to  accomplish  this  by  December  31,  2015  will   be   awarded   $20   million,   with   a   se-­‐cond  place  prize  of  $5  million,  and  $5  mil-­‐lion   in   bonus   prizes.     Currently,   with   a  little  over  one  year   left  to  accomplish  the  task,  there  are  still  18  official  teams  in  the  competition   and   at   least   5   of   the   teams  have   made   significant   progress   toward  the  goal.    From  the  beginning  of  the  com-­‐petition   it   was   clear   that   it   was   going   to  cost  significantly  more  than  $20  million  to  win   the   prize,   and   so   fund   raising  would  be   one   of   the   major   challenges   for   the  competing  teams.    The   winning   of   the   XPRIZE   will   be   an  enormous  feat:  these  will  be  the  first  pri-­‐vately  funded  craft  to  land  on  the  Moon  …  but   what   then?     If   the   Google   Lunar  XPRIZE’s   stated   goal   of   “inspiring   a   new  generation   of   private   investment   in   space  technology”   is   to   be   fully   realized,   the  achievements   of   these   private   lunar   pio-­‐neers  will  only  have  been  a  first  step.  The  question   that   must   then   be   addressed   is  what  comes  next?    It   is   clear   that   the   teams   involved   in   the  XPRISE   are   looking   beyond   the   scope   of  

                                                                                                               24  http://masten.aero/  25  http://www.moonexpress.com/  26  http://www.googlelunarxprize.org/  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  6  of  14    

the  competition.  These  organizations  will  be   in   a   unique   position   to   scale   up   their  work  and  land  increasingly  large  payloads  onto   the   lunar   surface  with   growing   effi-­‐ciency  and  even  return  samples   to  Earth.  But  without   some  kind  of  organizing  ele-­‐ment,   this  could   lead  to  wasteful  duplica-­‐tion  or  even  destructive  competition.      The   Google   Lunar   XPRIZE   teams   who  were   hoping   to   provide   transport   and  other  services  to  support  NASA’s  Constel-­‐lation   lunar   program  were   negatively   af-­‐fected  by  its  cancelation  in  early  2010.    To  help  at  least  partially  compensate  for  this  change,   in   October   2010,   NASA   an-­‐nounced  the  selection  of  six  companies  to  participate   in   the   Innovative   Lunar  Demonstration   Data   (ILDD)   program 27 .      ILDD  was  a  $30  million  program  targeted  at  the  US  XPRIZE  teams  to  offer  up  to  $10  million  to  each  team  in  exchange  for  shar-­‐ing  data  about  their  development  process  and  experience  with  NASA.        There  are  also  companies  pursuing   lunar  business   initiatives   outside   of   XPRIZE.    One  of  these,  Golden  Spike28,  is  offering  to  begin  privately   funded  exploration  of   the  Moon,   including   returning   people   there.    Another,  Shackelton  Energy29,  is  hoping  to  develop  lunar  resources  for  re-­‐sale.  

 In  2009   the  NASA  Ames  Research  Center  Space   Portal   Office   and   the   State   of   Ha-­‐waii   Department   of   Aerospace   Develop-­‐ment   in   collaboration   with   colleagues  from  around  the  world  rolled  out  the  con-­‐cept   for   an   International   Lunar   Research  Park   (ILRP)30,31.    The   concept   was   to   de-­‐

                                                                                                               27  http://www.nasa.gov/home/hqnews/2010/oct/HQ_10-­‐259_ILDD_Award.html  28  http://goldenspikecompany.com/  29  http://goldenspikecompany.com/  30  International  Lunar  Research  Park  https://sites.google.com/site/internationallunarresearchpark/  31  International  Lunar  Research  Park  Exploratory  Work-­‐shop  https://sites.google.com/site/ilrpexploratoryworkshop2011/  

velop   a   self-­‐supporting   research   park   on  the  Moon  in  three  phases:  

1. Establish   high   fidelity   lunar   analog  sites  on  Earth  to  develop,  explore  and  verify   needed   technologies   and   capa-­‐bilities.  

2. Establish   a   “lunar   robotic   village”   on  the  Moon  with  advanced  and  collabo-­‐rative   robotics,   additive   manufactur-­‐ing  and   in-­‐situ   resource  utilization   to  prepare   the   site   for   eventual   human  occupation.  

3. Send   humans   to   the   Moon   to   begin  living   and   working   there   while   con-­‐tinuing   to   advance   capabilities   of   the  ILRP,  and  developing  useful  and  reve-­‐nue  making  products.        

This   concept  was   found   to  be  compelling  to   a   number   of   high-­‐profile   individuals,  was   discussed   at   length   during   several  international   meetings,   and   described   in  several   conference   papers32 ,33 .     It   was  even   featured   on   This   Week   at   NASA34.    Unfortunately,   similar   to   many   of   the  Google  Lunar  XPRIZE  competitors,   it  was  found   that   without   a   significant   commit-­‐ment   by   the   government   to   pursue   hu-­‐man   lunar   space   activities,   the   technical  and  financial  risks  are  too  large  to  attract  sufficient   investment   to   get   the   ILRP   off  the  ground.    Some  Recent  Developments    A  number   of   relevant   and   notable   devel-­‐opments  that  could  significantly  affect  the  nation’s   space   activities   and   programs  have  begun   to  emerge.     Leveraging   these  activities   could   significantly   reduce   the  cost   and   speed   the   development   of   the  Lunar  Station  concept.      

First,   SpaceX 35  recently   launched   their  thirteenth   successful   Falcon-­‐9   rocket   (in  

                                                                                                               32  http://arc.aiaa.org/doi/abs/10.2514/6.2011-­‐7136  33  IAC-­‐14,  A3,  2C.6x26569  34  http://www.nasa.gov/multimedia/podcasting/TWAN_04_15_11.html  35  http://www.spacex.com/  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  7  of  14    

thirteen   attempts)   and   are   working   on  three  important  new  capabilities:  

1. Development   of   a   reusable   Falcon-­‐9  launch   system   (Falcon-­‐9R)   which  could   significantly   reduce   launch  costs   even   further   from   their  ~$60M  currently  for  a  Falcon-­‐9  that  launches  13.5MT   to   low-­‐earth-­‐orbit   (LEO),  down   to   around   $10M   per   launch.    This   is   easily   a   factor   of   ten   below  current  space  industry  pricing.  

2. Development   of   a   Falcon-­‐heavy   (Fal-­‐con-­‐H)  that  will  be  capable  of  putting  over   50MT   to   LEO   for   a   price   of  ~$135M,  and  which  is  expected  to  fly  in  2015.    The  closest  current  available  US   capability   is   about   29MT   that   can  be   lofted   to   LEO   by   a   Delta-­‐4   Heavy  rocket  for  a  price  of  ~$380M.  

3. Development   of   a   new   liquid-­‐oxygen/methane   rocket   engine  (called   Raptor)  with   approximately   a  one-­‐million  pound  thrust  capability  -­‐-­‐  similar   to   the   engines   used   on   the  NASA  Saturn-­‐5  first  stage.    The  inten-­‐tion  apparently  is  to  use  this  engine  to  power   a   Falcon-­‐super-­‐heavy   rocket  that   could   loft   ~200MT   to   LEO   to  support   crewed   Mars   missions.  SpaceX  CEO  Elon  Musk  calls   this  new  vehicle   the   Mars   Colonial   Transport  (MCT).  

Second,   Bigelow   Aerospace   continues   to  advance  their  expandable  space  modules,  following   the   successful   in-­‐space   demon-­‐strations  of  two  scale  models  in  2006  and  2007  that  are  still  in  orbit.    Bigelow  Aero-­‐space   now   has   a   contract   with   NASA   to  put  a  small  module  called  the  Bigelow  Ex-­‐pandable   Activity   Module   or   BEAM36  on  the  ISS  starting  in  2015.    In  addition,  Bige-­‐low   is   currently   advertising   a   bigger   ex-­‐pandable   module   they   call   the   BA-­‐330  that  has  a  pressurized  volume  of  330  cu-­‐bic   meters,   and   which   they   say   could  

                                                                                                               36  http://www.nasa.gov/mission_pages/station/news/beam_feature.html  

serve   as   a   deep-­‐space   habitat   for   four   to  six  crew  for  an  extended  period.      

The  investment  community  is  now  show-­‐ing   interest   in   lunar   exploration   and   de-­‐velopment.    On  Saturday,  August  23,  2014  a  workshop  was  held  at  the  noted  Silicon  Valley   venture   capital   investment   house,  Draper-­‐Fischer-­‐Jurvetson  (DFJ).    The  title  of  the  workshop  was  “Low  Cost  Strategies  for   Lunar   Settlement”,   and   it   was   orga-­‐nized   by   Steve   Jurvetson   of   DFJ.       The  workshop  brought   together  about  50  sci-­‐entists,   engineers,   executives   and   entre-­‐preneurs,   who   have   significant   back-­‐grounds   and   interests   in   lunar   explora-­‐tion   and   development,   including   a   num-­‐ber  of  NASA  and   former  NASA  personnel  and  an  Apollo   astronaut.    The  group  was  assembled   to   answer   the   question:   Is   it  possible  to  have  a  permanent  human  lunar  settlement  of  about  10  people  on  the  Moon  by  2022,  for  a  price  tag  of  $5  billion  or  less?  The   surprising   consensus   answer   to   this  question   was   a   qualified   “Yes,   under   the  right   organizational   and   funding   condi-­‐tions”.     There   were   no   technical   show-­‐stoppers  and  a  great  deal  of  the  technolo-­‐gies   needed   were   either   on   the   shelf   or  could   be   developed   in   a   relatively   short  period   of   time   using   contemporary   tech-­‐niques.    The  group  agreed  to  write  a  set  of  papers   outlining   those   conditions,   and  NewSpace  magazine  will  dedicate  a  future  issue  to  publishing  the  results.  

One   particularly   interesting   idea   that  emerged  from  the  meeting  was  the  “Apol-­‐lo  Prize37”.    This  would  be  a  $1  billion  dol-­‐lar   prize   for   the   first   organization   that  succeeded  to  “Transport  two  or  more  peo-­‐ple   to   the   surface   of   the   Moon,   and   then  return  them  safely  back  to  Earth”.    Several  individuals  are  now  pursuing   this   idea   in  earnest.      

Outside   of   the   US,   interest   continues   to  grow  for  pursuing  human  missions  to  the  Moon.     Most   recently   the   Chinese   have  clearly   shown   their   intents   concerning                                                                                                                  37  Courtesy  Charles  Miller,  [email protected]  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  8  of  14    

the  Moon  with   their  successful  Chang’e-­‐3  lunar   robotic   spacecraft38.     The   Russians  have  also  recently  stated  their   interest   in  putting   Russian   cosmonauts   on   the  Moon39.    The  International  Space  Explora-­‐tion   Coordination   Group   (ISECG)   is   com-­‐prised  of  members  representing  the  space  agencies   of   14   countries.   The   ISECG   has  produced  a  Global  Exploration  Roadmap40  and  the  near  term  goal  of  the  vast  majori-­‐ty  of  this  groups  members  is  the  Moon.    Returning  To  The  Moon:  Lunar  Station      The  intent  of  the  Lunar  Station  is  to  put  a  permanent   human   facility   on   the   Moon  using   the   demonstrated   capabilities   and  best   practices   derived   from   the   develop-­‐ment   and   operation   of   the   International  Space   Station.     Lunar   Station  would   be   a  facility   capable  of   supporting   crews  of  6-­‐10   people   by   providing   shelter,   power,  life   support,   communications   and   the  ability   to   egress   from   the   facility   and  travel  across  the  surface  of  the  Moon.    It  is  envisioned   to   be   developed   primarily  through   a   consortium   of   public,   private,  and  international  contributors,  and  would  be   the   kernel   around   which   the   broader  capabilities   of   the   ILRP   could   nucleate.  The   Lunar   Station   community   would  jointly   develop   and   share   infrastructure  as   well   as   separately   develop   and   own  specific   capabilities.   Activities   would  range   from   scientific   research   and   tech-­‐nology   development,   to   resource   mining  and   processing,   to   human   exploration   of  the  Moon  and  even  tourism.      The   existence   proof   that   this   type   of   en-­‐terprise   can   be   developed   successfully  beyond   Earth   is   the   ISS,  which  was   built  and  continues  to  be  used  by  sixteen  coun-­‐tries.  The  ISS  now  features  commercial  as                                                                                                                  38  http://www.universetoday.com/107716/china-­‐considers-­‐manned-­‐moon-­‐landing-­‐following-­‐breakthrough-­‐change-­‐3-­‐mission-­‐success/  39  http://rt.com/news/157800-­‐russia-­‐moon-­‐colonization-­‐plan/  40  http://www.nasa.gov/exploration/about/isecg/#.VA-­‐gRI1dVS_  

well   as   science   and   technology   activities,  and   has   been   continuously   inhabited  since   November   2000.   Similar   to   the   ISS  but  with  a  broader  set  of   stakeholders   in  mind,   Lunar   Station   will   be   developed  with   investments   from   nations,   commer-­‐cial  developers,  philanthropists,  academic  institutions   and   even   private   citizens   to  develop  and  evolve  the  facilities  over  time.      For   the   purposes   of   the   analysis   we  will  use  the  ISS  as  a  guide  for  establishing  the  initial  capabilities  that  will  be  targeted  for  Lunar  Station.    These  are  listed  as  follows.        Lunar  Station  Initial  Goals:  Pressurized  volume:     900+  cubic  meters    Habitable  volume:     300+  cubic  meters  Power:         100+  KW  Initial  crew  size:     6  -­‐  10  people  Life  support  recovery:     90%  or  better  Crew  rotation:     Every  six  months  Initial  lunar  mass:     150+  MT  Initial  yearly  resupply:     30+  MT  

The   largest   delta   with   respect   to   ISS  numbers   is   the   initial   lunar   mass   of  150+MT   compared   to   the   ISS   mass   of      420   MT.     We   believe   this   lower   mass   is  enabled  by  using  the  soon  to  be  available  pre-­‐fabricated  Bigelow  Aerospace  habitat  modules  (described  in  more  detail  below)  compared   to   the   traditional   hard-­‐body  modules   used   on   ISS.     Mass   savings   can  also  be  anticipated  from  the  effective  use  of   ISRU  and   additive  manufacturing   (dis-­‐cussed   more   below).     With   the   current  and   near   term   capabilities   of   emerging  commercial   space   companies,   such   as  SpaceX  and  Bigelow  Aerospace,  building  a  lunar   facility   that   meets   these   goals   ap-­‐pears  very  feasible  at  this  time,  as  will  be  discussed.    In  considering  a  budget  for  both  the  build  and   operational   phases   of   Lunar   Station  ISS  again  served  as  a  guide.    It  is  assumed  that   the   initial   effort   will   result   from   a  largely  government-­‐funded  program.  The  current   annual   budget   for   the   ISS   runs  about  $3  billion  per  year.    Given  contem-­‐porary   commercial   capabilities   and   ap-­‐

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  9  of  14    

proaches,   and   to   promote   more   cost-­‐effective   choices,   an   annual   budget   level  of   approximately   $2   billion   per   year   for  Lunar   Station   is   considered.     Of   the   $2  billion,   roughly   half   is   assigned   to   trans-­‐portation   with   the   remainder   funding  payloads  and  operations.    Once  the  initial  station   is   underway,   additional   funding  from  international  and  private  partners  is  anticipated.    An   essential   capability   for   building   and  operating  Lunar  Station   is   transportation  to   the   Lunar   surface.     Table   1   gives   a  summary   of   current   US   transportation  options  beyond  LEO,   including   listing   the  capabilities   of   the   NASA   Saturn-­‐5   rocket  for   comparison   (cost   numbers   for   the  Saturn-­‐5   have   been   adjusted   to   current  year  values).    The  data   in   the   table   come  from   a   variety   of   public   sources   and   in-­‐corporate   a   number   of   assumptions   as  well   as   engineering   and   professional  judgment.    As  such,  these  numbers  should  be  used  more  for  comparison  of  different  launch  options  than  numbers  for  detailed  mission  planning.        As  can  be  seen   from  the   table,   the  recent  and   future   development   of   the   SpaceX  launch   capabilities   could   be   very   im-­‐portant  to  achieving  an  economically  via-­‐ble   approach   for  build   and  operating  Lu-­‐nar   Station.       Assuming   a   transportation  budget   of   approximately   $1   billion   per  year   as   previously   discussed,   the   time  frames   to   achieve   150MT   on   the   lunar  surface   run   from   a   little   over   nine   years  using  a  Falcon-­‐9,  down  to  five  years  for  a  Falcon-­‐H,  and  down  to  three  years  using  a  Falcon-­‐HLRF  (described  below).    Also,  the  Falcon-­‐H   and   Falcon-­‐HLRF   are   the   only  options   that   achieve   the   operational   tar-­‐get  of  30+MT  yearly  re-­‐supply  for  approx-­‐imately  $1  billion  a  year  of  transportation  costs.      Note   the  other   launch  options  re-­‐quire   a   considerably   longer   time   to   get  the  150MT  of  payload  to  the  lunar  surface,  with  a  minimum  of  over  20  years  using  a  Delta-­‐4  heavy.    Also  all   the  other  options  

fall  considerable  short  of  the  30+MT  year-­‐ly  re-­‐supply  target  for  $1  billion  of  trans-­‐portation  costs.    Falcon-­‐HLRF   stands   for   Falcon-­‐heavy,  LEO  Re-­‐Fueled.     It   is   an   extrapolation   by  the  authors  on  the  kind  of  launch  capabil-­‐ity  that  could  be  achieved  by  combining  a  Falcon-­‐H  with  multiple   flights  of   a   future  low-­‐cost  reusable  Falcon-­‐9R.      The  idea  is  to   put   a   Falcon-­‐H   “tanker”   (Falcon-­‐HT)  into  LEO,  partially  fueled,  and  then  top-­‐off  through  the  rendezvous  and  fuel   transfer  of  multiple  (approximately  10)  Falcon-­‐9R  flights  carrying  only  fuel  for  payload.    This  would  provide  a  low-­‐failure  consequence,  high-­‐flight  rate  payload  for  the  Falcon-­‐9R  that  is  well  tuned  to  its  reusable  capabili-­‐ties.     With   the   fully   fueled   Falcon-­‐HT   in  LEO,  a  second  Falcon-­‐H  with  its  lunar  pay-­‐load   is   launched   to   LEO,   retaining   its   se-­‐cond  stage  after  main-­‐engine  cut-­‐off.    This  Falcon-­‐H   then   rendezvous   with   the   Fal-­‐con-­‐HT,   transfers   fuel   to   refill   the   re-­‐tained   Falcon-­‐H   second   stage   (similar   to  aircraft   aerial   refueling),   separates   from  the   Falcon-­‐HT,   and   then   re-­‐fires   its   re-­‐tained  second  stage  to  perform  the  trans-­‐lunar-­‐injection  burn.    Note  comparing  the  Falcon-­‐HLRF   to   the   numbers   for   the   Sat-­‐urn-­‐5   vehicle,   that   this   approach   would  yield  Saturn-­‐5  type  lunar  payload  capabil-­‐ities  for  a  fraction  of  the  historical  costs  of  the   Saturn-­‐5.     Also   this   large  payload   ca-­‐pability   may   be   particularly   useful   for  sending   prefabricated   crew   habitats   to  the  lunar  surface  as  discussed  below.      Concerning   the   SLS   rocket   currently   un-­‐der   development   by   NASA,   note   that   its  capabilities   are   similar   to   the   Saturn-­‐5,  particularly   the   SLS-­‐Block2,   while   being  somewhat   lower  cost.    However,  because  of   its   low  expected  flight  rate  and  signifi-­‐cant   costs,   it   doesn’t   appear   to   fit  within  the  cost  envelope  or  viable   time-­‐lines   for  supporting  Lunar  Station.      As  mentioned  earlier,   a  very  good  option  for  a   crew  habitat   is   soon   to  be  available  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  10  of  14    

from  Bigelow  Aerospace  (BA).    Real  estate  entrepreneur  Bob  Bigelow  founded  BA  in  1999.     BA   licensed   technology   from   the  NASA  Transhab  project  that  was  develop-­‐ing  expandable  space  habitats  for  sending  astronauts  to  Mars.      Although  NASA  was  making  excellent  progress  and  developing  very  promising  technology,  Congress  can-­‐celed   the   Transhab   program   in   2000.    Starting   with   the   NASA   technology   base,  Bigelow   invested   over   a   decade   of   effort  and   ~$250  million   of   his   own  money   to  develop  and  flight-­‐test  this  technology  for  in-­‐space  crew  habitats.    In  2006  and  again  in  2007  BA  launched  two  small  technolo-­‐gy  demonstration  modules:  Genesis  1  and  2.    These  units  have  performed  very  well  and  are  still  operational.    Bigelow   is  now  well   into   the  development   of   the  BA-­‐330  which  as   the  name   implies  will  have  330  cubic   meters   of   pressurized   volume   and  mass  of  ~20MT.    Each  of  these  modules  is  capable   of   supporting   up   to   six   crew-­‐members   for  an  extended  period  of   time.    While  the  original  BA-­‐330  is  designed  for  LEO,   BA   is   currently   developing   an   en-­‐hanced  version,  the  BA-­‐330MDS  for  lunar  surface  operation.        Once  initial  goals  have  been  specified  and  viable   transportation   and   crew   habitat  options  have  been  identified,  the  next  de-­‐cision  is  the  location  for  Lunar  Station;  i.e.,  site  selection.    A  number  of  different  loca-­‐tions   could   be   proposed,   but   the   polar-­‐regions  provide  three  key  benefits:  

1. Continuous  sun-­‐light  providing  con-­‐tinuous  power  

2. Access  to  cold-­‐traps  in  permanently  shadowed  craters  that  hold  stores  of  water  and  useful  hydrocarbons  

3. Lower  surface  temperature  swings  compared  to  off-­‐polar  locations.  

Once   a   facility   is   established   at   a   pole,  eventual   exploration   and   development  missions  to  off-­‐polar  locations  could  then  be   pursued.     Site   locations   at   both   the  South   and   North   Lunar   poles   should   be  considered,  but  based  on  the  more  advan-­‐

tageous   topography,   we   initially   are   se-­‐lecting   Peary   crater41  at   the   Lunar   North  pole  for  our  assessment.    Further  analysis  and  discussion  would  be  needed   to   final-­‐ize   the   selection,   but   other   lunar   experts  have  noted  the  attributes  of  this  site42.  We  suggest   therefore   that   Peary   crater   be  treated   as   the   “site   to   beat”   relative   to  other  site  candidates.      Lunar  Station  Build  Scenario    Precursor  Missions   –  We  propose  a  Lu-­‐nar   Station   build   scenario   as   follows.    First   a   series   of   precursor   robotic   mis-­‐sions  would  be  sent  to  Peary  crater  to  do  a   “resources   and   hazards”   assessment.    This   would   provide   both   surface   truth  data   about   the   resources   in   the   perma-­‐nently  shadowed  crater  as  well  as  the  ter-­‐rain  on  the  northern  rim  of  the  crater  that  is   exposed   to   almost   constant   sunlight  according  to  the  orbital   images  from  sev-­‐eral   lunar   orbiter   missions   the,   most   re-­‐cent   being   the   NASA   Lunar   Reconnais-­‐sance   Orbiter43  (LRO).     The   precursors  will  be  searching  for  volatiles  in  the  crater  and  a  suitable   landing  site  and  base   loca-­‐tion  on  the  crater  rim.    Power  and  Comm  –  Assuming  this  site  is  evaluated   to   be   a   suitable   location,   a   se-­‐ries  of  missions  to  prepare  the  site  would  then   be   launched.       One   of   the   first   ele-­‐ments   to   be   landed   would   be   a   100   KW  solar   Power   and   Communication   station  (weighing   approximately   4   MT)   with   a  100m   tall   boom   to   continuously   collect  sunlight   and   convert   it   into   electricity.   A  graphic   illustration   of   such   a   power   sta-­‐tion,   courtesy   of   SkyCorp44  is   shown   in  Figure  1.        

                                                                                                               41  http://www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lroc-­‐20091224-­‐peary-­‐crater.html  42  http://www.space.com/957-­‐perfect-­‐spot-­‐moon-­‐base.html  43  http://lunar.gsfc.nasa.gov/  44  http://www.skycorpinc.com/Skycorp/Home.html  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  11  of  14    

Site  Prep  –  Managing  dust  at  the  landing  sites   and   habitats   is   a   significant   issue.    Inspired   by   the   utility   of   rugged   flexible  Bobcats™,   electrically   powered   multi-­‐function  excavators,  or  “MoonCats”  would  then  be  brought  to  the  site  to  level  off  the  terrain   for  both  the   landing  pads  and  the  habitation   site.     Equipment   to   either   sin-­‐ter   or   otherwise   stabilize   the   regolith  would  then  be  sent   to   the  site.    All  of   the  equipment   would   be   operated   autono-­‐mously   or   through   tele-­‐operations   from  Earth.    Once   the   landing  pads  and  berms  were   put   in   place,   roadways   would   be  constructed   from   the   regolith   leading  from   the   landing   pads   to   the   habitation  site.    The  habitation  site  would  be  sized  to  initially   accommodate   up   to   three   BA-­‐330MDS  for  crew  habitat  and  operations.      ISRU  and  Additive  Manufacturing   –   In-­‐situ   resource   utilization   along  with   addi-­‐tive   manufacturing   may   provide   signifi-­‐cant   benefits   for   building   and   operating  Lunar  Station.        However,  much  more  will  need  to  be  learned  about  resources  at  the  site,   effective   procedures   and   processes,  required   precursor   materials   and   equip-­‐ment,  hazards  and  potential  malfunctions,  and  methods  of  repairs  before   firm  plans  can  be  made  relying  on  these  capabilities  and   approaches.     Pursuing   experiments  and  investigations  on  a  small  scale  during  the  site  preparation  period  would  be  very  advantageous   in-­‐order   to   make   the   re-­‐quired   assessments   and   establish   effec-­‐tive  procedures.  This  in  turn  could  lead  to  the   integration  of   an  appropriate   level  of  ISRU  and  additive  manufacturing  into  the  station  build  and  operation  plans.    Landing   Crew   Habitats   –   Once   the   site  prep  has  been  completed,  BA-­‐330’s  would  then   be   sent   to   the   lunar   surface.     Given  their   large  gross  mass  of  20MT,   the  easi-­‐est  way  to  accomplish  this  maybe  to  use  a  Falcon-­‐HLRF   to   deliver   a   BA-­‐330MDS   to  Low-­‐Lunar-­‐Orbit   (LLO).     There   it   could  rendezvous   with   four   “Lunar   Descent  Mules”   that   have   been   pre-­‐positioned   in  

LLO   by   earlier   Falcon-­‐H   or   Falcon-­‐HLRF  launches.     The   four   lunar   descent   mules  would   then   lower   the  BA-­‐330MDS   to   the  Lunar  Station  site   landing  pad  area.    This  is   illustrated   conceptually   in   Figure   2.    The  BA-­‐330MDS  would  then  be  picked  up  by  previously  sent  “Lunar  Surface  Mules”  and  moved  to  the  habitation  site  where  it  would   be   positioned   and   potentially  joined   together   with   other   modules,   as  illustrated   in   Figure   3.     Power   from   the  power  station  would  then  be  connected  to  the  habitats  for  operation.    Crew   Transport   –   With   the   habitats   in  place,   crew   could   then   be   sent   to   Lunar  Station  to  begin  its  permanent  occupancy.    One  way  this  could  be  accomplished  is  to  pre-­‐position   a   “Gryphon”   reusable   crew  lunar   lander   at   LLO   using   a   Falcon-­‐H.    Then  a  crew  of  four  to  six  could  be  sent  on  a   “Deep   Space  Dragon”   (DSD)   to   LLO  us-­‐ing   a   second   Falcon-­‐H.     The   DSD   would  rendezvous  with   the  Gryphon   lander,   the  crew  and  light  payloads  would  transfer  to  the   Gryphon,   the   Gryphon   would   detach  from   the   DSD,   and   then   descend   to   the  lunar   surface.     For   departure   from   the  Moon,   the   crew   would   re-­‐board   the  Gryphon   lander   and   ascend   to   LLO   for  rendezvous   with   the   orbiting   DSD,   sepa-­‐rate   from   the  Gryphon,   and   then   fire   the  Dragon  engines   for   return   to  Earth  using  direct  entry.        Initial   Operating   Capability   and   Re-­‐supply   –   With   the   initial   infrastructure  and   crew   in-­‐place,   Lunar   Station   would  begin   its   initial   operations.     Focus  would  be   on   additional   investigations   for   re-­‐sources  and  hazards  (e.g.,  cold-­‐traps,  pos-­‐sible  sub-­‐surface  lava  tubes),  possibilities  for   food   growth   and   bioregenerative   life  support,   ISRU  activities  and  assessments,  and   medical   and   life   sciences   investiga-­‐tions  affecting  long  term  habitation  in  low  gravity.     After   a   sufficiently   robust   initial  operating  capability  is  achieved,  attention  could  turn  to  expanding  and  evolving  Lu-­‐nar   Station   into   a   more   multi-­‐function,  

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  12  of  14    

multi-­‐asset   facility   accommodating   a  greater  number  of  people  and  capabilities,  and   bringing   on   additional   private,   gov-­‐ernment   and   international   partners   that  leverage   and   expand   the   infrastructure.    The  aim  would  be  to  eventually  grow  to  a  fully   functional   International   Lunar   Re-­‐search   Park,   pursuing   both   private   and  government  interests  and  activities.    This  would   include   lunar   capabilities   and   re-­‐sources   that  would  be  very  beneficial   for  NASA   to   use   to   accomplish   our   aspira-­‐tions  for  human  explorations  of  Mars.    A  Business  Case  For  The  Moon    Experience  to  date  with  the  Google  Lunar  XPRIZE,  Golden  Spike,  Shackelton  Energy  and  the  ILRP  shows  that  the  prospects  are  dim   for  private   interests  alone   to  accom-­‐plish  significant  lunar  surface  activities  at  this  time  –  it’s   just  too  expensive  and  too  risky.    For  lunar  development  to  become  a  near-­‐term  reality,  there  is  a  clear  need  for  the  government  to  make  key  investments  to  lower  technical  and  financial  risks.    Lu-­‐nar   Station  would   be   a  wise   approach   in  this   regard.     There   are   many   historic  precedents   for   this   type   of   government  investment   including   the   interstate   high-­‐way   system,   municipal   utilities,   and   the  internet.    Recent  NASA  programs  such  as  COTS/CRS   have   also   demonstrated   the  efficacy   and   benefits   of   this   approach.    The   public/private   and   international  partnerships   that   would   likely   develop  following   the   initial   government   invest-­‐ment   in   Lunar   Station   would   further   ex-­‐tend   its   capabilities   and   functions,   while  providing   beneficial   lunar   activities,   re-­‐sources   and   possible   revenue   streams.    

This   is   how   a   solid   business   case   for   the  Moon  can  be  accomplished.        Conclusions    With   the   ISS   built   and   operational,   our  space   program   needs   a   clear,   timely,  achievable,  and  highly  engaging  next  step  for   space   development.     This   next   step  must   also   serve   as   a   useful   pathway   for  NASA’s   ultimate   goal   of   human  missions  to   Mars,   and   exploration   and   develop-­‐ment   of   asteroids   and   other   planetary  bodies.    Making  use  of   government   lunar  initiatives,   such   as   the   Lunar   CATALYST  program,   the   Lunar   Reconnaissance   Or-­‐biter   and   the   Resource   Prospector   Mis-­‐sion,  as  well  as  private   initiatives  such  as  the   Google   Lunar   XPRIZE,   the   Interna-­‐tional  Lunar  Research  Park,  and  the  Apol-­‐lo   Prize,   would   be   wise   as   well.   A   clear,  timely,   achievable   and   highly   engaging  next   step   is   also   important   for   NASA   to  maintain  its  relevance  to  the  US  public,  its  leadership   in   the   international   communi-­‐ty,   and   its   technical   cutting   edge.     Lunar  Station   could   meet   these   objectives,   as  our  initial  analysis  has  shown.      

Lunar   Station   falls   inside   of   reasonable  time-­‐lines   (about   5   years   to   build)   and  budget   levels   (~$2   billion/year   to   build  and   operate)   and   can   be   accomplished  with   current   and   near   term   capabilities.  Pursued  under  the  feasibility  proof  of  ISS,  using   best   practices   extracted   from   its  build   and   operation,   and   combined   with  the   current   and   emerging   capabilities  from   the   traditional   and   emerging   aero-­‐space  industry,  Lunar  Station  is  the  logical  next  step  in  space  development.      

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  13  of  14    

Table  1  –  Comparison  of  launch  options  for  building  and  operating  Lunar  Station    

                         

                                 

 Figure  1  -­‐  100  KW  Power  Lander  (courtesy  SkyCorp)  

 

Lunar Station Launch Options* Saturn-5 SLS-Block1 SLS-Block2 Atlas-5 401 Delta-4 Heavy Falcon-9 Falcon-H Falcon-HLRF Falcon-9R Falcon-HRLaunch vehicle fixed price (M$/yr) $3,169 $1,500 $1,500 $0 $0 $0 $0 $0 $0 $0

Launch vehicle variable price (M$/unit) $565 $500 $750 $187 $380 $62 $135 $250 $10 $22

LEO Payload Cap (MT) 117.5 70.0 130.0 9.8 28.8 13.2 53.2 140.7 9.2 37.2

TLI Payload Cap (MT) 45.6 30.0 56.4 4.2 9.8 4.6 18.6 47.2 N/A 13.1

# Launches/yr 1 0.5 0.33 4.2 2 11 5 3 28.5 16

Total Price (M$) per LEO Launch $3,734 $3,500 $5,295 $187 $380 $62 $135 $250 $10 $22

Cruise stage and lander price (M$/unit) $375 $250 $375 $50 $100 $25 $54 $82 N/A $38

Total Price (M$) per Lunar Launch $4,109 $3,750 $5,670 $237 $480 $87 $189 $332 $10 $60

Lunar Surface Payload Cap (MT) 16.4 8.8 16.3 1.2 3.6 1.5 6.0 16.9 N/A 4.7

MT/yr to Lunar Surface 16.4 4.4 5.4 5.1 7.2 16.4 30.1 50.7 N/A 74.5

Launch Cost/yr (M$) $4,109 $1,875 $1,871 $995 $960 $957 $947 $996 $285 $958# Launches to get 150MT on the Lunar Surface 9.2 17.1 9.2 122.4 41.7 100.6 24.9 8.9 N/A 32.2Years to get 150MT on the Lunar Surface 9.2 34.3 28.0 29.2 20.8 9.1 5.0 3.0 N/A 2.0Notes: * - Cost and other data from a variety of public sources.

IAC-­‐14,D3,1,4,x22217                                      Lunar  Station,  V1.2  

Page  14  of  14    

                             

Figure  2  –  Illustration  of  a  lunar  crew  habitat,  with  attached  lunar  descent  mules    (courtesy  of  Masten  Space  Systems)  

     

                                     

Figure  3  –  Illustration  of  a  three-­‐habitat  module  Lunar  Station  facility                                                (courtesy  of  Bigelow  Aerospace)