Low Noise Amplifier - Laboratoire d'informatique de Paris 6hassan/cirf2014_lna.pdfLow Noise...

70
CIRF Circuit Intégré Radio Fréquence Low Noise Amplifier Delaram Haghighitalab Hassan Aboushady Université Paris VI

Transcript of Low Noise Amplifier - Laboratoire d'informatique de Paris 6hassan/cirf2014_lna.pdfLow Noise...

  • CIRF Circuit Intégré Radio Fréquence

    Low Noise Amplifier

    Delaram Haghighitalab Hassan Aboushady Université Paris VI

  • Multidisciplinarity of radio design

    H. Aboushady University of Paris VI

  • •  M. Perrott, “High Speed Communication Circuits and Systems”, M.I.T.OpenCourseWare, http://ocw.mit.edu/,

    Massachusetts Institute of Technology, 2005. •  D. Leenaerts, J. van der Tang, and C. Vaucher, “Circuit

    design for RF transceivers”, Kluwer academic publishers, 2001.

    References

    H. Aboushady University of Paris VI

  •   Heterodyne

      Homodyne (Direct conversion)

     

     Low-IF

    4

    LNA : 1st block of an RF Receiver

  • Noise Factor : SNRin

    SNRout F =

    NF = 10 log10(F)

    F1 G1

    F2 G2

    F3 G3

    Si   So  

    5 University of Paris VI

    LNA Requirements: Noise

    Noise Figure :

    ( ) ( ) ( )12121

    3

    1

    21 ...

    1...11)1(1−

    −++

    −+

    −+−+=

    n

    nGGG

    FGG

    FGFFF

    Friis Equation :

    LNA Requirements to reduce the RF receiver overall Noise Factor:

    •  Low Noise Factor, F1 •  High Gain, G1

  • x(t)   y(t)  

    Vi   Vo  

    α1,3IPA

    ...11 23,3

    21

    21

    22,3

    21

    21,3

    23

    +++≈IPIPIPIP AAAAβαα

    ω ω1 ω2 ω ω1 ω2 2ω1-ω2 2 ω2 -ω1

    ΔP

    dBmindB

    dBm PP

    IIP +Δ

    =2

    3

    6

    β2,3IPA

    γ3,3IPA

    University of Paris VI

    LNA Requirements: Linearity

    LNA Requirements to improve the RF receiver overall linearity: •  High AIP3,1 •  Low α1

  • •  Impedance Matching

    •  Noise Calculations

    •  LNA Design •  Systematic LNA Design Procedure

    Outline

    H. Aboushady University of Paris VI

  • •  Impedance Matching

    •  Noise Calculations

    •  LNA Design •  Systematic LNA Design Procedure

    Outline

    H. Aboushady University of Paris VI

  • •  Impedance Matching

    •  Noise Calculations

    •  LNA Design •  Systematic LNA Design Procedure

    Outline

    H. Aboushady University of Paris VI

  • •  Impedance Matching

    •  Noise Calculations

    •  LNA Design •  Systematic LNA Design Procedure

    Outline

    H. Aboushady University of Paris VI

  • Vin  

    Rout  

    Vout  

    M1

    Cgd

    -  Parasitic capacitance Cgd between input and output nodes. -  Low Gain -  Complex Load Impedance

    outmv ZgA .=

    )1( 0par

    outout CjrRZ

    ω=

    38

    Common Source Amplifier

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

  • Vin  

    Vout  

    M1

    M2

    Lout   -  Isolation between input and output nodes -  Higher Gain

    )1( 00

    0 outpar

    cascodeout LjCjrZ ω

    ω=

    39 D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Common Source Cascode with Inductive Load

    Benefits of Cascode

    -  Real Load Impedance can be obtained

    Purpose of Inductive Load

  • Vin  

    Vout  

    M1

    M2

    Lout  

    M3

    R  

    Rref  

    Current  Mirror  

    -  The current in M1 is fixed by Rref and the ratio (W1/L1)/(W3/L3). -  R is to increase the impedance seen by the input signal.  

    40 D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Biasing

    Current Mirror

  • Vin  

    Vout  

    M1

    M2

    Lout  

    M3

    R  

    Rref  

    Ldeg  

    Lg  

     -  Lg compensates the complex impedance due to Cgs1 . -  Ldeg adjusts the real part of the input impedance to 50 Ω .

    41 D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Matching Input Impedance

    Inductive Degeneration

  • 42

       Input  Impedance  

     Matching  Zin  to  50Ω  

      For  a  Real  Impedance  @  ω0    

    degdeg )(1)( L

    CgLLs

    sCsZ

    gs

    mg

    gsin +++=

    degLCgRgs

    ms =

    gsg CLL )(1

    deg0

    +=ω

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Ldeg and Lg (1)

  • 43

    For  different    Ldeg  values  

    Re{

    Zin}

    Lg

    ⇒ Re{Zin} independent of Lg

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Ldeg and Lg (2)

  • 44

    Re{

    Zin}

    Im

    {Zin

    }

    Lg

    Lg

    ⇒ Ldeg for: Re{Zin}=50 Lg for: Im{Zin}=0

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    For  different    Ldeg  values  

    ⇒ Re{Zin} independent of Lg

    Ldeg and Lg (2)

  • 45

    Techno.  0.35µm  c=  -‐0.4j  γ =  2/3  

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    NF of a MOS Transistor

  • )()()(

    )(

    )(

    )(

    )(

    )(

    )(

    .).(

    addedosourceototalo

    sourcei

    totalo

    totaloi

    sourceii

    totaloo

    sourceii

    o

    i

    NNNNGN

    NGSNS

    NSNS

    SNRSNRF

    +=

    ====

    )(

    )(

    )(

    )()(

    )(

    )( 1sourceo

    addedo

    sourceo

    addedosourceo

    sourceo

    totalo

    NN

    NNN

    NN

    F +=+

    ==⇒

    1)   No(added) : Output Reffered Noise due to the LNA. 2)   No(source): Output Reffered Noise due to the source.

    46 D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    NF Characterization

  • R

    RkTiR 42 =

    R

    Résistance

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Noise Sources

  • 48

    R

    RkTiR 42 =

    R

    fgkTi

    fgkTi

    gsg

    dd

    Δ=

    Δ=

    δ

    γ

    4

    42

    02

    Résistance Transistor

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Noise Sources

  • 49

    R

    RkTiR 42 =

    R Ls

    Rs

    Csub

    Rsub Rsub Rs

    fgkTi

    fgkTi

    gsg

    dd

    Δ=

    Δ=

    δ

    γ

    4

    42

    02

    Résistance Transistor Inductance

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Noise Sources

  • R

    RkTiR 42 =

    R Ls

    Rs

    Csub

    Rsub Rsub Rs

    50

    fgkTi

    fgkTi

    gsg

    dd

    Δ=

    Δ=

    δ

    γ

    4

    42

    02

    ),,,,,.( 22222 RsubRsubRsRsRRggddi HiHiHiHiHiNGfNF =

    )(

    )(1sourceo

    addedo

    NN

    F +=)(addedoN

    Resistance Transistor Inductance

    )(sourceoND. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Noise Sources

  • I

    inI

    )()()(sIsIsH

    in

    outd =

    51 D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Noise Sources

  • out

    out

    out

    Vin

    Vin

    Circuit

    Circuit

    Circuit

    Iin

    in

    Gain : Input Impedance: Noise Factor:

    )()()(sVinsVoutsGain =

    )()()(sIinsVinsZin =

    52

    )(

    )(1sourceo

    addedo

    NN

    F +=

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Characterization

  • 53

             

    Length: Minimum L to reduce parasitic capacitances. Width: Ids calculated for NFmin.

    Layout: Maximum number of fingers to reduce Gate resistance.

    Ldeg : Adjusted for Re {Zin} = 50 Ω .

    Lg : Adjusted for Im {Zin} = 0 Ω .

    Lout : Adjusted for the desired Zout and Gain.

       

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Design Procedure

    Transistors

    Inductors

  • Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment  

    Ids++

    54 University of Paris VI

    Automatic Sizing Procedure

  • Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caractérisa+on  de  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate    NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment  

    Ids++

    55 University of Paris VI

    Automatic Sizing Procedure

  • Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate    NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment  

    Ids++

    { } 50Re:

    deg ≈in

    gout

    ZpourL

    initialesvaleursLetL

    56 University of Paris VI

    Automatic Sizing Procedure

  • Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment    

    Ids++

    57 University of Paris VI

    Automatic Sizing Procedure

  • Techno

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    Non

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment    

    I++

    58 University of Paris VI

    Automatic Sizing Procedure

  • Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment  

    Ids++

    59 University of Paris VI

    Automatic Sizing Procedure

  • Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment  

    Ids++

    60 University of Paris VI

    Automatic Sizing Procedure

  • 61 University of Paris VI

    Automatic Sizing Procedure

    Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  Gain  Adjustment  

    Ids++

    Ldeg  for  Re{Zin}=50  Lg        for  Im{Zin}=0  

  • Gain  Adjustment    

    62 University of Paris VI

    Automatic Sizing Procedure

    Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  

    Ids++

  • Gain  Adjustment    

    63 University of Paris VI

    Automatic Sizing Procedure

    Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  

    Ids++

    Choice  of  Lout  :  

    )(.

    outout

    outmv

    LfZZGA

    =

    −=

  • Gain  Adjustment    

    64 University of Paris VI

    Automatic Sizing Procedure

    Techno  

    Transistors  Sizing  

    NF min?

    Rs f0 Vdd

    Ids-‐min    (Wmin,Lmin)  

    Caracteriza+on  of  NF  ,  Gain,  Zin  

    No  

    Yes  

    Gain Topology

    Choose  Inductances  

    Calculate  NF  

    Impedance  Matching  

    Gain OK?

    Yes  

    No  

    Ids++

  • Technologie 0.13 um Vdd 1.2 V

    Résistance de source (Rs)

    50 Ω

    Fréquence centrale (f0)

    2.4 GHz

    Gain ≥ 15 dB

    W (um)

    L (um) Vgs (V)

    Vds (V)

    Ids(mA)

    M1 48.96 0.13 0.6 0.6 3.3122

    M2 48.96 0.13 0.6 0.6 3.3122

    M3 5.08 0.13 0.6 0.6 0.33122

    R= 100 KΩ , Rref = 1.811 KΩ , Ldeg = 0.3709 nH , Lg = 48.65 nH , Lout = 3 nH 65

    Spécifications

    Résultats de la procédure proposée

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Design Example I: A 2.4GHz LNA in 130 nm CMOS

  • Gain (dB) NF (dB) ELDO 19.04 0.727277

    66 D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Estimated and Simulated Gain and NF

  • S11

    (dB

    ) S

    21 (d

    B)

    F (Hz)

    67

    S11 @ 2.4 GHz =-24.24 dB S21 @ 2.4 GHz = 17.028 dB

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Simulated S Parameters

  • IIP3= - 0.44 dBm

    68

    Fondamentale

    IM3

    D. Haghighitalab, M. Vasilevski & H. Aboushady University of Paris VI

    Simulated IIP3