Low k (k=3.0)/Cu Dual Damascene Process for Sub-40nm DRAM · Low k (k=3.0)/Cu Dual Damascene...

15
Low k (k=3.0)/Cu Dual Damascene Process for Sub-40nm DRAM S. D. Nam Samsung Electronics

Transcript of Low k (k=3.0)/Cu Dual Damascene Process for Sub-40nm DRAM · Low k (k=3.0)/Cu Dual Damascene...

Low k (k=3.0)/Cu Dual Damascene

Process for Sub-40nm DRAM

S. D. Nam

Samsung Electronics

2/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Contents

DRAM BEOL vs. Logic BEOL

Why Low-k IMD into DRAM ?

Low-k/Cu Dual Damascene Test Structure

Dual Damascene Process- Low-k & Integration Processes

Electrical Properties & EM Reliability

Effective-k after Integration

Packaging- Laser Fusing, Sawing, Wire Bonding

Conclusion

3/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

DRAM BEOL vs. Logic BEOL

DRAM Logic

Dual damascene A/R > 4.0 < 3.0

Low-k application Global metal Intermediate metal

Crack-stop layer No Yes

Fusing method Laser blowing Electrical

More Difficult Structure

Speed Critical Layer !vs.Mechanically Vurnerable to Harsh Package Processes

Thermal Expansion DifferenceAdhesion, Modulus/Hardness

Chip Size Consideration !vs.Crack Propagation into Main Chip

Forget about Low-k ! Simply Add a Metal ! :) Even though, it is More Expensive ! :(

4/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

DRAM BEOL vs. Logic BEOL

M2

Cu

TEOSPE-SiN

PSPI

TEOS

PAD-Al

M1

Cu

TEOS

SiNTEOS

Global

Passivation

Intermediate

PSPI

TEOS

PAD-AlPE-SiN

※ Arbitrary scale

For conventional 2Cu + 1Al pad DRAM,Only 1 intermediate and 1 global metal under passivation

Low-k

IMD SiCN

5/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

Year

Die

lect

ric

Const

ant

ITRS 2000

ITRS 2006

ITRS 2008

Historical ITRS roadmap for DRAM BEOL

Shift of Low-k adoptioninto DRAM

Still, no DRAM chip makers use Low-k IMD for their major products. Why ?→ Hesitation in Adopting Low-k to DRAM BEOL

Adding a metal instead of Low-k adoption→ Low-k reliabilty issue

* ITRS 2000, 2006, 2008 interconnect roadmap

6/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Test Vehicle (sub-40nm)

M2

Cu

TEOSPE-SiN

PSPI

TEOS

PAD-Al

M1

Cu

TEOS

SiNTEOS

M2

Cu

TEOSPE-SiN

PSPI

TEOS

PAD-Al

M1

Cu

Low-k

IMD

SiNTEOS

SiCN

Comparison of Conventional 2Cu +1Al pad /w TEOS and /w Low-k V1/M2 IMD

Electrical properties, Reliability, Packaging Issues

7/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

TEM of Test Structure

M2

Cu

TEOSPE-SiN

PSPI

TEOS

PAD-Al

M1

Cu

Low-k

IMD

SiNTEOS

SiCN

M2 Cu

M1 CuW

Low-k

IMD

Low-k IMD & SiCN DB @ V1/M2

8/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

VFDD process scheme

⑩ CMP

① Via photo

SiCN

Low-k

IMD

PR

Oxide

② Via etch ③ Via fill

Via filler

④ Oxide HM

Oxide

⑤ Trench photo

PR

⑦ Via filler ashing ⑨ clean/PVD/EP⑥ Trench etch

Cu

⑧ SiCN open

※ VFDD (Via First Dual Damascene)

Conventional VFDD processes

9/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Low-k & Integration processes

Low-k IMD

Deposition Method PECVD

Deposition Chemistry Siloxane based precursor / Oxygen ambient

Pristine k 3.0

SiCN ESL/DB

Deposition Method PECVD

Deposition Chemistry Silane based precursor / Ammonia ambient

Pristine k 5.0

Pre-treatment Ammonia ambient plasma

Integration

Design rule < 40nm (Gate size)

Scheme VFDD

Etching Fluorocarbon / Oxygen based ambient

Ashing Oxygen based ambient

Wet Cleaning Diluted Hydrofluorine acid

Cu BM Ta based PVD

EP Cu Pure Cu

Cu CMP Same as SiO2 IMD

Conventional VFDD processes for Low-k IMD & SiCN DB @ V1/M2

10/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Electrical properties

0

20

40

60

80

100

Normalized via-1 Rc (a.u.)

Dis

trib

uti

on

(%

)

SiO2 / Cu

Low-k / Cu

0

20

40

60

80

100

Normalized metal-2 Rs (a.u.)

Dis

trib

uti

on

(%

)

SiO2 / Cu

Low-k / Cu

0

20

40

60

80

100

Normalized metal-2 leakage (a.u.)

Dis

trib

uti

on

(%

)

SiO2 / Cu

Low-k / Cu

0

20

40

60

80

100

Normalized time to failure (a.u.)

Dis

trib

uti

on

(%

)

SiO2 / Cu

Low-k / Cu

Via-1 Rc Metal-2 Rs

Metal-2 Leakage Metal-2 EM Reliability

No difference of Via-1 Rc, Metal-2 Rs, Metal-2 Leakage and EM Reliability

11/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

42

44

46

48

50

52

54

56

2.8 3.0 3.2 3.4 3.6 3.8 4.0

k-valueC

ap

ac

ita

nc

e [

pF

]

Effective-k of Low-k IMD after Integration

M2Cu

3.14

M2 Effective-k = 3.14 (Pristine k = 3.0)

< 5% Increase(Robust Enough to be Compatible with the Conventional DRAM BEOL)

Computational Simulation

with the Pattern Dimensions by TEM

12/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Packaging : Laser Fusing

CTE

(ppm/℃)

Relative adhesion energy

with low-k (a.u.)

@ 4pts bending technique

Low-k 14 * -

SiCN 3.9 * 2.5

SiN 1.5 * 1.0

Cu 16 * N/A

* N. Che´rault, Microelectronic Engineering, vol. 82, pp. 368–373, 2005.* Myung-Chan Jo, Applied Surface Science, vol. 140, pp. 12–18, 1999.

M2

Cu

TEOSPE-SiN

PSPI

TEOS

PAD-Al

M1

Cu

Low-k

IMD

SiNTEOS

SiCN

SiN/SiO2 SiN/Low-k

SiCN/Low-k SiCN/Low-k (Modified)

Successful Laser Fusing with Modified Scheme@ Low-k/Cu Fuse

Poor adhesion

Better adhesionBut, Lower modulus

13/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Packaging : Sawing

Top view Vertical view

No encroachment into PSPI edge No severe chipping

PSPI edge

Mainchip

Scribelane

14/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Packaging : Wire Bonding

Failure analysis

With Optimized NH3 plasma pre-treatment,No delamination was observed during Bond Pull Test

Delamination @ M2 SiCN DB and Low-k IMD interface→ Due to the low interfacial adhesion energy

Al pad

TEOSSiCN

Low-k IMDSiCN

15/ 15

AMC20102010.10.05

Process Development TeamSamsung Electronics

S. D. Nam

Conclusion

Tough environment for Low-k Adoption into DRAM BEOL compared toLogic BEOL

Low-k/Cu Dual Damascene Evaluation with Conventional DRAM BEOL

Electrically No Difference(Via-1 Rc, Metal-2 Rs, Metal-2 Leakage and EM Reliability)

Effective-k of Low-k IMD < 5% Increase(Robust enough to be compatible with the conventional DRAM BEOL)

Compatible with Conventional DRAM Packaging(Laser Fusing, Sawing and Wire Bonding)

Promising Candidate for the Next Generation DRAM Interconnection

Further Study on Integration and Package is Required