Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

117
Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT
  • date post

    20-Dec-2015
  • Category

    Documents

  • view

    218
  • download

    0

Transcript of Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Page 1: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Low-energy neutrino physics

Belén GavelaUniversidad Autónoma de Madrid and IFT

Page 2: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Low-energy neutrino physics

Belén GavelaUniversidad Autónoma de Madrid and IFT

and leptogenesis

Page 3: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

What are the main physics goals in physics?

• To determine the absolute scale of masses

• To determine whether they are Dirac or Majorana

* To discover Leptonic CP-violation in neutrino oscillations

Page 4: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

What are the main physics goals in physics?

• To determine the absolute scale of masses

• To determine whether they are Dirac or Majorana

* To discover Leptonic CP-violation in neutrino oscillations

What is the relation of those putative discoveries to the matter-antimatter asymmetry of the universe?

Can leptogenesis be “proved”?

Page 5: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

The short, and rather accurate answer, is NO

Nevertheless, a positive discovery of both 2 last points, that is:

• To establish the Majorana character (neutrinoless decay)

• Leptonic CP-violation in neutrino oscillations

(at -e oscillations at superbeams, betabeams…. neutrino factory)

would constitute a very compelling argument in favour of leptogenesis

plus

Page 6: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

The short, and rather accurate answer, is NO

Nevertheless, a positive discovery of both 2 last points, that is:

• To establish the Majorana character (neutrinoless decay)

• Leptonic CP-violation in neutrino oscillations

(at -e oscillations at superbeams, betabeams…. neutrino factory)

would constitute a very compelling argument in favour of leptogenesis

Go for those discoveries!

plus

Page 7: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses ---->

Beyond SM scale

* What is the prize for TeVwithout unnatural fine-tunings?

* What observable observable effects could we then expect?

…..This talk deals much with the Majorana character

Page 8: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

No masses in the SM because the SM accidentally

preserves B-L

……only left-handed neutrinos

and

……only scalar doublets (Higgs)

Page 9: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

No masses in the SM because the SM accidentally

preserves B-L

• right-handed R →

Would require Y~10-12 !!! Why s are so light???Why R does not acquire large Majorana mass?

.. .. ~

chmchlHY RLDRL +→+

i.e. Adding singlet neutrino fields NR

L M (RROK with gauge invariance

NR+ NR+

NR

NR Y

Y

L-

Page 10: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

No masses in the SM because the SM accidentally

preserves B-L

• right-handed R →

Would require Y~10-12 !!! Why s are so light???

Why R does not acquire large Majorana mass?

.. .. ~

chmchlHY RLDRL +→+

i.e. Adding singlet neutrino fields NR

L M (RROK with gauge invariance

NR+ NR+

NR

YNR L-

Page 11: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

No masses in the SM because the SM accidentally

preserves B-L

• right-handed R →

Would require Y~10-12 !!! Why s are so light???

Why R does not acquire large Majorana mass?

.. .. ~

chmchlHY RLDRL +→+

i.e. Adding singlet neutrino fields NR

L M (RROK with gauge invariance

NR+ NR+

NR

Seesaw modelSeesaw model

YNR

Which allows YN~1 --> M~MGut

L-

Page 12: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

No masses in the SM because the SM accidentally

preserves B-L

• right-handed R →

Would require Y~10-12 !!! Why s are so light???

Why R does not acquire large Majorana mass?

.. .. ~

chmchlHY RLDRL +→+

i.e. Adding singlet neutrino fields NR

L M (RROK with gauge invariance

NR+ NR+

NR

Seesaw modelSeesaw model

YNR

Which allows YN~1 --> M~MGut

L-

YN~10-6 --> M~TeV

Page 13: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM

Favorite options: new physics at higher scale M Heavy fields manifest in the low energy effective theory (SM)via higher dimensional operators

Dimension 5 operator:

It’s unique → very special role of masses:lowest-order effect of higher energy physics

→/M (L L H H)v/M (2

O d=5

L=ciO i

Page 14: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM

Favorite options: new physics at higher scale M Heavy fields manifest in the low energy effective theory (SM)via higher dimensional operators

Dimension 5 operator:

This mass term violates lepton number (B-L) → Majorana neutrinos

It’s unique → very special role of masses:lowest-order effect of higher energy physics

→/M (L L H H)v/M (2

O d=5

L=ciO i

Page 15: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM

Favorite options: new physics at higher scale M Heavy fields manifest in the low energy effective theory (SM)via higher dimensional operators

Dimension 5 operator:

This mass term violates lepton number (B-L) → Majorana neutrinos

It’s unique → very special role of masses:lowest-order effect of higher energy physics

→/M (L L H H)v/M (2

is common to all models of Majorana s

O d=5

L=ciO i

O d=5

Page 16: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Dimension 6 operators,

O

discriminate among models.

d=6

Which are the d=6 operators characteristic of Seesaw models?

(A. Abada, C. Biggio, F.Bonnet, T. Hambye +MBG )

Page 17: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM : tree level

m ~ v2 cd=5 = v2 YN YN /MN

T

Fermionic Singlet Seesaw ( or type I)

2 x 2 = 1 + 3

Page 18: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM : tree level

Fermionic Singlet Seesaw ( or type I)

2 x 2 = 1 + 3

L

H

++

LEPTOGENESIS:

NR’NR’

NR

(Fukugita, Yanagida)

(Flanz, Paschos, Sarkar,Covi, Roulet,Vissani, Pilaftsis)

Page 19: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM : tree level

Fermionic Triplet Seesaw ( or type III)

m ~ v2 cd=5 = v2 Y Y /M

T

2 x 2 = 1 + 3

Page 20: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM : tree level

Fermionic Triplet Seesaw ( or type III)

T

L

H

++ +R R R’ R R’

LEPTOGENESIS:2 x 2 = 1 + 3

(Hambye, Li, Papucci, Notari, Strumia))

Page 21: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet Seesaw ( or type II)

m ~ v2 cd=5 = v2 Y /M

2

Page 22: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM : tree level

2 x 2 = 1 + 3

Scalar Triplet Seesaw ( or type II)

T

+ + ’

LEPTOGENESIS:

LL

(Ma, Sarkar, Hambye)

Page 23: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

L

L

NR

Or hybrid models, i.e Fermionic Singlet + Scalar Triplet

H

H

( O'Donnell, Sarkar, Hambye, Senjanovic; Antusch, King )

Page 24: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Heavy fermion singlet NR (Type I See-Saw) Minkowski, Gell-Mann, Ramond, Slansky, Yanagida, Glashow, Mohapatra, Senjanovic

masses beyond the SM : tree level

Heavyscalar triplet Magg, Wetterich, Lazarides, Shafi, Mohapatra, Senjanovic, Schecter, Valle

Heavy fermion triplet RMa, Roy, Senjanovic, Hambye et al., …

Page 25: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Minimal see-saw (fermionic singlet)

...11 6

25 +

Λ+

Λ+= == dd

SMeff LLLLIntegrate out NR

d=5 operatorit gives mass to

d=6 operatorit renormalises kinetic energy

Broncano, Gavela, Jenkins 02

L = LSM+ i NRdNR - Y L H NR - M NR NR _ _

M M2

YN YN/M (L L H H)T YN YN/M2 (L H) (H L)

+

Page 26: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Minimal see-saw (fermionic singlet)

...11 6

25 +

Λ+

Λ+= == dd

SMeff LLLLIntegrate out NR

d=5 operatorit gives mass to

d=6 operatorit renormalises kinetic energy

Kaluza-Klein model: De Gouvea, Giudice, Strumia, Tobe

L = LSM+ i NRdNR - Y L H NR - M NR NR _ _

M M2

YN YN/M (L L H H)T YN YN/M2 (L H) (H L)

+

Page 27: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

cd=6 ~ (cd=5)2

For Y´s ~ O(1),

and the smallness of neutrino masses would preclude in

practice observable effects from cd=6

with

m ~ v2 cd=5 = v2 YN YN /MN

T

while cd=6 = Y Y/M2

+

How to evade this without ad-hoc cancelations of Yukawas?

Page 28: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Fermionic triplet seesaw

...11 6

25 +

Λ+

Λ+= == dd

SMeff LLLLIntegrate out NR

d=5 operatorit gives mass to

d=6 operatorit renormalises kinetic energy+…

L = LSM+ i RDR - Y L .H R - M R R _ _

M M2

YY/M (L L H H)T

Y Y/M2 (L H) D (H L) +

Page 29: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Scalar triplet see-saw

L = LSM + DD - +M2 +

Y L . L + H . H + V(H,, i)

Y /M2 (L L H H) d=5

d=6

Y Y/M2 (L L) (L L) + _ _

/M4 (H+H)3

i/M4(HH)DD(HH)

2

2

Page 30: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.
Page 31: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Y Y M

+2

Page 32: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Y Y M

+Notice that the combination

also is crucial to the LEPTOGENESIS CP-asymmetries

i.e., in Type I:

L

H

++NR’

NR’NR+

YNT YN

in addition to the mcombination ~ YNT YN v2/M

2

Page 33: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Indeed, in Type I (fermionic seesaw)

the individual CP asymmetries:

vanish for

degenerate cd=5 (that is, m ) eigenvalues

or

degenerate cd=6 eigenvalues (Broncano, Gavela, Jenkins)

Page 34: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Y Y M

+2

Can M be close to EW scale, say ~ TeV?

Page 35: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

M~1 TeV is suggested by electroweak hierarchy problem

NH

H

H

L

L

(Vissani, Casas et al., Schmaltz)

Page 36: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

M~1 TeV actively searched for in colliders

-> m> 136 GeV by CDF

Atlas groups studying searches of Triplet Seesaws (scalar and fermionic)

(Ma……….Bajc, Senjanovic)

i.e. Scalar Triplet

l+

l+

Same sign dileptons….~ no SM background

Page 37: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Is it possible to have

M ~ 1 TeV

with large Yukawas (even O(1) ) ?

It requires to decouple the coefficient cd=5 of Od=5

from cd=6 of Od=6

Page 38: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Notice that all d=6 operators preserve B-L, in contrast to the d=5 operator.

This suggests that, from the point of view of symmetries, it may be natural to have large cd=6, while having small cd=5 .

Page 39: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Light Majorana m should vanish:

- inversely proportional to a Majorana scale ( cd=5 ~ 1/M)

- or directly proportional to it

Page 40: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Light Majorana m should vanish:

- inversely proportional to a Majorana scale ( cd=5 ~ 1/M)

- or directly proportional to it Ansatz:

When the breaking of L is proportional to a small scale << M, while M ~ O(TeV), c d=5 is suppressed while c d=6 is large:

cd=5 ~

cd=6 ~

1

Page 41: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Light Majorana m should vanish:

- inversely proportional to a Majorana scale ( cd=5 ~ 1/M)

- or directly proportional to it Ansatz:

When the breaking of L is proportional to a small scale << M, while M ~ O(TeV), c d=5 is suppressed while c d=6 is large:

cd=5 ~

cd=6 ~

f(Y)

Y Y+

Page 42: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Y Y M

+2

Page 43: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Y Y M

+2

M2

Y

Page 44: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

* The minimal scalar triplet model obeys that ansatz:

Y

Y Y+

HH

LL

cd=6 ~

cd=5 ~

In fact, any Scalar mediated Seesaw will give 1/(D2-M2) ~ -1/M2 - D2/M4 + ……

m ~ v2 cd=5 ~1/M2

Page 45: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

* Singlet fermion seesaws with M~1 TeV also obey it !!! :

i.e. INVERSE SEESAW

What about fermionic-mediated Seesaws?

Page 46: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

INVERSE SEESAW texture

L N1 N2

L

N1

N2

* Toy: 1 light

Mohapatra, Valle, Glez- Garcia

Page 47: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

INVERSE SEESAW texture

L N1 N2

L

N1

N2

* Toy: 1 light

Page 48: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

INVERSE SEESAW texture

L N1 N2

L

N1

N2

* 3 generation Inverse Seesaw: e , , , N1, N2, N3

* Toy: 1 light

Abada et al., Kersten+Smirnov

Page 49: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Were M ~ TeV and Y’s ~ 1, is LEPTOGENESIS possible?

It would require resonant leptogenesis

NR

with rather degenerate heavy states M-M’ <<M

Yes, but not easy

Page 50: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Were M ~ TeV and Y’s ~ 1, is LEPTOGENESIS possible?

It would require resonant leptogenesis

NR

with rather degenerate heavy states M-M’ <<M

•Very interesting for FERMIONIC inverse seesaws, as they are naturally resonant ( have 2 NR or 2 SR degenerate)

Yes, but not easy

Page 51: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Were M ~ TeV and Y’s ~ 1, is LEPTOGENESIS possible?

It would require resonant leptogenesis

NR

with rather degenerate heavy states M-M’ <<M

* Difficult in Triplet Seesaws (fermionic or scalar) because the extra gauge scattering processes push towards thermal equilibrium. Needs M-M’ ~

•Very interesting for FERMIONIC inverse seesaws, as they are naturally resonant ( have 2 NR or 2 SR degenerate)

Yes, but not easy

Page 52: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

d=6 operator is crucial for leptog.:

if observed at E~TeV ---> at least one N (or or ) at low scale

--------> only resonant leptogenesis is possible

Page 53: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

cd=6 ~

Y Y+

Experimental information on

from:

--- 4 fermion operators (Scalar triplet seesaw) MW, W decays…

--- Unitarity corrections (Fermionic seesaws)

Page 54: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Scalar triplet seesaw Bounds on cd=6

Page 55: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Scalar triplet seesaw

Combined bounds on cd=6

Page 56: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Fermionic seesaws ---> Non unitarity

Page 57: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

i.e, a neutrino mass matrix larger than 3x3

3 x 3

The complete theory ofmasses is unitary.

• Unitarity violations arise in models for masses with heavy fermions

Page 58: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

→ YES deviations from unitarity

Fermion singlet NR (Type I See-Saw)

Scalar triplet

Fermion triplet R

→ NO deviations from unitarity

→ YES deviations from unitarity

Broncano, Gavela, Jenkins 02

Page 59: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

A general statement…

We have unitarity violation whenever we integrate out heavy fermions:

...11

2+

/−−=

−/ MDi

MMDi

vv

There’s a : it connects fermionswith the same chirality → correction to the kinetic terms

It connects fermions withopposite chirality → mass term

Y Y/M2 (L H) D (H L)

YN YN/M2 (L H) (H L)

Fermionic seesaws:

I

II

A flavour dependent rescaling is needed, which is NOT a unitary transformation

Page 60: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

In all fermionic Seesaws, the departures from unitarity give directly |cd=6|

i.e. Fermion singlet Seesaws

N

UPMNS --------> N (non-unitary)

Page 61: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Antusch, Biggio, Fernández-Martínez, López-Pavón, M.B.G. 06

→ Worthwhile to analyze neutrino data relaxing the hypothesis of unitarity of the mixing matrix

Page 62: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

The general idea…

13 12 12 13 13

12 23 23 13 12 12 23 23 13 12 23 13

23 12 23 13 12 23 12 23 13 12 23 13

i

i i

i i

c c s c s e

U s c s s c e c c s s s e s c

s s c s c e s c c s s e c c

− −

− −

⎛ ⎞⎜ ⎟= − − −⎜ ⎟⎜ ⎟− − −⎝ ⎠

1 2 3

1 2 3

1 2 3

e e eN N N

N N N N

N N N

⎛ ⎞⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

The general idea………

U=

W -i

iNα≈

e

i

e

1

Page 63: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

KamLAND+CHOOZ+K2K

SNO

UNITARITY

Atmospheric + K2K

This affects oscillation probabilities …

Page 64: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

KamLAND+CHOOZ+K2K

SNO

UNITARITY

Atmospheric + K2K

This affects oscillation probabilities …

.... raw of N remains unconstrained

Page 65: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Unitarity constraints on (NN ) from:+

* Near detectors…• MINOS, NOMAD, BUGEY, KARMEN

* Weak decays…

* W decays * Invisible Z width * Universality tests * Rare lepton decays

Page 66: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Unitarity constraints on (NN ) from:+

* Near detectors…• MINOS, NOMAD, BUGEY, KARMEN

* Weak decays…

* W decays * Invisible Z width * Universality tests * Rare lepton decays

|N| is unitary at the % level

Page 67: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

All in all, as of today, for the Singlet-fermion Seesaws:

(NN+-1)α

Page 68: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

New CP-violation signals even in the two-family approximation

i.e. P ( ---> ) = P ( ---> ) _ _

Increased sensitivity to the moduli |N| in future Neutrino Factories

E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

Page 69: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Fermion-triplet seesaws:

similar - although richer! - analysis

Page 70: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Singlet and triplet Seesaws differ in the the pattern of the Z couplings

Page 71: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

@ tree level in Type III

(not in Type I)

Bounds on Yukawas type III

→eee→eee→ee→e→

Z→eZ→eZ→

→e→e→

Ma, Roy 02Bajc, Nemevsek, Senjanovic 07

Production @ colliders

For M ≈ TeV → |Y| < 10-2

+W decaysInvisible Z widthUniversality tests

Page 72: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

For the Triplet-fermion Seesaws (type III):

(NN+-1)α

Page 73: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

In summary, for all scalar and fermionic Seesaw models, present bounds:

or stronger

Page 74: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Conclusions* d= 6 operators discriminate among models of Majorana s. - we have determined them for the 3 families of Seesaw models.

Page 75: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Conclusions* d= 6 operators discriminate among models of Majorana s. - we have determined them for the 3 families of Seesaw models. * While the d=5 operator violates B-L, all d=6 ops. conserve it

--> natural ansatz: cd=5 ~/M2,

allowing M~TeV and large Yukawa couplings (even O(1)).

Page 76: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Conclusions* d= 6 operators discriminate among models of Majorana s. - we have determined them for the 3 families of Seesaw models. * While the d=5 operator violates B-L, all d=6 ops. conserve it

--> natural ansatz: cd=5 ~/M2,

allowing M~TeV and large Yukawa couplings (even O(1)). •d=6 operator crucial: if observed at low energies, only resonant leptogenesis is possible

Page 77: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Conclusions* d= 6 operators discriminate among models of Majorana s. - we have determined them for the 3 families of Seesaw models. * While the d=5 operator violates B-L, all d=6 ops. conserve it

--> natural ansatz: cd=5 ~/M2,

allowing M~TeV and large Yukawa couplings (even O(1)). •d=6 operator crucial: if observed at low energies, only resonant leptogenesis is possible

* cd=6 ~Y+Y/M2 bounded from 4-interactions + unitarity deviations

CP-asymmetry may be a clean probe of the new phases of

seesaw scenarios.

-> Keep tracking these deviations in the future. They are excellent signals of new physics.

Page 78: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Back-up slides

Page 79: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Low-energy effective theoryAfter EWSB, in the flavour basis:

( ) ( ) ( ) .....)(cos22

1 † ++−−−∂/= + chNNPZg

NPlWg

miL jijLiW

iiLiiiic

ii νγνθ

νγνννν μμα

μαμ

Mα → diagonalized → unitary transformation

Kα → diagonalized and normalized → unitary transf. + rescaling

N non-unitary

In the mass basis:

Page 80: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

A general statement…

We have unitarity violation whenever we integrate out heavy fermions:

The propagator of a scalar fieldscalar field does not contain → if it generates neutrino mass, it cannot correct the kinetic term

1/(D2-M2) ~ -1/M2 - D2/M4 + …….

...11

2+

/−−=

−/ MDi

MMDi

vv

There’s a : it connects fermionswith the same chirality → correction to the kinetic terms

It connects fermions withopposite chirality → mass term

Page 81: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

They add 4-fermion exotic operators to production or detection or propagation in matter

_ _

Page 82: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

3 generation Inverse Seesaw

and also similar extensions of the fermionic triplet Seesaw

e , , , N1, N2, N3

Abada et al.Kersten+Smirnov

Page 83: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

M(inimal) U(nitarity) V(iolation) :

( ) ( ) .....)(cos

..2

++−+−+∂/= ++ chNNPZg

chNPlWg

miL jijLiW

iiLiiiiii νγνθ

νγνννν μμα

μαμ

with only 3 light

W -i

Z

i

j

iNα≈ ( )ijNN +≈

Page 84: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

N elements from oscillations & decays

with unitarityOSCILLATIONS

without unitarityOSCILLATIONS

+DECAYS

⎟⎟⎟

⎜⎜⎜

−−−−−−

<−−=

66.031.055.019.028.004.0

67.034.053.018.027.004.0

04.037.022.077.062.02

U

3

.79 - .88 .47 -

.61 < .20 |U| = .19 - .52 .42 - .73 .58 - .82

.20 - .53 .44 - .74 .56 - .81

M. C. Gonzalez Garcia hep-ph/0410030

.75 - .89 .45 - .65 <.20 |N| = .19 - .55 .42 - .74 .57 - .82

.13 - .56 .36 - .75 .54 - .82

MUV

Antusch, Biggio, Fernández-Martínez, López-Pavón, M.B.G. 06

Page 85: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

If we parametrize

with

22

4sin)2sin(2 ⎟⎟

⎞⎜⎜⎝

⎛−≈

ELm

iP θεαα

If L/E small

Can we measure the phases of N ? E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

PMNSUN ⋅+≈ )1( ε+ε)

(1 + ε) εv2cd=6

εα

4

Page 86: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

If we parametrize

with

22

4sin)2sin(2 ⎟⎟

⎞⎜⎜⎝

⎛−≈

ELm

iP θεαα

If L/E small

Can we measure the phases of N ? E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

PMNSUN ⋅+≈ )1( ε+ε)

(1 + ε) εv2cd=6

εα

222

22 42

sin)2sin()Im(24

sin)2(sin ααα εθεθ +⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛=

ELm

ELm

P Im(εα- εα

4

Page 87: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

If we parametrize

with

22

4sin)2sin(2 ⎟⎟

⎞⎜⎜⎝

⎛−≈

ELm

iP θεαα

If L/E small

Can we measure the phases of N ? E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

PMNSUN ⋅+≈ )1( ε+ε)

(1 + ε) εv2cd=6

εα

222

22 42

sin)2sin()Im(24

sin)2(sin ααα εθεθ +⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛=

ELm

ELm

P

SM

Im(εα-

4

εα

Page 88: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

If we parametrize

with

22

4sin)2sin(2 ⎟⎟

⎞⎜⎜⎝

⎛−≈

ELm

iP θεαα

If L/E small

Can we measure the phases of N ? E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

PMNSUN ⋅+≈ )1( ε+ε)

(1 + ε) εv2cd=6

εα

222

22 42

sin)2sin()Im(24

sin)2(sin ααα εθεθ +⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛=

ELm

ELm

P

SM Zero dist. effect

Im(εα- εα

4

Page 89: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

If we parametrize

with

22

4sin)2sin(2 ⎟⎟

⎞⎜⎜⎝

⎛−≈

ELm

iP θεαα

If L/E small

Can we measure the phases of N ? E. Fdez-Martinez, J.Lopez, O. Yasuda, M.B.G.

PMNSUN ⋅+≈ )1( ε+ε)

(1 + ε) εv2cd=6

εα

222

22 42

sin)2sin()Im(24

sin)2(sin ααα εθεθ +⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟⎟⎠

⎞⎜⎜⎝

⎛=

ELm

ELm

P

SM CP violating interference

Zero dist. effect

Im(εα- εα

4

Page 90: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Measuring non-unitary phases

Present bound from →

Sensitivity to

|ε|

Sensitivity to

εFor non-trivial , one order of magnitude

improvement for |N|

Page 91: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

⎟⎟⎠

⎞⎜⎜⎝

⎛−=−

E

LmPP

2sin)2sin()Im(4

223

23θε μττμμτ

The CP phase can be measured

At a Neutrino Factory of 50 GeV with L = 130 Km

In P there is

no13sinθ 12or suppression:

ε

Page 92: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

New CP-violation signals even in the two-family approximation

i.e. P ( ---> ) = P ( ---> ) _ _

Page 93: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

New CP-violation signals even in the two-family approximation

i.e. P ( ---> ) = P ( ---> ) _ _

Page 94: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

The effects of non-unitarity…

… appear in the interactions

( )ααα+== ∑ NNN SM

iiSM

2 ( )∑ +=ij

ijSM NN2

This affects weak decays…

W -i

Z

i

j

iNα≈ ( )ijNN +≈

ααα

… and oscillation probabilities…

NN+ =

Page 95: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

( )ααα+== ∑ NNN SM

iiSM

2 ( )∑ +=ij

ijSM NN2

This affects weak decays…

Page 96: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

( )ααα+== ∑ NNN SM

iiSM

2 ( )∑ +=ij

ijSM NN2

This affects weak decays…

… and oscillation probabilities…

( ) ( ) ( )αα

α

α ††

2

*

,NNNN

NeN

LEP ii

LiPi

i∑=

Zero-distance effect at near detectors:

( ) ααα ≠∝→ ∑2

*0;i

ii NNP

Page 97: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

( )ααα+== ∑ NNN SM

iiSM

2 ( )∑ +=ij

ijSM NN2

This affects weak decays…

… and oscillation probabilities…

( ) ( ) ( )αα

α

α ††

2

*

,NNNN

NeN

LEP ii

LiPi

i∑=

Zero-distance effect at near detectors:

( ) ααα ≠∝→ ∑2

*0;i

ii NNP

W -

Matter

ee

e

u

d

NNNN

NNNN

NN

+

++

Non-Unitary Mixing Matrix

Page 98: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

W -

Matter

ee

e

u

d

NNNN

NNNN

NN

+

++

( ) ( ) ( )αα

α

α ††

2

*

,NNNN

NeN

LEP ii

LiPi

i∑=

Zero-distance effect at near detectors:

( ) ααα ≠∝→ ∑2

*0;i

ii NNP

( )( )

( )

⎟⎠

⎞⎜⎝

⎥⎥⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢⎢⎢

⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎜

−−

−−

+⎟⎠⎞

⎜⎝⎛=⎟

⎞⎜⎝

∑∑∑

∑∑

∑∑

e

iiNC

iiei

ii

iei

NCCC

iiei

iei

ii

NCi

eiNCCC

e

NVNNN

NVV

NNN

NVNVV

NE

EN

dtdi

2*

2

2

*2

2

2

1*

2

1*

00

In matter

Page 99: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Number of events

( ) ( ) )()(),()(

~ EENNLEPNNdE

EddEn SM

SM

ev εσ βββαβααα ++Φ

)()(),()(

~ EELEPdE

EddEnev ε α

αΦ∫

( )2

*,ˆ ∑=i

iLiP

i NeNLEP iβααβ

Exceptions:• measured flux• leptonic production mechanism• detection via NC

( )αααα +ΦΦ

NNdE

d

dE

d SM

~

( ) +NNSM~ produced and detected in CC

Page 100: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

N elements from oscillations: -row

( ) ( ) ( ) ( )23

2

3

2

2

2

1

4

3

22

2

2

1 cos2ˆ Δ++++≅→ μμμμμμμμ νν NNNNNNP

1. Degeneracy

2. cannot be disentangled

2

3

2

2

2

1 NNN ↔+

2

2

2

1 , NN

Atmospheric + K2K: Δ12≈0

UNITARITY

Page 101: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

N elements from oscillations: e-row

( ) ( )12

2

2

2

1

4

3

4

2

4

1 cos2ˆ Δ+++≅→ eeeeeee NNNNNP ννKamLAND:

SNO:

( ) 2

2

2

1 9.01.0ˆeeee NNP +≅→νν

→ all |Nei|2 determined

KamLAND+CHOOZ+K2K

SNO

( ) ( ) ( ) ( )23

2

3

2

2

2

1

4

3

22

2

2

1 cos2 Δ++++≅→ eeeeeeee NNNNNNP ννCHOOZ

ELmijij 22=

Page 102: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

N elements from oscillations only

with unitarityOSCILLATIONS

without unitarityOSCILLATIONS

3 .79 - .89 .47

- .61 < .20 |U| = .19 - .52 .42 - .73 .58 - .82

.20 - .53 .44 - .74 .56 - .81

M. C. Gonzalez Garcia hep-ph/0410030

.75 - .89 .45

- .66 < .34 |N| = [(|N | +|N | )1/2= 0.57-0.86] .57- .86

? ? ?

1 22 2

MUV

Page 103: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Unitarity constraints on (NN ) from:+

* Near detectors…

• KARMEN: (NN†)e 0.05

• NOMAD: (NN†)0.09 (NN†)e0.013• MINOS: (NN†)1±0.05

• BUGEY: (NN†)ee 1±0.04

* Weak decays…

Page 104: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

|N| is unitary at the % level

At 90% CL

Page 105: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

In the future…

TESTS OF UNITARITY (90%CL)

OOP P EERRAAlikelike

Page 106: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.
Page 107: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Measuring unitarity deviations

The bounds on

εε 21)1( 2† +≈+=NNAlso apply

toε

⎟⎟⎟

⎜⎜⎜

⋅<⋅<⋅<⋅<⋅<⋅<⋅<⋅<⋅<

≈−−−

−−−

−−−

333

335

353

105.2100.5100.8

100.5105.2106.3

100.8106.3105.2

ε

The constraints on εefrom → e are very strong

We will study the sensitivity to the CP violating terms

εe and ε in Pe and P

Page 108: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Measuring unitarity deviations

In Pe the CP violating term is supressed by

13sinθ 12or appart from⎟⎟⎠

⎞⎜⎜⎝

⎛E

Lme 2

sin223

τε

The zero distance term

in |εe|2 dominates

No sensitivity to the

CP phase e

Page 109: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

W -

Matter

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

ee

e

u

d

Standard

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

Page 110: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Matter

ee

e

u

d

Exotic production

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

Page 111: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

W -

Matter

e e

u

d

e

Exotic propagation

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

Page 112: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

W -

Matter

ee

e

u

d

Exotic detection

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

Page 113: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

W -

Matter

ee

e

u

d

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

W -

Matter

ee

e

u

d

Page 114: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

W -

Matter

ee

e

u

d

NNNN

NNNN

NN

+

++

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

W -

Matter

ee

e

u

d

Non-Unitary Mixing Matrix

Page 115: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Matter

e ee

u

d

Non-Unitary Mixing Matrix

Our analysis will also apply to ``non-standard” or ``exotic” neutrino interactions.

Grossman, Gonzalez-Garcia et al., Huber et al., Kitazawa et al., Davidson et al. Blennow et al...)

W -

Matter

ee

e

u

d

Page 116: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

masses beyond the SM

• radiative mechanisms: ex.) 1 loop:

Other realizations

• SUSY models with R-parity violation

• Models with large extra dimensions: i.e., R are Kaluza-Klein replicas

• …

SMRψ ⊃Dirac mass suppressed by (2R)d/2

Frigerio

Page 117: Low-energy neutrino physics Belén Gavela Universidad Autónoma de Madrid and IFT.

Quarks are detected in the final state → we can directly measure |Vab|

ex: |Vus| from K0 →- e+ e

→ Measurements of VCKM elements relies on UPMNS unitarity

Unitarity in the quark sector

With Vab we check unitarity conditions: ex: |Vud|2+|Vus|2+|Vub|2 -1 = -0.0008±0.0011

• decays → only (NN†) and (N†N)• N elements → we need oscillations• to study the unitarity of N: no assumptions on VCKM

With leptons:

uK0 -

d d

sW+

Vus*

ee+ Uei

→ ∑i|Uei|2 =1 if U unitary