Lrz kurs: gpu and mic programming with r

73
GPU and MIC programming (using python, R and MATLAB) * Ferdinand Jamitzky ([email protected]) http://goo.gl/JkYJFY

Transcript of Lrz kurs: gpu and mic programming with r

GPU and MIC programming (using python, R and MATLAB)

*

Ferdinand Jamitzky ([email protected])

http://goo.gl/JkYJFY

Moore’s Law

Number of transistors

doubles every 2 years

Why parallel programming?

End of the free lunch

in 2000 (heat death)

Moore's law means

not faster processors,

only more of them.

But!

2 x 3 GHz < 6 GHz

(cache consistency,

multi-threading, etc)

From Supercomputers to Notebook PCs

The future was (always) massively parallel

Connection Machine

CM-1 (1983)

12-D Hypercube

65536 1-bit cores

(AND, OR, NOT)

Rmax: 20 GFLOP/s

Today’s notebook PC

The future is massively parallel

JUGENE

Blue Gene/P (2007)

3-D Torus or Tree

65536 64-bit cores

(PowerPC 450)

Rmax: 222 TFLOP/s

now: 1 PFLOP/s

294912 cores

Problem: Moving Data/Latency

Getting data from:

CPU register 1ns

L2 cache 10ns

memory 80 ns

network(IB) 200 ns

GPU(PCIe) 50.000 ns

harddisk 500.000 ns

Light ray travels:

30 cm

3 m

24 m

60 m

15 km

150 km

Problem: Transport energy

Moving Data is expensive:

FLOP on CPU 170 pJ

FLOP on GPU 20 pJ

Read from RAM 16000 pJ

Wire 10 cm 3100 pJ

Wire per mm 0.15 pJ/bit/cm

source: http://www.davidglasco.com/Papers/ieee-micro.pdf and W. Dally (nVidia)

Data hungry...

Getting data from:

CPU register 1ns

L2 cache 10ns

memory 80 ns

network(IB) 200 ns

GPU(PCIe) 50.000 ns

harddisk 500.000 ns

Getting some food from:

fridge 10s

microwave 100s ~ 2min

pizza service 800s ~ 15min

city mall 2000s ~ 0.5h

mum sends cake 500.000 s~1 week

grown in own garden 5Ms ~ 2months

Supercomputer: SMP

SMP Machine:

shared memory

typically 10s of cores

threaded programs

bus interconnect

in R:

library(multicore)

and inlined code

Example: gvs1

128 GB RAM

16 cores

Example: uv2/3

3.359 GB RAM

2.080 cores

Supercomputer: MPI

Cluster of machines:

distributed memory

typically 100s of cores

message passing interface

infiniband interconnect

in R:

library(Rmpi)

and inlined code

Example: linux MPP cluster

2,752 GB RAM

2,752 cores

Example: superMUC

340,000 GB RAM

155,656 Intel cores

Supercomputer: GPGPU

Graphics Card:

shared memory

typically 1000s of cores

CUDA or openCL

on chip interconnect

in R:

library(gputools)

and dyn.load code

Example: Tesla K20X

6 GB RAM

2688 Threads

Example: Titan ORNL

262,000 GB RAM

18,688 GPU Cards

50,233,344 Threads

Supercomputer: MIC

Many Core Accelerator:

shared memory

60 cores

offload or native

on chip interconnect

in R:

MKL auto-offload

and dyn.load code

Example: SuperMIC

8 GB RAM

240 Threads

Example: Tianhe-2

1,024,000 GB RAM

3,120,000 cores

Levels of Parallelism

●Node Level (e.g. SuperMUC has approx. 10000 nodes)

each node has 2 sockets

●Socket Level

each socket contains 8 cores

●Core Level

each core has 16 vector registers

●Vector Level (e.g. lxgp1 GPGPU has 480 vector registers)

●Pipeline Level (how many simultaneous pipelines)

hyperthreading

●Instruction Level (instructions per cycle)

out of order execution, branch prediction, FMA

Amdahl's law

Computing time for N processors

T(N) = T(1)/N + Tserial + Tcomm * N

Acceleration factor (Speedup)

T(1)/T(N) = N / (1 + Tserial/T(1)*N + Tcomm/T(1)*N^2)

small N Speedup: T(1)/T(N) ~ N

large N Speedup: T(1)/T(N) ~ T(1)/Tcomm * 1/N

saturation point!

Amdahl's law

> plot(N,type="l")

> lines(N/(1+0.01*N+0.001*N**2),col="green")

> lines(N/(1+0.01*N),col="red")

> Tserial=0.01

> Tcomm=0.001

Gustafson's law

large N Speedup: T(1proc)/T(Nproc) ~ T(1proc)/Tcomm * 1/N

Grow your problem then it scales better.

Weak Scaling

vs.

Strong Scaling

e.g. molecular

simulations:

100 atoms/core

are needed

How are High-Performance Codes

constructed?

●“Traditional” Construction of High-Performance Codes:

oC/C++/Fortran

oLibraries

●“Alternative” Construction of High-Performance Codes:

oScripting for ‘brains’ (Computer Games: Logic, AI)

oGPUs for ‘inner loops’ (Computer Games: Visualisation)

●Play to the strengths of each programming environment.

Hierarchical architecture of

hardware vs software

●accelerators (gpus, xeon phi)

●in-core vectorisation (avx)

●multicore nodes (qpi, pci bus)

●strongly coupled nodes (infiniband, 10GE)

●weakly coupled clusters (cloud)

●Cuda, intrinsics

●vectorisation pragmas

●openMP

●MPI

●workflow middleware

Why Scripting?

Do you:

●want to reuse CUDA code easily (e.g. as a library) ?

●want to dynamically determine whether CUDA is available?

●want to use multi-threading (painlessly)?

●want to use MPI (painlessly)?

●want to use loose coupling (grid computing)?

●want dynamic exception handling and fallbacks?

●want dynamic compilation of CUDA code?

If you answered "yes" to one of these questions, you

should consider a scripting language

Parallel Tools in python, R and MATLAB

SMP

multicore

parallelism

doMC, doSMP,

pnmath, BLAS

no max cores

multiprocessing

futures

MMP massive

parallel

processing

doSNOW,

doMPI, doRedis

parallel python,

mpi4py

GPGPU

CUDA

openCL

rgpu, gputools

pyCUDA,

pyOpenCL

parfor, spmd

max 8 cores

jobs, pmode gpuArray

R

python

MATLAB

Scripting CUDA

Compiler

CUDA

Interpreter

PGI Fortran NumbraPro pyCUDA rgpu MATLAB

python R

MATLAB GPU Commands

MATLAB GPU @ LRZ

# load matlab module and start command line version

module load cuda

module load matlab/R2011A

matlab -nodesktop

MATLAB gpuArray

●Copy data to GPGPU and return a handle on the object

●All operations on the handle are performed on the GPGPU

x=rand(100);

gx=gpuArray(x);

●how to compute the GFlop/s

tic;

M=gpuArray(rand(np*1000));

gather(sum(sum(M*M)));

2*np^3/toc

pyCUDA

Gives you the following advantages:

1.Combining Two Strong Tools

2.Scripting CUDA

3.Run-Time Code Generation

http://mathema.tician.de/software/pycuda

special thanks to a.klöckner

pyCUDA @ LRZ

log in to lxgp1

$ module load python

$ module load cuda

$ module load boost

$ python

Python 2.6.1 (r261:67515, Apr 17 2009, 17:25:25)

[GCC 4.1.2 20070115 (SUSE Linux)] on linux2

Type "help", "copyright", "credits" or "license" for more

information.

>>>

Simple Example

from numpy import *

import pycuda.autoinit

import pycuda.gpuarray as gpu

a_gpu =

gpu.to_gpu(random.randn(4,4).astype(float32))

a_doubled = (2∗a_gpu).get()

print a_doubled

print a_gpu

gpuarray class

pycuda.gpuarray:

Meant to look and feel just like numpy.

●gpuarray.to gpu(numpy array)

●numpy array = gpuarray.get()

●+, -, ∗, /, fill, sin, exp, rand, basic indexing, norm, inner product

●Mixed types (int32 + float32 = float64)

●print gpuarray for debugging.

●Allows access to raw bits

●Use as kernel arguments, textures, etc.

gpuarray: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

from pycuda.curandom import rand as curand

a_gpu = curand((50,))

b_gpu = curand((50,))

from pycuda.elementwise import ElementwiseKernel

lin_comb = ElementwiseKernel(

” float a, float ∗x, float b, float ∗y, float ∗z”,”z[ i ] = a∗x[i ] + b∗y[i]”)

c_gpu = gpuarray.empty_like (a_gpu)

lin_comb(5, a_gpu, 6, b_gpu, c_gpu)

assert la.norm((c_gpu − (5∗a_gpu+6∗b_gpu)).get()) < 1e−5

gpuarray: Reduction made easy

Example: A scalar product calculation

from pycuda.reduction import ReductionKernel

dot = ReductionKernel(dtype_out=numpy.float32, neutral=”0”,

reduce_expr=”a+b”, map_expr=”x[i]∗y[i]”,arguments=”const float ∗x, const float ∗y”)

from pycuda.curandom import rand as curand

x = curand((1000∗1000), dtype=numpy.float32)y = curand((1000∗1000), dtype=numpy.float32)

x_dot_y = dot(x,y).get()

x_dot_y_cpu = numpy.dot(x.get(), y.get ())

CUDA Kernels in pyCUDA

import pycuda.autoinit

import pycuda.driver as drv

import numpy

from pycuda.compiler import SourceModule

mod = SourceModule("""

__global__ void multiply_them(float *dest, float *a, float *b)

{ const int i = threadIdx.x;

dest[i] = a[i] * b[i];

}""")

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)

b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)

multiply_them(

drv.Out(dest), drv.In(a), drv.In(b),

block=(400,1,1)

print dest-a*b

Completeness

PyCUDA exposes all of CUDA.

For example:

●Arrays and Textures

●Pagelocked host memory

●Memory transfers (asynchronous, structured)

●Streams and Events

●Device queries

●GL Interop

And furthermore:

●Allow interactive use

●Integrate tightly with numpy

pyCUDA showcase

http://wiki.tiker.net/PyCuda/ShowCase

●Agent-based Models

●Computational Visual Neuroscience

●Discontinuous Galerkin Finite Element PDE Solvers

●Estimating the Entropy of Natural Scenes

●Facial Image Database Search

●Filtered Backprojection for Radar Imaging

●LINGO Chemical Similarities

●Recurrence Diagrams

●Sailfish: Lattice Boltzmann Fluid Dynamics

●Selective Embedded Just In Time Specialization

●Simulation of spiking neural networks

NumbraPro

Generate CUDA Kernels using a Just-in-time compiler

from numbapro import cuda

@cuda.jit('void(float32[:], float32[:], float32[:])')

def sum(a, b, result):

i = cuda.grid(1) # equals to threadIdx.x + blockIdx.x *

blockDim.x

result[i] = a[i] + b[i]

# Invoke like: sum[grid_dim, block_dim](big_input_1, big_input_2,

result_array)

The Language R

http://www.r-project.org/

R in a nutshell

module load cuda/2.3

module load R/serial/2.13

> x=1:10

> y=x**2

> str(y)

> print(x)

> times2 = function(x) 2*x

graphics!> plot(x,y)

= and <- are interchangable

rgpu

a set of functions for loading data toa gpu and manipulating the

data there:

●exportgpu(x)

●evalgpu(x+y)

●lsgpu()

●rmgpu("x")

●sumgpu(x), meangpu(x), gemmgpu(a,b)

●cos, sin,.., +, -, *, /, **, %*%

Example

load the correct R module

$ module load R/serial/2.13

start R

$ R

R version 2.13.1 (2011-07-08)

Copyright (C) 2011 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

load rgpu library

> library(rgpu)

> help(package="rgpu")

> rgpudetails()

Data on the GPGPU

one million random uniform numbers

> x=runif(10000000)

send data to gpu

> exportgpu(x)

do some calculations

> evalgpu(sumgpu(sin(x)+cos(x)+tan(x)+exp(x)))

do some timing comparisons (GPU vs CPU):

> system.time(evalgpu(sumgpu(sin(x)+cos(x)+tan(x)+exp(x))))

> system.time(sum(sin(x)+cos(x)+tan(x)+exp(x)))

real world examples: gputools

gputools is a package of precompiled CUDA functions for

statistics, linear algebra and machine learning

●chooseGpu

●getGpuId()

●gpuCor, gpuAucEstimate

●gpuDist, gpuDistClust, gpuHclust, gpuFastICA

●gpuGlm, gpuLm

●gpuGranger, gpuMi

●gpuMatMult, gpuQr, gpuSvd, gpuSolve

●gpuLsfit

●gpuSvmPredict, gpuSvmTrain

●gpuTtest

Example: Matrix Inversion

np <- 2000

x <- matrix(runif(np**2), np,np)

system.time(gpuSolve(x))

system.time(solve(x))

Example: Hierarchical Clustering

numVectors <- 5

dimension <- 10

Vectors <- matrix(runif(numVectors*dimension), numVectors,

dimension)

distMat <- gpuDist(Vectors, "euclidean")

myClust <- gpuHclust(distMat, "single")

plot(myClust)

for other examples try:

example(hclust)

Fortran 90 Example

program myprog

! simulate harmonic oscillator

integer, parameter :: np=1000, nstep=1000

real :: x(np), v(np), dx(np), dv(np), dt=0.01

integer :: i,j

forall(i=1:np) x(i)=i

forall(i=1:np) v(i)=i

do j=1,nstep

dx=v*dt; dv=-x*dt

x=x+dx; v=v+dv

end do

print*, " total energy: ",sum(x**2+v**2)

end program

PGI Compiler

log in to lxgp1

$ module load fortran/pgi/11.8

$ pgf90 -o myprog.exe myprog.f90

$ time ./myprog.exe

exercise for you:

●compute MFlop/s (Floating Point Operations: 4 * np * nstep)

●optimize (hint: -Minfo, -fast, -O3)

Fortran 90 Example

program myprog

! simulate harmonic oscillator

integer, parameter :: np=1000, nstep=1000

real :: x(np), v(np), dx(np), dv(np), dt=0.01

integer :: i,j

forall(i=1:np) x(i)=i

forall(i=1:np) v(i)=i

do j=1,nstep

!$acc region

dx=v*dt; dv=-x*dt

x=x+dx; v=v+dv

!$acc end region

end do

print*, " total energy: ",sum(x**2+v**2)

end program

PGI Compiler accelerator

module load fortran/pgi

pgf90 -ta=nvidia -o myprog.exe myprog.f90

time ./myprog.exe

exercise for you:

●compute MFlop/s (Floating Point Operations: 4 * np * nstep)

●optimize (hint: change acc region)

Use R as scripting language

R can dynamically load shared objects:

dyn.load("lib.so")

these functions can then be called via

.C("fname", args)

.Fortran("fname", args)

R subroutine

subroutine mysub_cuda(x,v,nstep)

! simulate harmonic oscillator

integer, parameter :: np=1000000

real*8 :: x(np), v(np), dx(np), dv(np), dt=0.001

integer :: i,j, nstep

forall(i=1:np) x(i)=real(i)/np

forall(i=1:np) v(i)=real(i)/np

do j=1,nstep

dx=v*dt; dv=-x*dt

x=x+dx; v=v+dv

end do

return

end subroutine

Compile two versions

don't forget to load the modules!module unload ccomp fortran

module load ccomp/pgi/11.8

module load fortran/pgi/11.8

module load R/serial/2.13

pgf90 -shared -fPIC -o mysub_host.so

mysub_host.f90

pgf90 -ta=nvidia -shared -fPIC -o

mysub_cuda.so mysub_cuda.f90

Load and run

Load dynamic libraries> dyn.load("mysub_host.so"), dyn.load("mysub_cuda.so"); np=1000000

Benchmark> system.time(str(.Fortran("mysub_host",x=numeric(np),v=numeric(np),nstep=as.integer(1000))))

total energy: 666667.6633012500

total energy: 667334.6641391169

List of 3

$ x : num [1:1000000] -3.01e-07 -6.03e-07 -9.04e-07 -1.21e-06 -1.51e-06 ...

$ v : num [1:1000000] 1.38e-06 2.76e-06 4.15e-06 5.53e-06 6.91e-06 ...

$ nstep: int 1000

user system elapsed

26.901 0.000 26.900

> system.time(str(.Fortran("mysub_cuda",x=numeric(np),v=numeric(np),nstep=as.integer(1000))))

total energy: 666667.6633012500

total energy: 667334.6641391169

List of 3

$ x : num [1:1000000] -3.01e-07 -6.03e-07 -9.04e-07 -1.21e-06 -1.51e-06 ...

$ v : num [1:1000000] 1.38e-06 2.76e-06 4.15e-06 5.53e-06 6.91e-06 ...

$ nstep: int 1000

user system elapsed

0.829 0.000 0.830

Acceleration Factor:> 26.9/0.83

[1] 32.40964

Matrix Multipl. in FORTRAN

subroutine mmult(a,b,c,np)

integer np

real*8 a(np,np), b(np,np), c(np,np)

integer i,j, k

do k=1, np

forall(i=1:np,j=1:np)a(i,j)=a(i,j)+b(i,k)*c(k,j)

end do

return

end subroutine

two inner loops, one outer loop: np*np*np

addition and multiplication: 2 Flop

2*np**3 Float Operations per call!

Call FORTRAN from R

# compile f90 to shared object library

system("pgf90 -shared -fPIC -o mmult.so

mmult.f90");

# dynamically load library

dyn.load("mmult.so")

# define multiplication function

mmult.f <- function(a,b,c)

.Fortran("mmult",a=a,b=b,c=c,

np=as.integer(dim(a)[1]))

Call FORTRAN binary

np=100

system.time(

mmult.f(

a = matrix(numeric(np*np),np,np),

b = matrix(numeric(np*np)+1.,np,np),

c = matrix(numeric(np*np)+1.,np,np)

)

)

Exercise: make a plot system-time vs matrix-dimension

PGI accelerator directives

subroutine mmult(a,b,c,np)

integer np

real*8 a(np,np), b(np,np), c(np,np)

integer i,j, k

do k=1, np

!$acc region

forall(i=1:np, j=1:np) a(i,j) = a(i,j)

+ b(i,k)*c(k,j)

!$acc end region

end do

return

end subroutine

Call FORTRAN from R

# compile f90 to shared object library

system("pgf90 -ta=nvidia -shared -fPIC -o

mmult.so mmult.f90");

# dynamically load library

dyn.load("mmult.so")

# define multiplication function

mmult.f <- function(a,b,c)

.Fortran("mmult",a=a,b=b,c=c,

np=as.integer(dim(a)[1]))

Compute MFlop/s

print(paste(2.*np**3/1000000./system.time(

str(mmult.f(...))

)[[3]]," MFlop/s"))

Exercise: Compare MFlop/s vs dimension for serial and

accelerated code

Intel accelerator directives

subroutine mmult(a,b,c,np)

integer np

real*8 a(np,np), b(np,np), c(np,np)

integer i,j, k

!dir$ offload begin target(mic) inout(a,b,c)

!$omp parallel shared(a,b,c)

!$omp do

do j=1,np

do k=1,np

forall(i=1:np) a(i,j)=a(i,j)+b(i,k)*c(k,j)

end do

end do

!$omp end do

!$omp end parallel

!dir$ end offload

return

end subroutine

Compiler command Intel Fortran

$ ifort -vec-report=3 -openmp-report -openmp -shared -fPIC mmult_mic.f90 -o mmult_mic.so

mmult_omp.f90(7): (col. 7) remark: OpenMP DEFINED LOOP WAS PARALLELIZED

mmult_omp.f90(6): (col. 7) remark: OpenMP DEFINED REGION WAS PARALLELIZED

mmult_omp.f90(10): (col. 20) remark: LOOP WAS VECTORIZED

mmult_omp.f90(9): (col. 3) remark: loop was not vectorized: not inner loop

mmult_omp.f90(8): (col. 1) remark: loop was not vectorized: not inner loop

mmult_omp.f90(7): (col. 7) remark: *MIC* OpenMP DEFINED LOOP WAS PARALLELIZED

mmult_omp.f90(6): (col. 7) remark: *MIC* OpenMP DEFINED REGION WAS PARALLELIZED

mmult_omp.f90(10): (col. 20) remark: *MIC* LOOP WAS VECTORIZED

mmult_omp.f90(10): (col. 20) remark: *MIC* PEEL LOOP WAS VECTORIZED

mmult_omp.f90(10): (col. 20) remark: *MIC* REMAINDER LOOP WAS VECTORIZED

mmult_omp.f90(9): (col. 3) remark: *MIC* loop was not vectorized: not inner loop

mmult_omp.f90(8): (col. 1) remark: *MIC* loop was not vectorized: not inner loop

mmult on MIC (offload)

$ R -f mmult_mic.R

> system.time(mmult.f(a,b,c))

[Offload] [MIC 0] [File] mmult_mic.f90

[Offload] [MIC 0] [Line] 5

[Offload] [MIC 0] [Tag] Tag 0

[Offload] [HOST] [Tag 0] [CPU Time] 173.768076(seconds)

[Offload] [MIC 0] [Tag 0] [CPU->MIC Data] 2400000280 (bytes)

[Offload] [MIC 0] [Tag 0] [MIC Time] 155.217991(seconds)

[Offload] [MIC 0] [Tag 0] [MIC->CPU Data] 2400000016 (bytes)

user system elapsed

157.034 2.844 176.542

> system.time(b%*%c)

[MKL] [MIC --] [AO Function] DGEMM

[MKL] [MIC --] [AO DGEMM Workdivision] 0.50 0.25 0.25

[MKL] [MIC 00] [AO DGEMM CPU Time] 5.699716 seconds

[MKL] [MIC 00] [AO DGEMM MIC Time] 1.142100 seconds

[MKL] [MIC 00] [AO DGEMM CPU->MIC Data] 1001600000 bytes

[MKL] [MIC 00] [AO DGEMM MIC->CPU Data] 806400000 bytes

[MKL] [MIC 01] [AO DGEMM CPU Time] 5.699716 seconds

[MKL] [MIC 01] [AO DGEMM MIC Time] 1.255698 seconds

[MKL] [MIC 01] [AO DGEMM CPU->MIC Data] 1001600000 bytes

[MKL] [MIC 01] [AO DGEMM MIC->CPU Data] 806400000 bytes

user system elapsed

42.414 6.492 6.326

mmult on host (16c) vs MIC

$ R -f mmult_mic.R

* Fortran Version HOST

> system.time(mmult.f(a,b,c))

user system elapsed

1297.197 0.576 104.143 38 GFlop/s

* MKL Version HOST

> system.time(b%*%c)

user system elapsed

93.022 0.248 8.955 450 GFlop/s

compare:

* Fortran Version MIC offload

> system.time(mmult.f(a,b,c))

user system elapsed

157.034 2.844 176.542 22 GFlop/s

* MKL Version MIC auto-offload

> system.time(b%*%c)

user system elapsed

9.421 0.948 13.046 300 GFlop/s

optimal: HOST+MIC: 670 GFlop/s

Scripting Parallel Execution

implicit

R

explicite

jit pnmath doSNOWdoMPIdoMC doRedis

hierarchical parallelisation:

- accelerator: rgpu, pnmath, MKL

- intra-node: jit, doMC, MKL

- intra-cluster: SNOW, MPI, pbdMPI

- inter-cluster: Redis, SNOW

MKLrgpu

foreach package

# new R foreach

library(foreach)

alist <-

foreach (i=1:N) %do%

call(i)

foreach is a function

# old R code

alist=list()

for(i in 1:N)

alist[i]<-call(i)

for is a language

keyword

multithreading with R

library(foreach)

foreach(i=1:N) %do%

{

mmult.f()

}

# serial execution

library(foreach)

library(doMC)

registerDoMC()

foreach(i=1:N)

%dopar%

{

mmult.f()

}

# thread execution

MPI with R

library(foreach)

foreach(i=1:N) %do%

{

mmult.f()

}

# serial execution

library(foreach)

library(doSNOW)

registerDoSNOW()

foreach(i=1:N)

%dopar%

{

mmult.f()

}

# MPI execution

doSNOW

# R

> library(doSNOW)

> cl <- makeSOCKcluster(4)

> registerDoSNOW(cl)

> system.time(foreach(i=1:10) %do% sum(runif(10000000)))

user system elapsed

15.377 0.928 16.303

> system.time(foreach(i=1:10) %dopar% sum(runif(10000000)))

user system elapsed

4.864 0.000 4.865

doMC

# R

> library(doMC)

> registerDoMC(cores=4)

> system.time(foreach(i=1:10) %do% sum(runif(10000000)))

user system elapsed

9.352 2.652 12.002

> system.time(foreach(i=1:10) %dopar% sum(runif(10000000)))

user system elapsed

7.228 7.216 3.296

MPI-CUDA with R

Using doSNOW and dyn.load with pgifortran:

library(doSNOW)

cl=makeCluster(c("gvs1","gvs2"),type="SOCK")

registerDoSNOW(cl)

foreach(i=1:2) %dopar% setwd("~/KURSE/R_cuda")

foreach(i=1:2) %dopar% dyn.load("mysub_cuda.so")

system.time(

foreach(i=1:4) %dopar%

str(.Fortran("mysub_cuda",x=numeric(np),v=numeric(np)

,

nstep=as.integer(1000))))

noSQL databases

Redis is an open source, advanced key-value store. It is often referred

to as a data structure server since keys can contain strings, hashes,

lists, sets and sorted sets.

http://www.redis.io

Clients are available for C, C++, C#, Objective-C, Clojure, Common

Lisp, Erlang, Go, Haskell, Io, Lua, Perl, Python, PHP, R ruby, scala,

smalltalk, tcl

doRedis / workers

start redis worker:

> echo "require('doRedis');redisWorker('jobs')" | R

The workers can be distributed over the internet

> startRedisWorkers(100)

doRedis

# R

> library(doRedis)

> registerDoRedis("jobs")

> system.time(foreach(i=1:10) %do% sum(runif(10000000)))

user system elapsed

15.377 0.928 16.303

> system.time(foreach(i=1:10) %dopar% sum(runif(10000000)))

user system elapsed

4.864 0.000 4.865

Disk

Big Memory

R R

MEM MEM

Logical Setup of Node

without shared memory

R R

MEM

Logical Setup of Node

with shared memory

DiskDisk

R R

MEM

Logical Setup of Node

with file-backed memory

R R

MEM

Logical Setup of Node

with network attached file-

backed memory

Network Network Network

library(bigmemory)

● shared memory regions for several

processes in SMP

● file backed arrays for several node over

network file systems

library(bigmemory)

x <- as.big.matrix(matrix(runif(1000000), 1000, 1000)))

sum(x[1,1:1000])