Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

29
Timothy O. Dickson and Sorin P. Voinigescu Edward S. Rogers, Sr. Dept of Electrical and Computer Engineering University of Toronto CSICS November 15, 2006 Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

description

Timothy O. Dickson and Sorin P. Voinigescu Edward S. Rogers, Sr. Dept of Electrical and Computer Engineering University of Toronto CSICS November 15, 2006. Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS. Outline. Motivation - PowerPoint PPT Presentation

Transcript of Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Page 1: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Timothy O. Dickson and Sorin P. Voinigescu

Edward S. Rogers, Sr. Dept of Electrical and Computer Engineering

University of Toronto

CSICS

November 15, 2006

Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter

in 130-nm SiGe BiCMOS

Page 2: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

OutlineOutline

Motivation

High-speed, low-power design techniques

2.5-V, 80-Gb/s BiCMOS Transmitter

Measurement results

Conclusions

Page 3: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Next Generation High-Speed Wireline: Next Generation High-Speed Wireline: 100-Gb/s Ethernet100-Gb/s Ethernet

New design challenges as fundamentalfrequencies enter mm-wave regime

1 x 100-Gb/s

Page 4: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Power ConsumptionPower Consumption

State-of-the-art High-Speed Transceivers

Technology 130-nm CMOS SiGe (120-GHz fT)

Data Rate 3.125-to-10.7-Gb/s

2.7-to-43-Gb/s

Integration Single-chip Chip set

Power consumption

800 mW 12 W

Reference Aeluros, ISSCC 2004

Big Bear, ISSCC 2003

should consume lesspower than100 Gb/s

10 x 10 Gb/s

Page 5: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Power ConsumptionPower Consumption

100-Gb/s 4:1 MUX?

Technology SiGe (210-GHz fT)

Data Rate 132-Gb/s

Supply Voltage -3.3V

Power consumption

1.45 W

Reference IBM, ISSCC 2004

should consume lesspower than

Page 6: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

MOSFETs vs HBTsMOSFETs vs HBTs

• HBT @ peak-fT VBE = 900mV… and does not scale!• 130-nm nMOS @ peak-fT VGS = 750mV… and decreasing!

Page 7: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Power reduction techniquesPower reduction techniques

43-GHz latch consumes only 20mW

BiCMOS logic family reduces supply voltage

Reduce tail current with inductive peaking

LP = CLV2

3.1 IT2

Stacked inductors

10 m

Page 8: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Transmitter Block DiagramTransmitter Block Diagram

8:1 MUX

Output Driver

On-chipPRBS for

BIST

40-GHz PLL

Page 9: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

2.5-V, 87-Gb/s BiCMOS Selector2.5-V, 87-Gb/s BiCMOS Selector

EF for higher bandwidth

SF for voltage headroom

86-Gb/s selector consumes 60mW

Page 10: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

2.5-V, 80-Gb/s BiCMOS Pre-Emphasis Driver2.5-V, 80-Gb/s BiCMOS Pre-Emphasis Driver

MOS gm and input

capacitance relatively

constant as bias

current changes.

Excellent for output

stages with adjustable

amplitude control.

Page 11: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

2.5-V, 80-Gb/s BiCMOS Pre-Emphasis Driver2.5-V, 80-Gb/s BiCMOS Pre-Emphasis Driver

130-nm MOSFETsswitching at 80-Gb/s!

Page 12: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

2.5-V, 80-Gb/s BiCMOS Pre-Emphasis Driver2.5-V, 80-Gb/s BiCMOS Pre-Emphasis Driver

Adjustable pre-emphasis for operation up to 80-Gb/s

Boosts high-frequency content to compensate for line losses.

Output match S22 < -10dB up to 94 GHz.

Page 13: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

36-43 GHz Colpitts VCO36-43 GHz Colpitts VCO

SiGe HBTs used as negative resistance generators.

Differential tuning to reject common-mode noise.

Maximize tank swing, bias HBTs at NFMIN for low phase noise

-105 dBc/Hz @ 1-MHz offset

Page 14: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Die PhotographDie Photograph1.5 m

m

1.8 mm

PRBS + 8:4 MUX4:1 MUX +

Output Driver

PLL

Page 15: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Measured Results: 80-Gb/sMeasured Results: 80-Gb/s

Running for more than 1 hour continuously in the lab.

Jitter: 560 fs (rms) , Rise/fall time: 4-5 ps, Amplitude: 300 mV

Page 16: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Verification of Correct MultiplexingVerification of Correct Multiplexing

Using pattern capture capabilities of the Agilent 86100C DCA

Page 17: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Verification of Correct MultiplexingVerification of Correct Multiplexing

Examine the tone spacing usingAgilent E4448A PSA

Page 18: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

80-Gb/s: Amplitude Control80-Gb/s: Amplitude Control

Little degradation in eye quality as amplitude varies from 100mV to 300 mV per side

Page 19: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Maximum Data Rate: 87-Gb/sMaximum Data Rate: 87-Gb/s

87 GHz

127= 685 MHz

685 MHz

Page 20: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Maximum Data Rate vs. Temp.Maximum Data Rate vs. Temp.

92-Gb/s @ 0oC

71-Gb/s @ 100oC

Page 21: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

ComparisonComparison

Technology

fT/fMAX Data RateSupply

Voltage

Power

130-nm CMOS 85/90 GHz 40-Gb/s (half-rate) 1.5 V 2.7 W

InP HBT 150/150 GHz 43-Gb/s (full-rate) -3.6/ -5.2 V 3.6 W

180-nm SiGe BiCMOS

HBT: 120/100 GHz 43-Gb/s (half-rate) -3.6 V 1.6 W

180-nm SiGe BiCMOS

HBT: 120/100 GHz 43-Gb/s (full-rate) -3.6 V 2.3 W

130-nm SiGe BiCMOS

MOS: 85/90 GHz

HBT: 150/150 GHz87-Gb/s (half-rate) 2.5 V 1.36 W

Page 22: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

ConclusionsConclusions

Described methods for power reduction in high-speed building blocks.

Use BiCMOS topology to lower supply voltage.

Trade off bias current for inductive peaking.

Applied these principles to the design of the first 87-Gb/s serial transmitter, which consumes less power than any 40-Gb/s TX reported to date.

As compared with state-of-the-art CMOS, this work shows that you can achieve double the data rate with half the power dissipation simply by adding the SiGe HBT option.

Page 23: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

AcknowledgementsAcknowledgements

STMicroelectronics Crolles for chip fabrication

STMicroelectronics, Gennum, CITO, and NSERC for

financial support

CMC for CAD tools

CFI and OIT for equipment and test support

Page 24: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Questions?Questions?

Page 25: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

BackupsBackups

Page 26: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

DC ConsiderationsDC Considerations

VGS

VGS

VBE

VBE

VDS = 0V!

Need CM resistor in43-GHz clock buffer

Page 27: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

Future Directions: Futher Power SavingsFuture Directions: Futher Power Savings

Reduce supply voltage to 1.8V by removing current sources.

38% power savings would result in 86-Gb/s TX that consumes 825 mW.

Page 28: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

SiGe Building Block Supply VoltageSiGe Building Block Supply Voltage

DC drops dictate at least 3.3-V supply voltage

150 mV IR

900 mV VBE

900 mV VBE

750 mV VCE

600 mV VCE + IR

Unlike CMOS, supply voltage does not scale!!

Page 29: Low-Power Circuits for a 2.5-V, 10.7-to-86-Gb/s Serial Transmitter in 130-nm SiGe BiCMOS

Dickson & Voinigescu 2006 CSICS November 15, 2006

CMOS vs. SiGe BiCMOSCMOS vs. SiGe BiCMOS

SiGe HBT has 2-generation speed advantageSiGe HBT has 2-generation speed advantage