Low Energy Transfer Trajectories

46
Low Energy Transfer Trajectories Paolo Teofilatto Scuola di Ingegneria Aerospaziale Università di Roma “La Sapienza”

description

Low Energy Transfer Trajectories. Paolo Teofilatto Scuola di Ingegneria Aerospaziale Università di Roma “La Sapienza”. Summary. Impulsive transfers in Keplerian field Earth orbits transfers in non Keplerian field Weak Stability Boundary lunar transfers - PowerPoint PPT Presentation

Transcript of Low Energy Transfer Trajectories

Page 1: Low Energy Transfer Trajectories

Low Energy Transfer Trajectories

Paolo Teofilatto

Scuola di Ingegneria Aerospaziale

Università di Roma “La Sapienza”

Page 2: Low Energy Transfer Trajectories

Summary

1. Impulsive transfers in Keplerian field

2. Earth orbits transfers in non Keplerian field

3. Weak Stability Boundary lunar transfers

4. Low energy lunar constellation deployment

5. Eccentricity effect in interplanetary transfers

Page 3: Low Energy Transfer Trajectories

1) Impulsive transfers in Keplerian Field

• Lawden “primer vector” theory• Cicala-Miele optimization theory via Green’s

theorem• Hazelrigg definitive contribution in the 2D case• Other important contributes: Ting, Edelbaum,

Rider, Eckel, Marec, Marchal , ....

T. Edelbaum: “How many impulses ?”

Astronautics and Aeronautics, vol.5, 1967

Page 4: Low Energy Transfer Trajectories

Lawden COAXIAL RULE

• If the initial or terminal orbit of a transfer is circular then all the other transfer orbits must be coaxial to the point of entrance or exit on the circular orbit.

• Optimal time-open, angle-open, transfers between optimally oriented orbits: coaxial transfer orbits

Page 5: Low Energy Transfer Trajectories

Cicala-Miele application of the Green’s Theorem

Space state: two dimensional bounded region R

Cost Function: min ( )J

1 1 2 2( ) J dx dx

Page 6: Low Energy Transfer Trajectories

Green’s Theorem

2 1 2 1 2 1

2 1( ) ( )J J J d

2

2 1If <0 on R then ( ) ( ) 0J J J

R R

1

21

Page 7: Low Energy Transfer Trajectories

The minimum is at boundary of R

12

31 2 3( ) ( ) ( )J J J

( ) minJ R J

Page 8: Low Energy Transfer Trajectories

Transfer in Keplerian field

xa=apogee distance , X=1/xa

xp=perigee distanceX

xpparabolas

increasingapogee I

F

circles

X*xp=1

= d d X p pV X x

3/ 2

1

2 (1 )X pp

xXx

3/ 2

1

2 (1 )ppp

X

Xxx

Page 9: Low Energy Transfer Trajectories

Transfer in Keplerian field n.2X

xp

F

I

= d d X p pV X x

, X X p p -

Page 10: Low Energy Transfer Trajectories

Transfers with X geq XF

X

I

F

xp

XF

a2

a1 b1

b2

1 1 2

1

Ia b b F

V

2 2

2

Ia b F

V

1 2 2 1 1

2 1

a a b b a

= < 0 , ( =d )V V V

Two impulses are better than fourHohmann strategy is optimal if the constraint is imposed

FX X

Page 11: Low Energy Transfer Trajectories

Transfers with X leq XF

X

I

F

xp

XF

Three impulses are better than six

Biparabolic transfer is optimal if the constraint is imposed

Page 12: Low Energy Transfer Trajectories

Local Analisys

Hohmann vs Bielliptic : local analysis

Biparabolic is better than Hohmann if

Any bielliptic is better than Hohmann if / 11.8F IR R

/ 15.4F IR R

INCLINATION VARIATION

Page 13: Low Energy Transfer Trajectories

Variation of Inclination

Page 14: Low Energy Transfer Trajectories

Moon assisted Earth orbital transfers: GTO

Page 15: Low Energy Transfer Trajectories

Lunar assisted GTO

Page 16: Low Energy Transfer Trajectories

Lunar assisted GTO with reduced apogee

Page 17: Low Energy Transfer Trajectories

Optimal lunar assisted GTO are in the unstable Earth-Moon region

Page 18: Low Energy Transfer Trajectories

Earth-Moon Zero Velocity Curves

Page 19: Low Energy Transfer Trajectories

WSB: a Low Energy Transferto the Moon

(up to 20% more of the final payload mass)

Page 20: Low Energy Transfer Trajectories

The Sun gravity-gradient effect

Page 21: Low Energy Transfer Trajectories
Page 22: Low Energy Transfer Trajectories

Zero Velocity curves during WSB transfer

Page 23: Low Energy Transfer Trajectories

Zero Velocity curves during WSB transfer

Page 24: Low Energy Transfer Trajectories

Zero Velocity curves during WSB transfer

Page 25: Low Energy Transfer Trajectories

Zero Velocity curves during WSB transfer

Page 26: Low Energy Transfer Trajectories

Zero Velocity curves during WSB transfer

Page 27: Low Energy Transfer Trajectories

Weak Stability Boundary Trajectories for the deployment of

lunar spacecraft constellations• Take advantage of the weak stability dynamics in order

to deploy a constellation of lunar spacecraft with a small • Consider a nominal WSB trajectory with periselenium

distance • Consider a cluster of small impulses (10:20 cm/s) from a

certain point of the nominal trajectory.• Select those impulses such that the injected spacecraft

have a periselenium distance “close” to • Since small variations in initial conditions imply large

variations in the final conditions (‘instability’) we may expect rather different lunar orbit parameters with respect to the nominal ones (constellation deployment)

200pr Km

pr

Page 28: Low Energy Transfer Trajectories

VariationV

X Y

Ztransf = er 20 / time a t :44 dayV cm s

6 perturbed trajectories

Page 29: Low Energy Transfer Trajectories

Final parametersOnly one of the 6 burns leads the spacecraft to a periselenium

“close” to rp

• Nominal parameters (at Moon):

•Perturbated parameters (at Moon):

55.36 d37172 , 0.9373 , , 143.41 deg , 77.42 g d ge ea Km e i

transfer time : 91.92 days , periselenium distance : 236 Km

89.99 d32900 , 0.9441 , , 0.034 deg , 120.00e deg ga Km e i

transfer time : 90.85 days , periselenium distance : 596 Km

Page 30: Low Energy Transfer Trajectories

SavingV

0var 35 iation of inclination i

40 m/snom aposeleniumV

5 m/s (reduction of periselenium)WSBV

35 /SAVEDV m s

Page 31: Low Energy Transfer Trajectories

Different separation times

Different separation times

?

Different final parameters

There are two families of trajectories having the “same” periselenium distance

Page 32: Low Energy Transfer Trajectories

Different separation times

Different separation times

?

Different final parameters

There are two families of trajectories having the “same” periselenium distance

Page 33: Low Energy Transfer Trajectories

Keplerian Case

• Given find the velocities in to reach 0 1 and r r

0P 1P

r 0 1 0 1

1v a( , , ) + b( , , ) v

vr r r r

0v

0 r

1 r

0P

1P

0v

v

vr

Page 34: Low Energy Transfer Trajectories

The two Keplerian ellipses

rv

v

A

B

equal energy curve

Case A

apogee

1P

0P

rv 0

Case B

Page 35: Low Energy Transfer Trajectories

Lambert

Moon orbit

0r

1r

0v

0 1 06 Kmr e

1 384400 Kmr

Page 36: Low Energy Transfer Trajectories

The problem in the restricted 3bp

M

E M t

y

x

0P

1P

minr1

X

Y xy

03

Page 37: Low Energy Transfer Trajectories

Hadjidemetriou work

22 2 2 2 2min 0 0 0 0 min 0 0 0 0

0

1 2[ 2 ( ) 2] 2 [ 2 2 ( ) ] 0

4r v v r r r r v r r

r

Page 38: Low Energy Transfer Trajectories

Case 00 0

Page 39: Low Energy Transfer Trajectories

The Earth_Moon Jacobi “constant”

Jacobi constant of the exterior Lagrangian point L2

Page 40: Low Energy Transfer Trajectories

Hadjidemetriou curves for 00.012 and 0

Page 41: Low Energy Transfer Trajectories

Argument of periselenium

Page 42: Low Energy Transfer Trajectories

Effect of planetary eccentricity on ballistic capture in the solar system

Page 43: Low Energy Transfer Trajectories

Jupiter Comets

Page 44: Low Energy Transfer Trajectories

Capture Condition

2 2

2 22

2

2 22

42 2 cos( )

1

42 cos( ) 0

1

pc c

p p p m

p

p p m

xe c e c Bc ix x x e

xc Bc i B

x x e

( ) 0ic LC C

0

21 cos 1 cos

iLc

m c m

B Ie e

Page 45: Low Energy Transfer Trajectories

Satellite Eccentricity at capture

Page 46: Low Energy Transfer Trajectories

Conclusion• Global results are at disposal for optimal

(low energy) orbit transfers in the Keplerian field

• Lower energy transfer orbits can be obtained by a third body (e.g. Moon) gravitational help

• The effect of a four body (e.g. Sun) is important in low energy lunar transfer

• Planet eccentricity has a role in planetary ballistic capture