Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems...

69
Low-dimensional systems and nanostructures Faculty of Physics, University of Warsaw [email protected] 1100-4INZ`LDSN

Transcript of Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems...

Page 1: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Low-dimensional systems and nanostructures

Faculty of Physics, University of Warsaw

[email protected]

1100-4INZ`LDSN

Page 2: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the lecture

2015-11-27 2

1. Introduction – semiconductor heterostructures (revison of solid state physics )2. Nanotechnology 3. Quantum wells (1)4. Quantum wells (2)5. Quantum dots, Quantum wells in 1D, 2D and 3D6. Optical transitions in nanostructures7. Work on the article about quantum dots

[TEST]8. Carriers in heterostructures9. Tunneling transport10. Quantized conductance 11. Work on the article about the tunneling or conductance12. Electric field in low-dimensional systems13. Magnetic field in low-dimensional systems14. Electric and magnetic fields in low-dimensional systems15. Revision

[Final TEST]

Page 3: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the lecture

2015-11-27 3

1. Introduction – semiconductor heterostructuresRevision of solid state physics: Born-Oppenheimer approximation, Hartree-Fock method and one electron Hamiltonian, periodic potential, Bloch states, band structure, effective mass.

2. Nanotechnology Revision of solid state physics: tight-binding approximation, Linear Combination of Atomic Orbitals (LCAO).Nanotechnology. Semiconductor heterostructures. Technology of low dimensional structures. Bandgap engineering: straddling, staggered and broken gap. Valence band offset.

3. Quantum wells (1)Infinite square quantum well. Finite square quantum well. Quantum well in heterostructures: finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin (WKB) method.Band structure in 3D, 2D. Coulomb potential in 2D

Page 4: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the lecture

2015-11-27 4

5. Quantum dots, Quantum wells in 1D, 2D and 3DQuantum wells in 1D, 2D and 3D. Quantum wires and quantum dots. Bottom-up approach for low-dimensional systems and nanostructures. Energy gap as a function of the well width.

6. Optical transitions in nanostructuresTime-dependent perturbation theory, Fermi golden rule, interband and intraband transitions in semiconductor heterostructures

7. Work on the article about quantum dotsStudents have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. Discussion.

8. Carriers in heterostructuresDensity of states of low dimensional systems. Doping of semiconductors. Heterojunction, p-n junction, metal-semiconductor junction, Schotky barrier

Page 5: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the lecture

2015-11-27 5

9. Tunneling transportContinuity equation. Potential step. Tunneling through the barrier. Transfer matrix approach. Resonant tunneling. Quantum unit of conductance.

10. Quantized conductance Quantized conductance. Coulomb blockade, one-electron transistor.

11. Work on the article about the tunneling or conductanceStudents have to read the article (Phys. Rev. Lett., Nature, Science, etc.) and answer questions. Discussion.

12. Electric field in low-dimensional systemsScalar and vector potentials. Carriers in electric field: scalar and vector potential in Schrodinger equation. Schrodinger equation with uniform electric field. Local density of states. Franz-Kieldysh effect.

Page 6: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the lecture

2015-11-27 6

13. Magnetic field in low-dimensional systemsCarriers in magnetic field. Schrodinger equation with uniform magnetic field – symmetric gauge, Landau gauge. Landau levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systemsSchrodinger equation with uniform electric and magnetic field. Hall effect. Shubnikov-de Haas effect. Quantum Hall effect. Fractional Quantum Hall Effect. Hofstadter butterfly. Fock-Darvinspectra

15. Revision Revision and preparing for the exam.

Page 7: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the exercises

2015-11-27 7

1. Introduction – semiconductor heterostructuresSchrodinger equation. Wave packet, Gaussian wavepacket .

2. Nanotechnology Tight-binding approximation: graphene bandctructure.

3. Quantum wells (1)Infinite square quantum well. Finite square quantum well. Finite square well with different effective masses in the well and barriers.

4. Quantum wells (2)Harmonic potential (parabolic well). Triangular potential. Wentzel – Krammers – Brillouin (WKB) method.

5. Double quantum wells. Quantum dots.Double quantum wells. Quantum dots (2D and 3D harmonic potential)

Page 8: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the exercises

2015-11-27 8

6. Optical transitions in nanostructuresInterband and intraband transitions in semiconductor heterostructures. Continuity equation.

7. Carriers in heterostructures (1)Transfer matrix approach. Potential step.

8. Carriers in heterostructures (2)Tunneling through the barrier.

9. Resonant tunnelingResonant tunneling.

10. Quantized conductance Quantized conductance. Coulomb blockade.

11. Local density of states Local density of states.

Page 9: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Summary of the exercises

2015-11-27 9

12. Electric field in low-dimensional systemsCarriers in electric field: scalar and vector potential in Schrodinger equation.

13. Magnetic field in low-dimensional systemsSchrodinger equation with uniform magnetic field – symmetric gauge, Landau gauge. Landau levels, degeneracy of Landau levels.

14. Electric and magnetic fields in low-dimensional systemsSchrodinger equation with uniform electric and magnetic field. Conductivity and resistivity tensors

15. Hall effect. Fock-Darvin spectrumHall effect. Fock-Darvin spectrum.

Page 10: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Assessment criteria:

2015-11-27 10

HomeworksDiscussion of scientific papersTests to check the effective use of the skills acquired during the lectureExam: final test and oral exam

Page 11: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

NANO era

2015-11-27 11

Page 12: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

NANO era

2015-11-27 12

Page 13: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

NANO era

2015-11-27 13

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics

Page 14: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Epoka NANO

2015-11-27 14

Page 15: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Motoryzacja (Hummer H2 sport utility truck) BudownictwoSamoczyszczΔ…cy siΔ™ beton

Sport

Ubrania (Nano-Tex)Kosmetyki

www.sts.utexas.edu/projects/nanomodules/

AGDSamoczyszczΔ…ca siΔ™ lodΓ³wka Samsung

Nano SilverSeal

iPod Nano

ElektronikaWyΕ›wietlacze OLED

NANO era

2015-11-27 15

Page 16: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

http://www.haruyama.co.jp/

Antiviral Business Suits Fight H1N1 Swine Flu With Science & Style

The $585 suits that went on sale today (October 8, 2009) are treated with Titanium Dioxide, a chemical compound commonly used in cosmetics and toothpaste. According to company spokes-person Junko Hirohata, TiO2 has photocatalytic properties, meaning that it when exposed to light it breaks down organic materials.

NANO era

2015-11-27 16

Page 17: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Epoka NANO

2015-11-27 17

Page 18: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

NANO era

2015-11-27 18

Chemistry Biology

Physics

NANO

Page 19: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

NANO era

2015-11-27 19

NANO

Material Engineering Electronics

Medycine

Medical diagnostics

Pharmacy

Fundamental research

Technologia chemiczna

Energetics

Chemistry Biology

Physics

Page 20: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

The uncertainty principle

2015-11-27 20

Page 21: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Band theory of solids

2015-11-27 21

conduction

valence

metal semiconductor isolator

Jak zobaczyć przerwę?

EN

ER

GIA

EL

EK

TR

ON

Γ“W

conduction

conduction

valence valence

Page 22: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Band theory of solids

2015-11-27 22

HOMO

LUMO

for molecules:

http://hyperphysics.phy-astr.gsu.edu/hbase/solids/band2.html

small distance - bands large distance - levels

Page 23: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Band theory of solids

2015-11-27 23

H. I

bac

h

H. Ibach

J. G

inte

r, H

. Ib

ach

MaΕ‚a odlegΕ‚oΕ›Δ‡ miΔ™dzy atomamipasma

DuΕΌa odlegΕ‚oΕ›Δ‡ miΔ™dzy atomamipoziomy

Page 24: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Molecules

Strong chemical bond when:β€’ Large value of overlap integral S and porportional to it HAB.β€’ Small difference between atomic orbitals Eat, A, Eat,B

Eat,B

Eat,A

e1

e2

heteronuclear diatomic molecules e.g. CO, NO, HCl, HF

HAA β‰ˆ Eat,A HBB β‰ˆ Eat,B

Assuming Eat,A < Eat,B

AatBat

BatAB

Bat

AatBat

AatAB

Aat

EE

SEHE

EE

SEHE

,,

2

,

,2

,,

2

,

,1

)(

)(

e

e

Page 25: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Band theory of solids

2015-11-27 25

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics

Page 26: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Band theory of solids

2015-11-27 26

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics

Page 27: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Theoretical description of condensed matter

Born – Oppenheimer approximation

Max Born

(1882-1970)

Jacob R. Oppenheimer

(1904-1967)

2015-11-27 27

Page 28: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Theoretical description of condensed matter

Full non-relativistic Hamiltonian of the system of nuclei and electrons:

𝐻 Τ¦π‘Ÿ, 𝑅 Ξ¨ Τ¦π‘Ÿ, 𝑅 = 𝐸Ψ Τ¦π‘Ÿ, 𝑅

𝐻 Τ¦π‘Ÿ, 𝑅

= βˆ’β„2

2π‘š

𝑖

𝛻𝑖2 βˆ’

𝑁

ℏ2

2𝑀𝑁𝛻𝑁2 βˆ’ βˆ’

1

4πœ‹νœ€0

𝑁,𝑖

𝑍𝑁𝑒2

Τ¦π‘Ÿπ‘– βˆ’ 𝑅𝑁+

+1

4πœ‹νœ€0

𝑁<𝐾

𝑍𝑁𝑍𝐾𝑒2

𝑅𝑁 βˆ’ 𝑅𝐾+

1

4πœ‹νœ€0

𝑖<𝑗

𝑒2

Τ¦π‘Ÿπ‘– βˆ’ Τ¦π‘Ÿπ‘—=

= 𝑇𝑒 + 𝑇𝑁 + 𝑉 Τ¦π‘Ÿ, 𝑅 + 𝑉𝑒 Τ¦π‘Ÿ + 𝐺 𝑅

Electron and nuclear (ions) subsystems coordinates are intermixed, separation of electronic and nuclear variables is impossible

Assumption: motion of atomic nuclei and electrons in a molecule can be separatedBorn-Oppenheimer adiabatic approximation

2015-11-27 28

Born – Oppenheimer approximation

Page 29: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

LCAO method

11/27/2015 29

The solution of the equation of electron states requires numerical methods

𝐻𝑒𝑙 Τ¦π‘Ÿ, 𝑅 Ξ¨π‘’π‘™π‘˜ Τ¦π‘Ÿ, 𝑅 = 𝑇𝑒 + 𝑉 Τ¦π‘Ÿ, 𝑅 + 𝑉𝑒 Τ¦π‘Ÿ Ψ𝑒𝑙

π‘˜ Τ¦π‘Ÿ, 𝑅 = πΈπ‘’π‘™π‘˜ 𝑅 Ψ𝑒𝑙

π‘˜ Τ¦π‘Ÿ, 𝑅

One of methods: LCAO-MO with Hartree-Fock approximation – self-consistent field method (iterative method), 𝑛-electron wave function as Slater determinant, trivially satisfies the antisymmetric property of the exact solution:

Ξ¨π‘’π‘™π‘˜ Τ¦π‘Ÿ1, Τ¦π‘Ÿ2, Τ¦π‘Ÿ3, … 𝑠1, 𝑠2, 𝑠3, … =

1

𝑛!

πœ‘1𝑠𝑝

Τ¦π‘Ÿ1, 𝑠1 πœ‘1𝑠𝑝

Τ¦π‘Ÿ2, 𝑠2

πœ‘2𝑠𝑝

Τ¦π‘Ÿ1, 𝑠1 πœ‘2𝑠𝑝

Τ¦π‘Ÿ2, 𝑠2

… πœ‘1𝑠𝑝

Τ¦π‘Ÿπ‘›, 𝑠𝑛

… πœ‘2𝑠𝑝

Τ¦π‘Ÿπ‘›, 𝑠2… …

πœ‘π‘›π‘ π‘

Τ¦π‘Ÿ1, 𝑠1 πœ‘π‘›π‘ π‘

Τ¦π‘Ÿ2, 𝑠2…

… πœ‘π‘›π‘ π‘

Τ¦π‘Ÿπ‘›, 𝑠𝑛

Each of the single-electron spin-orbital πœ‘π‘›π‘ π‘

Τ¦π‘Ÿπ‘›, 𝑠𝑛 must be different – two spin-orbital can for instance share the same orbital function, but then theirs spins are different

πœ‘π‘›π‘ π‘

Τ¦π‘Ÿπ‘›, 𝑠𝑛 = πœ‘π‘›π‘ π‘

Τ¦π‘Ÿπ‘›01

or πœ‘π‘›π‘ π‘

Τ¦π‘Ÿπ‘›10

Theoretical description of condensed matter

Page 30: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

DFT method

2015-11-27 30

Theoretical description of condensed matter

Page 31: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Opis teoretyczny materii skondensowanejHartree approximation (one-electron)

Ξ¨π‘’π‘™π‘˜ Τ¦π‘Ÿ1, Τ¦π‘Ÿ2, Τ¦π‘Ÿ3, … = πœ‘1 Τ¦π‘Ÿ1 β‹… πœ‘2 Τ¦π‘Ÿ2 β‹… πœ‘3 Τ¦π‘Ÿ3 β‹… … β‹… πœ‘π‘› Τ¦π‘Ÿπ‘›

We assume that an average potential from other ions and electrons acts on each electron:

𝑖

𝑝𝑖2

2π‘š+

𝑖

𝑉𝑖 Τ¦π‘Ÿπ‘– Ξ¨π‘’π‘™π‘˜ Τ¦π‘Ÿ1, Τ¦π‘Ÿ2, Τ¦π‘Ÿ3, … = πΈπ‘‘π‘œπ‘‘

π‘˜ Ξ¨π‘’π‘™π‘˜ Τ¦π‘Ÿ1, Τ¦π‘Ÿ2, Τ¦π‘Ÿ3, …

Thus

𝑝𝑖2

2π‘š+ 𝑉𝑖 Τ¦π‘Ÿπ‘– πœ‘π‘– Τ¦π‘Ÿπ‘– = πΈπ‘–πœ‘π‘– Τ¦π‘Ÿπ‘–

If every potential is the same 𝑉1 Τ¦π‘Ÿ1 β‰ˆ 𝑉2 Τ¦π‘Ÿ2 β‰ˆ β‹― β‰ˆ 𝑉𝑛 Τ¦π‘Ÿπ‘› β‰ˆ 𝑉 Τ¦π‘Ÿ we getOne-electron SchrΓΆdinger equation:

𝑝2

2π‘š+ 𝑉 Τ¦π‘Ÿ πœ‘π‘– Τ¦π‘Ÿπ‘– = πΈπ‘–πœ‘π‘– Τ¦π‘Ÿπ‘–

This time 𝑖 is the set of quantum numbers of one-electron quantum states πœ‘π‘– Τ¦π‘Ÿπ‘– of energies 𝐸𝑖. One-electron states are subject to the Pauli exclusion principle. A significant change in the number of electrons in a given band, leads to the change of 𝑉 Τ¦π‘Ÿand of the one –particle spectra! (for instance energy gap renormalization )

𝑖

𝐸𝑖 = πΈπ‘‘π‘œπ‘‘

2015-11-27 31

Page 32: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

11/27/2015 32

Bloch theoremAssumptions:Motionless atoms, crystal (periodic) lattice .One-electron Hartree approximation

β€žOne-electron” SchrΓΆdinger equation

Effective potential, periodic potential of the crystal lattice, the same for all electrons.

Self-consistent field method – the multi-electron issue is reduced to the solution of one-electron problem in a potential of all other electrons and atoms

or Hartree-Fock approximation (Slater determinant).

Ξ¨π‘’π‘™π‘˜ Τ¦π‘Ÿ1, Τ¦π‘Ÿ2, Τ¦π‘Ÿ3, … = πœ‘1 Τ¦π‘Ÿ1 β‹… πœ‘2 Τ¦π‘Ÿ2 β‹… πœ‘3 Τ¦π‘Ÿ3 β‹… … β‹… πœ‘π‘› Τ¦π‘Ÿπ‘›

𝑝2

2π‘š+ 𝑉 Τ¦π‘Ÿ πœ‘π‘› Τ¦π‘Ÿπ‘› = πΈπ‘›πœ‘π‘› Τ¦π‘Ÿπ‘›

𝑉 Τ¦π‘Ÿ = 𝑉 Τ¦π‘Ÿ + 𝑅

Periodic potential

Page 33: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 33

Crystal lattice:

𝑅 = 𝑛1 Τ¦π‘Ž1 + 𝑛2 Τ¦π‘Ž2 + 𝑛3 Τ¦π‘Ž3, 𝑛𝑖 ∈ β„€

For periodic functions with the lattice period 𝑅

𝑓 Τ¦π‘Ÿ = 𝑓 Τ¦π‘Ÿ + 𝑅 a good base in the Fourier series

expansion are functions 𝑔 Τ¦π‘Ÿ = exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ which depend

on the reciprocal lattice vectors:Ԧ𝐺 = π‘š1 Τ¦π‘Ž1

βˆ— +π‘š2 Τ¦π‘Ž2βˆ— +π‘š3 Τ¦π‘Ž3

βˆ— , π‘šπ‘– ∈ β„€

exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ + 𝑅 =

= exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ β‹… exp 𝑖 Ԧ𝐺𝑅 = exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ exp 2πœ‹ 𝑛1π‘š1 + 𝑛2π‘š2 + 𝑛3π‘š3 =exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ

therefore 𝑔 Τ¦π‘Ÿ = 𝑔 Τ¦π‘Ÿ + 𝑅 and finally we get:

𝑉 Τ¦π‘Ÿ =

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ

Τ¦π‘Žπ‘– Τ¦π‘Žπ‘—βˆ— = 2πœ‹π›Ώπ‘–π‘—

Bloch theorem

Periodic potential

Page 34: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 34

Periodic potenetial we can expand as a Fourier series:

𝑉 Τ¦π‘Ÿ =

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ

The wavefunction can be represented as a sum of plane waves of different wavelengths satisfying periodic boundary conditions :

πœ‘ Τ¦π‘Ÿ =

π‘˜

πΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ

SchrΓΆdinger equation:

Ƹ𝑝2

2π‘š+ 𝑉 Τ¦π‘Ÿ πœ‘ Τ¦π‘Ÿ = 𝐸 πœ‘ Τ¦π‘Ÿ

π‘˜

ℏ2π‘˜2

2π‘šπΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ +

π‘˜, Ԧ𝐺

πΆπ‘˜ 𝑉Ԧ𝐺 exp 𝑖 π‘˜ + Ԧ𝐺 Τ¦π‘Ÿ = 𝐸

π‘˜

πΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ

This is an equation for 𝐸 and πΆπ‘˜ for all vectors π‘˜, Τ¦π‘Ÿ and Ԧ𝐺.

Bloch theorem

Periodic potential

See also: Ibach, Luth β€žSolid State Physics”

Page 35: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 35

π‘˜

ℏ2π‘˜2

2π‘šπΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ +

π‘˜, Ԧ𝐺

πΆπ‘˜ 𝑉Ԧ𝐺 exp 𝑖 π‘˜ + Ԧ𝐺 Τ¦π‘Ÿ = 𝐸

π‘˜

πΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ

We get SchrΓΆdinger equation in a form:

π‘˜

exp π‘–π‘˜ Τ¦π‘Ÿβ„2π‘˜2

2π‘šβˆ’ 𝐸 πΆπ‘˜ +

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑉Ԧ𝐺 = 0

That must be met for each vector Τ¦π‘Ÿ.

The sum is over all π‘˜, Ԧ𝐺 ,therefore:

π‘˜, Ԧ𝐺

πΆπ‘˜ 𝑉Ԧ𝐺 exp 𝑖 π‘˜ + Ԧ𝐺 Τ¦π‘Ÿ = … π‘˜ + Ԧ𝐺 β†’ π‘˜β€¦

=

π‘˜, Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺 𝑉Ԧ𝐺 exp π‘–π‘˜ Τ¦π‘Ÿ

Bloch theorem

Periodic potential

Page 36: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 36

π‘˜

exp π‘–π‘˜ Τ¦π‘Ÿβ„2π‘˜2

2π‘šβˆ’ 𝐸 πΆπ‘˜ +

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑉Ԧ𝐺 = 0

for each vector Τ¦π‘Ÿ.

Thus, for each vector π‘˜ we got equation for coefficients πΆπ‘˜and 𝐸:

ℏ2π‘˜2

2π‘šβˆ’ 𝐸 πΆπ‘˜ +

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑉Ԧ𝐺 = 0

In this equation for πΆπ‘˜ also coefficients shifted by Ԧ𝐺 like πΆπ‘˜βˆ’ Ԧ𝐺1, πΆπ‘˜βˆ’ Ԧ𝐺2

, πΆπ‘˜βˆ’ Ԧ𝐺3appear

(but others do not, even when we started for any π‘˜!).

This equation couples those expansion coefficients πœ‘ Τ¦π‘Ÿ = Οƒπ‘˜πΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ , whose π‘˜ - values

differ from one another by a reciprocal lattice vector Ԧ𝐺.πΆπ‘˜1πΆπ‘˜2πΆπ‘˜2β€¦πΆπ‘˜π‘›Try to plot the mattrix of this equation

Bloch theorem

Periodic potential

Page 37: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

11/27/2015 37

ℏ2π‘˜2

2π‘šβˆ’ 𝐸 πΆπ‘˜ +

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑉Ԧ𝐺 = 0

We do not need to solve these equations for all vectors Ԧ𝐺 –we can find a solution in one unit cell of the reciprocal lattice and copy it 𝑁 times (𝑁 – number of unit cells)!

Thus we can find eigenvalues 𝐸 β†’ πΈπ‘˜ β†’ 𝐸 π‘˜ corresponding

to the wave-function πœ‘π‘˜ Τ¦π‘Ÿ represented as a superposition of

plane waves whose wave vectors π‘˜ differ only by reciprocal

lattice vectors Ԧ𝐺.

Wave vector π‘˜ is a good quantum number according to which the energy eigenvalues and quantum states may be indexed. Thus the function πœ‘ Τ¦π‘Ÿ is the superposition of πœ‘π‘˜ Τ¦π‘Ÿ of

energies 𝐸 π‘˜

πœ‘ Τ¦π‘Ÿ =

π‘˜

πΆπ‘˜ exp π‘–π‘˜ Τ¦π‘Ÿ = β‹― =

π‘˜

πœ‘π‘˜ Τ¦π‘Ÿ

(later on we introduce coefficient 𝑛 for different solutions of πΈπ‘˜ corresponding to the same π‘˜)

Bloch theorem

Periodic potential

Page 38: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 38

Wave-function which is the solution of the Schrodinger equation πœ‘π‘˜ Τ¦π‘Ÿ is represented as a superposition of plane

waves whose wave vectors π‘˜ differ only by reciprocal lattice

vectors Ԧ𝐺 and it has energies πΈπ‘˜ = 𝐸 π‘˜ :

πœ‘π‘˜ Τ¦π‘Ÿ =

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺 exp 𝑖 π‘˜ βˆ’ Ԧ𝐺 Τ¦π‘Ÿ

Each vector π‘˜ βˆ’ Ԧ𝐺 can enumerate states; it is convenient to choose the shortest vector (which belongs to the first Brillouin zone).

πœ‘π‘˜ Τ¦π‘Ÿ =

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺 𝑒𝑖 π‘˜βˆ’ Ԧ𝐺 Τ¦π‘Ÿ =

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺 π‘’βˆ’π‘– Ԧ𝐺 Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ = π‘’π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

The function π‘’π‘˜ Τ¦π‘Ÿ is a Fourier series over reciprocal lattice points Ԧ𝐺, and thus has the

periodicity of the lattice.

Bloch theorem

Periodic potential

Page 39: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 39

Bloch theorem

Periodic potential

π‘˜1 βˆ’ π‘˜2 = Ԧ𝐺

πœ‘π‘˜ Τ¦π‘Ÿ = π‘’π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

Bloch waves whose wave vectors differ by a reciprocal lattice vector are IDENTICAL!

Page 40: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 40

The solution of the one-electron SchrΓΆdinger equation for a periodic potential has a form of modulated plane wave:

𝑒𝑛,π‘˜ Τ¦π‘Ÿ = 𝑒𝑛,π‘˜ Τ¦π‘Ÿ + 𝑅

πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = 𝑒𝑛,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

We introduced coefficient 𝑛 for different solutions corresponding to the same π‘˜ (index). π‘˜-vector is an element of the first Brillouin zone.

Bloch wave,Bloch function

Bloch amplitude,Bloch envelope

𝑒𝑛,π‘˜ Τ¦π‘Ÿ =

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑒𝑖 Ԧ𝐺 Τ¦π‘Ÿ

Bloch theorem

Periodic potential

Page 41: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Bloch function has a form:

Periodic function, so-called Bloch factor

Generally non-periodic function

Example: electron in a constant potential

substituting πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = 1 π‘’π‘–π‘˜ Τ¦π‘Ÿ

The solution is

The momentum operator Ƹ𝑝 = βˆ’π‘–β„π›» acting on πœ‘π‘›,π‘˜ Τ¦π‘Ÿ

ΖΈπ‘πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = β„π‘˜ πœ‘π‘›,π‘˜ Τ¦π‘Ÿ . The solutions of the SchrΓΆdinger equation with a constant potential

are eigenfunctions of the momentum operator. The momentum is well defined, the eigenvalue

of the momentum operator is Ƹ𝑝 = β„π‘˜ (this defines the sense of π‘˜-vector).

2015-11-27 41

𝐻 = βˆ’β„2

2π‘šΞ” + 𝑉

πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = 𝑒𝑛,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

𝐸 =ℏ2π‘˜2

2π‘š+ 𝑉

Bloch theorem

Periodic potential

Page 42: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

PrzykΕ‚ad:Electron motion in a periodic potential.

Thus:

The solution is:

Applying Ƹ𝑝 = βˆ’π‘–β„π›» we get ΖΈπ‘πœ“ Τ¦π‘Ÿ = βˆ’π‘–β„ 𝑖 π‘˜ + 𝛻𝑒𝑛,π‘˜ π‘’π‘–π‘˜ Τ¦π‘Ÿ β‰  β„π‘˜πœ“ Τ¦π‘Ÿ .

Momentum of the Bloch function is not well defined!

β„π‘˜ is so-called quasi-momentum or crystal momentum.

2015-11-27 42

𝑉 Τ¦π‘Ÿ =

Ԧ𝐺

𝑉Ԧ𝐺 exp 𝑖 Ԧ𝐺 Τ¦π‘Ÿ

πœ“π‘›,π‘˜ Τ¦π‘Ÿ = 𝑒𝑛,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

𝑒𝑛,π‘˜ Τ¦π‘Ÿ =

Ԧ𝐺

πΆπ‘˜βˆ’ Ԧ𝐺𝑒𝑖 Ԧ𝐺 Τ¦π‘Ÿ

Bloch theorem

Periodic potential

Page 43: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

ΖΈπ‘πœ“ Τ¦π‘Ÿ = βˆ’π‘–β„ 𝑖 π‘˜ + 𝛻𝑒𝑛,π‘˜ π‘’π‘–π‘˜ Τ¦π‘Ÿ β‰  β„π‘˜πœ“ Τ¦π‘Ÿ .

β„π‘˜ is so-called quasi-momentum or crystal momentum.

If we consider interactions with other quasi-particles (electrons, phonons, magnons etc.) existing in the crystal and real particles penetrating through the crystal (e.g. photons, neutron) the momentum conservation law must be replaced by the quasi-momentum conservation law :

𝑖

β„π‘˜π‘– +

𝑖

Ԧ𝑝𝑖 =

𝑖

β„π‘˜π‘–β€² +

𝑖

Ԧ𝑝𝑖′ + ℏ Ԧ𝐺

The energy conservation is always the same:

𝑖

𝐸𝑖 =

𝑖

𝐸𝑖′

2015-11-27 43

Bloch theorem

Periodic potential

Page 44: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

kΒ·p perturbation theory – effective mass

2015-11-27 44

πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = π‘’π‘–π‘˜ Τ¦π‘Ÿπ‘’π‘›,π‘˜ Τ¦π‘Ÿ

π‘˜-vector is not the momentum (momentum operator Ƹ𝑝 = βˆ’π‘–β„π›»)

ΖΈπ‘πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = βˆ’π‘–β„ π‘–π‘˜ + 𝛻𝑒𝑛,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ β‰  β„π‘˜πœ‘π‘›,π‘˜ Τ¦π‘Ÿ

Bloch function in the SchrΓΆdinger equation:

Ξ”πœ‘π‘›,π‘˜ Τ¦π‘Ÿ = β‹― = Δ𝑒𝑛,π‘˜ Τ¦π‘Ÿ + 2π‘–π‘˜π›»π‘’π‘›,π‘˜ Τ¦π‘Ÿ βˆ’ π‘˜2𝑒𝑛,π‘˜ Τ¦π‘Ÿ π‘’π‘–π‘˜ Τ¦π‘Ÿ

By substitution of this expression and simplification by π‘’π‘–π‘˜ Τ¦π‘Ÿ we got equation for 𝑒𝑛,π‘˜ Τ¦π‘Ÿ :

βˆ’β„2

2π‘šΞ” βˆ’

ℏ

π‘šπ‘–π‘˜π›» +

ℏ2

2π‘šπ‘˜2 𝑒𝑛,π‘˜ Τ¦π‘Ÿ =

Ƹ𝑝2

2π‘š+ℏ

π‘šπ‘˜ Ƹ𝑝 +

ℏ2π‘˜2

2π‘šπ‘’π‘›,π‘˜ Τ¦π‘Ÿ

The Schrodinger equation for the envelope 𝑒𝑛,π‘˜ Τ¦π‘Ÿ :

Ƹ𝑝2

2π‘š+ℏ

π‘šπ‘˜ Ƹ𝑝 + 𝑉 Τ¦π‘Ÿ 𝑒𝑛,π‘˜ Τ¦π‘Ÿ = 𝐸𝑛 βˆ’

ℏ2π‘˜2

2π‘šπ‘’π‘›,π‘˜ Τ¦π‘Ÿ

Page 45: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 45

The Schrodinger equation for the envelope 𝑒𝑛,π‘˜ Τ¦π‘Ÿ :

Ƹ𝑝2

2π‘š+ℏ

π‘šπ‘˜ Ƹ𝑝 + 𝑉 Τ¦π‘Ÿ 𝑒𝑛,π‘˜ Τ¦π‘Ÿ = 𝐸 βˆ’

ℏ2π‘˜2

2π‘šπ‘’π‘›,π‘˜ Τ¦π‘Ÿ

This is so-called π’Œπ’‘ perturbation theory used for the calculations of the energies and

wavefunctions at some π‘˜ = π‘˜0.

The full Hamiltonian

π»π‘˜π‘’π‘›,π‘˜ Τ¦π‘Ÿ = π»π‘˜0+ 𝐻′ 𝑒𝑛,π‘˜ Τ¦π‘Ÿ = 𝐸𝑛 π‘˜ 𝑒𝑛,π‘˜ Τ¦π‘Ÿ

Perturbation:

𝐻′ =ℏ

π‘šπ‘˜ βˆ’ π‘˜0 Ƹ𝑝

By the perturbation theory we find the function 𝑒𝑛,π‘˜ Τ¦π‘Ÿ and the energy 𝐸𝑛 π‘˜ .

kΒ·p perturbation theory – effective mass

Page 46: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 46

Landolt-Boernstein

Expanding 𝐸𝑛 π‘˜ = 𝐸𝑛 βˆ’β„2π‘˜2

2π‘šaround an extreme point, e.g. π‘˜ = 0:

close bands

kΒ·p perturbation theory – effective mass

Page 47: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 47

We expand 𝐸𝑛 π‘˜ = 𝐸𝑛 βˆ’β„2π‘˜2

2π‘šaround an extreme point, e.g. π‘˜ = 0:

𝐸𝑛 π‘˜ = 𝐸𝑛 0 + 𝐻𝑛𝑛′ +

𝑙≠𝑛

𝐻𝑛𝑙′ 2

𝐸𝑛 0 βˆ’ 𝐸𝑙 0+β‹―

For

𝐻𝑛𝑙′ = ࢱ𝑒𝑛,0 Τ¦π‘Ÿ 𝐻′ 𝑒𝑙,0 Τ¦π‘Ÿ 𝑑3π‘Ÿ = βˆ’

𝑖ℏ

π‘šπ‘˜ΰΆ±π‘’π‘›,0 Τ¦π‘Ÿ 𝛻𝑒𝑙,0 Τ¦π‘Ÿ 𝑑3π‘Ÿ =

𝑖=1

3

π‘Žπ‘–π‘˜π‘–

𝐸𝑛 π‘˜ = 𝐸𝑛 0 +

𝑖=1

3

π‘Žπ‘–π‘˜π‘– +

𝑖=1

3

𝑗=1

3ℏ2

2π‘šπ›Ώπ‘–π‘— + 𝑏𝑖𝑗 π‘˜π‘–π‘˜π‘— +β‹―

Linear in π‘˜

the linear terms in extremum vanish

𝐸𝑛 π‘˜ = 𝐸𝑛 0 +

𝑖=1

3

𝑗=1

31

π‘šβˆ—

ℏ2π‘˜π‘–π‘˜π‘—

2+ β‹―

kΒ·p perturbation theory – effective mass

Page 48: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 48

𝐸𝑛 π‘˜ = 𝐸𝑛 0 +

𝑖=1

3

𝑗=1

31

π‘šπ‘–π‘—βˆ—

ℏ2π‘˜π‘–π‘˜π‘—

2+ β‹―

The inverse effective-mass tensor:

1

π‘šπ‘–π‘—βˆ— =

𝛿𝑖𝑗

π‘š+2ℏ2

π‘š2

𝑙≠𝑛

𝑒𝑛,0πœ•πœ•π‘₯𝑖

𝑒𝑙,0 𝑑3π‘Ÿ β‹… 𝑒𝑛,0

πœ•πœ•π‘₯𝑗

𝑒𝑙,0 𝑑3π‘Ÿ

𝐸𝑛 0 βˆ’ 𝐸𝑙 0

This tensor is symmetric (π‘šπ‘–π‘— = π‘šπ‘—π‘–). If the energy extremum is in G(k=0) we obtain constant

energy ellipsoid in π‘˜-space, with principal axis 1

π‘šπ‘–:

𝐸𝑛 π‘˜ β‰ˆ 𝐸𝑛 0 +ℏ2

2

π‘˜12

π‘š1βˆ— +

π‘˜22

π‘š2βˆ— +

π‘˜32

π‘š3βˆ—

where π‘šπ‘–βˆ— are the inertial effective masses along these different axes.

kΒ·p perturbation theory – effective mass

Page 49: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

The energy En(k) around extremum for the uniaxial crystal (np. GaN):

Around the extremum (e.g. point G(k=0)) we can restrict the solution to approximate parabolic band

For a cubic crystal:

so-called spherical band

In general, depending on the wave vector, also higher order perturbation terms exist. The energy of the electron generally depends on k=(k1,k2,k3). The energy isosurface can be very complex, and its shape depends on all bands.

2015-11-27 49

𝐸𝑛 π‘˜ = 𝐸𝑛 0 +ℏ2

2

π‘˜12 + π‘˜2

2

π‘šβŠ₯βˆ— +

π‘˜32

π‘šβˆ₯βˆ—

𝐸𝑛 π‘˜ = 𝐸𝑛 0 +ℏ2π‘˜2

2π‘šβˆ—

kΒ·p perturbation theory – effective mass

Page 50: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

The energy En(k) around extremum

R. StΔ™pniewski

2015-11-27 50

Non-parabolic band

Non-spherical band

kΒ·p perturbation theory – effective mass

Page 51: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

The band theory of solids

Examples:

D. Wasik.

2015-11-27 51

kΒ·p perturbation theory – effective mass

Page 52: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

The band theory of solids.

2015-11-27 52

Page 53: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Energy bands

2015-11-27 53

Examples:

E

kEg

G

The band theory of solids

Page 54: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

The band theory of solids.

2015-11-27 54

https://nanohub.org/resources/10751

Page 55: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 55

Energy bands

Page 56: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Energy bands

2015-11-27 56

Examples:

D. Wasik.

The band theory of solids

Page 57: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Energy bands

2015-11-27 57

Opto-electronics requires direct gap materials.

Page 58: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Infinite well – particle in the box

2015-11-27 58

πœ“ π‘₯, 𝑑 =2

𝐿sin π‘˜π‘›π‘₯ π‘’βˆ’π‘–πœ”π‘‘

Inside the quantum well :

π‘˜π‘› =π‘›πœ‹

𝐿

νœ€π‘› =ℏ2π‘˜π‘›

2

2π‘š=ℏ2𝑛2πœ‹2

2π‘šπΏ2

Page 59: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Infinite well

2015-11-27 59

πœ“ π‘₯, 𝑑 =2

𝐿sin π‘˜π‘›π‘₯ π‘’βˆ’π‘–πœ”π‘‘

Inside the quantum well :

π‘˜π‘› =π‘›πœ‹

𝐿

νœ€π‘› =ℏ2π‘˜π‘›

2

2π‘š=ℏ2𝑛2πœ‹2

2π‘šπΏ2

Page 60: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Infinite well

2015-11-27 60

πœ“ π‘₯, 𝑑 =2

𝐿sin π‘˜π‘›π‘₯ π‘’βˆ’π‘–πœ”π‘‘

Inside the quantum well :

νœ€π‘› = 𝐸𝑐 +ℏ2π‘˜π‘›

2

2π‘š= 𝐸𝑐 +

ℏ2𝑛2πœ‹2

2π‘š0π‘šβˆ—πΏ2

π‘˜π‘› =π‘›πœ‹

𝐿

𝐸𝑐

νœ€1 = 𝐸𝑔 +ℏ2πœ‹2

2π‘š0π‘šβˆ—πΏ2

νœ€2 = 𝐸𝑐 +2ℏ2πœ‹2

π‘š0π‘šβˆ—πΏ2

νœ€3 = 𝐸𝑐 +9ℏ2πœ‹2

2π‘š0π‘šβˆ—πΏ2

Page 61: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Infinite well

2015-11-27 61

πœ“ π‘₯, 𝑑 =2

𝐿sin π‘˜π‘›π‘₯ π‘’βˆ’π‘–πœ”π‘‘

WewnΔ…trz studni:

νœ€π‘› = 𝐸𝑣 +ℏ2π‘˜π‘›

2

2π‘š= 𝐸𝑣 βˆ’

ℏ2𝑛2πœ‹2

2π‘š0π‘šβˆ—πΏ2

π‘˜π‘› =π‘›πœ‹

𝐿

πΈπ‘£νœ€1 = 𝐸𝑣 βˆ’

ℏ2πœ‹2

2π‘š0π‘šβˆ—πΏ2

νœ€2 = 𝐸𝑣 βˆ’2ℏ2πœ‹2

π‘š0π‘šβˆ—πΏ2

νœ€3 = 𝐸𝑣 βˆ’9ℏ2πœ‹2

2π‘š0π‘šβˆ—πΏ2

Page 62: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Infinite well

2015-11-27 62

WewnΔ…trz studni:

π‘˜π‘› =π‘›πœ‹

πΏπœ“ 𝑧, 𝑑 = α‰Šsin π‘˜π‘›π‘§

cos π‘˜π‘›π‘§π‘’βˆ’π‘–πœ”π‘‘

βˆ’π‘Ž

2< 𝑧 <

π‘Ž

2

βˆ’β„2

2π‘š

𝑑2

𝑑𝑧2πœ“ 𝑧 + V0 z πœ“ 𝑧 = νœ€πœ“ 𝑧

νœ€ < 𝑉0

πœ“ 𝑧 = 𝐷 exp(Β±πœ…π‘§)

ℏ2πœ…2

2π‘š= 𝑉0 βˆ’ νœ€ = 𝐡

Page 63: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Finite well

2015-11-27 63

WewnΔ…trz studni:

Page 64: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Energy bands

2015-11-27 64

Examples:

E

kEg

G

The band theory of solids

Page 65: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Electrones and holes

Quite often it is more conveninent to know the Density of States - number of states in the range of the energies (E, E+d E). For the spherical and parabolic energy band:

kx

ky

kx

-1 -0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

Energia (eV)

Gesto

sc s

tanΓ³w

2D case

2015-11-27 65

Density of states (DOS)

Page 66: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Optical transitions

2015-11-27 66

Page 67: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Semiconductor heterostructures

2015-11-27 67

Page 68: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

Bandgap engineering

2015-11-27 68

How can we change the heterostructures’ band structure:β€’ By choosing the material (np. GaAs/AlAs)β€’ By the control of the composition (binary, ternary, quaternary, quiternary alloys)β€’ By the control of the tension

Page 69: Low-dimensional systems and nanostructuresszczytko/LDSN/1_LDSN_2015_Bloch.pdflow-dimensional systems and nanostructures. Energy gap as a function of the well width. 6. Optical transitions

2015-11-27 69