Long-term assessment and recalibration of FY-1/3 VIRR and...

1
Long-term assessment and recalibration of FY-1/3 VIRR and MERSI reflective solar bands Ling SUN, Hong QIU, Lin CHEN, Liyang ZHANG, Di XIAN, Na XU, Xiuqing HU, Peng ZHANG National Satellite Meteorological Center, China Meteorological Administration, Beijing, China [email protected] The Medium Resolution Spectral Imager (MERSI) and Visible Infrared Radiometer (VIRR) are two major multi-spectral imaging instruments onboard the second generation polar orbiting meteorological satellite Fengyun-3 (FY-3) in China. The VIRR is inherited from Multispectral Visible Infrared Scanning Radiometer (MVISR) of the first generation polar orbiting meteorological satellite (FY-1). The Fengyun satellite historical dataset reprocessing project carried out the task of FY-1/3 VIRR and MERSI reprocessing to generate the long time series data record. The on-orbit radiometric response changes of FY-1C/D VIRR, FY-3A/B/C VIRR and FY-3A/B MERSI reflective solar bands are derived using stable target tracking such as desert, ocean and cloud. The long-term radiometric quality is evaluated using multisite calibration tracking (MST), deep convective cloud (DCC) and simultaneous nadir overpass (SNO) methods. The dataset is re- calibrated mainly using the daily coefficients derived by MST. It shows that the long-term varying of sensor radiometric response is corrected and the radiometric stability is improved. INTRODUCTION METHOD DATA Acknowledgement: The research is supported by National Key R&D Program of China (No. 2018YFB0504900, 2018YFB0504905). Evaluation: 1. Comparison with radiometric references: radiometric references : PICs (desert/ocean/DCC), reference instrument(SNO). 2. Find instrumental characteristics. Re-calibration: 1. Correction for the response time variation: MST trending model. 2. Correction for other potential issues: stray light, nonlinearity, temperature dependence. 3. Correction for the radiometric bias : MODISFY-3FY-1. RESULTS Band CW (m) BW (m) IFOV (m) NEρor NET Dynamic Range (ρ or T) 1 0.470 0.05 250 0.3% 100% 2 0.550 0.05 250 0.3% 100% 3 0.650 0.05 250 0.3% 100% 4 0.865 0.05 250 0.3% 100% 5 11.25 2.5 250 0.54K 330K 6 1.640 0.05 1000 0.08% 90% 7 2.130 0.05 1000 0.07% 90% 8 0.412 0.02 1000 0.1% 80% 9 0.443 0.02 1000 0.1% 80% 10 0.490 0.02 1000 0.05% 80% 11 0.520 0.02 1000 0.05% 80% 12 0.565 0.02 1000 0.05% 80% 13 0.650 0.02 1000 0.05% 80% 14 0.685 0.02 1000 0.05% 80% 15 0.765 0.02 1000 0.05% 80% 16 0.865 0.02 1000 0.05% 80% 17 0.905 0.02 1000 0.10% 90% 18 0.940 0.02 1000 0.10% 90% 19 0.980 0.02 1000 0.10% 90% 20 1.030 0.02 1000 0.10% 90% CW: Central wavelengths; . BW: Bandwidths; IFOV: Instantaneous field of view (nadir). 1 / Ref R R PDif Mea VIRR and MERSI are both cross-track scanning radiometer. FY-1A/B/C/D were launched on Sept. 7, 1988, Sept. 3, 1990, May 10, 1999, and May 15, 2002, respectively. FY-3A/B/C were launched on May 27, 2008, Nov. 5, 2010, and Sept. 23, 2013,respectively. Table 2 FY-3A/B/C MERSI spectral specification. Sensor Normalized Response Sensor response was derived using MST and DCC methods. For VIRR, it showed faster attenuation at smaller wavelength and obvious seasonal variation at 865nm. For MERSI, it showed large degradation at short wavelength and 1030nm. For both VIRR and MERSI, there was larger seasonal change for FY-3B. Figure 3 Normalized response of FY-3A/B/C VIRR using MST method Calibration Performance The dataset is re-calibrated using the daily coefficients derived by MST. The re- calibrated TOA reflectance was evaluated using SNO and stable targets. The lifetime stability and inter-platform consistency were improved. Figure 6 PDif of operational and re-calibrated L1 TOA reflectance at desert targets Figure 5 Normalized response of FY-1D VIRR, FY-3 VIRR & MERSI using MST method Ban d. FY-1A/B VIRR-1 FY-1C/D VIRR-2 Dyna mic FY-3A/B/C VIRR-3 Dynam ic 1 0.58-0.68 0.58-0.68 90% 0.58-0.68 100% 2 0.725-1.10 0.84-0.89 90% 0.84-0.89 100% 3 0.43-0.53 3.55-3.95 3.55-3.95 4 0.53-0.58 10.3-11.3 10.3-11.3 5 10.5-12.5 11.5-12.5 11.5-12.5 6 1.56-1.64 80% 1.56-1.64 90% 7 0.43-0.48 50% 0.43-0.48 50% 8 0.48-0.53 50% 0.48-0.53 50% 9 0.53-0.58 50% 0.53-0.58 50% 10 0.900-0.960 90% 1.325-1.395 90% Table 1 FY-1/3 VIRR spectral specification. Figure 2 Time range of FY-1/3 dataset. Figure 1 Fixed site positions of PICs. 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 0.6 0.8 1 2008 2009 2010 2011 2012 2013 2014 Date Normalized Response FY-3A VIRRX B01 B02 B06 B07 B08 B09 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 0.6 0.8 1 2014 2015 2016 2017 2018 Date Normalized Response FY-3C VIRRX B01 B02 B06 B07 B08 B09 12 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 0.7 0.8 0.9 1 1.1 2010 2011 2012 2013 2014 2015 2016 2017 2018 Date Normalized Response FY-3B MERSI 12 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 0.6 0.7 0.8 0.9 1 1.1 20102011 2012 2013 2014 2015 2016 2017 2018 Normalized Response FY-3B MERSI B03 B04 B13 B14 B15 B16 B01 B02 B08 B09 B10 B11 B12 B20 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 0.7 0.8 0.9 1 1.1 2008 2009 2010 2011 2012 2013 2014 2015 Date Normalized Response FY-3A MERSI B03 B04 B13 B14 B15 B16 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 0.4 0.6 0.8 1 2008 2009 2010 2011 2012 2013 2014 Date Normalized Response FY-3A MERSI B01 B02 B08 B09 B10 B11 B12 B20 12 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 0.6 0.8 1 2010 2011 2012 2013 2014 2015 2016 2017 2018 Date Normalized Response FY-3B VIRR B01 B02 B06 B07 B08 B09 Figure 4 Normalized response of FY-3A/B MERSI using MST method 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 0.6 0.7 0.8 0.9 1 1.1 Date Normalized Response VIRRXMERSI VIRR B2 865nm MERSI B4 865nm FY-1D VIRR FY-3A VIRR FY-3B VIRR FY-3C VIRR FY-3A MERSI FY-3B MERSI FY-3D MERSI 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 PDif Mean VIRR B2 MERSI B4 865nm FY-1C VIRR FY-1D VIRR FY-3A VIRR FY-3B VIRR FY-3C VIRR FY-3A MERSI FY-3B MERSI 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 Date PDif Mean VIRR B2 MERSI B4 865nm FY-1D VIRR FY-3A VIRR FY-3B VIRR FY-3C VIRR FY-3A MERSI FY-3B MERSI Re-processed V1 Operational 0.63 μm Operational DCC Ref 0.63 μm Re-processed V1 DCC Ref SUMMARY Vicarious methods are used to evaluate the FY-1/3 VIRR &MERSI RSB data performance and correct the time variation of instrument response. The data performance could be improved after re-calibration simply using the MST trending result, while the absolute accuracy may be improved. The time factor in re-calibration model needs to be adjusted , especially for the early phase in orbit and blue bands. The seasonal features in normalized response and PDif time series reveal unresolved issues related to instrumental characteristics, such as stray light, nonlinearity, temperature dependence, etc. Result differences between MST, DCC , SNO need be investigated to obtain consistency. Figure 7 TOA reflectance of operational and re-calibrated L1 at DCC targets Figure 8 Lifetime TOA reflectance histogram, reflectance and PDif time series of re-calibrated L1 at SNO targets against Aqua/MODIS

Transcript of Long-term assessment and recalibration of FY-1/3 VIRR and...

Page 1: Long-term assessment and recalibration of FY-1/3 VIRR and ...cimss.ssec.wisc.edu/itwg/itsc/itsc22/posters/2p.13.sun.pdf · The VIRR is inherited from Multispectral Visible Infrared

Long-term assessment and recalibration of FY-1/3 VIRR and MERSI reflective solar bands

Ling SUN, Hong QIU, Lin CHEN, Liyang ZHANG, Di XIAN, Na XU, Xiuqing HU, Peng ZHANG

National Satellite Meteorological Center, China Meteorological Administration, Beijing, China

[email protected]

The Medium Resolution Spectral Imager (MERSI) and Visible Infrared Radiometer (VIRR) are two major multi-spectral

imaging instruments onboard the second generation polar orbiting meteorological satellite Fengyun-3 (FY-3) in China.

The VIRR is inherited from Multispectral Visible Infrared Scanning Radiometer (MVISR) of the first generation polar

orbiting meteorological satellite (FY-1). The Fengyun satellite historical dataset reprocessing project carried out the task

of FY-1/3 VIRR and MERSI reprocessing to generate the long time series data record. The on-orbit radiometric response

changes of FY-1C/D VIRR, FY-3A/B/C VIRR and FY-3A/B MERSI reflective solar bands are derived using stable target

tracking such as desert, ocean and cloud. The long-term radiometric quality is evaluated using multisite calibration

tracking (MST), deep convective cloud (DCC) and simultaneous nadir overpass (SNO) methods. The dataset is re-

calibrated mainly using the daily coefficients derived by MST. It shows that the long-term varying of sensor radiometric

response is corrected and the radiometric stability is improved.

INTRODUCTION

METHOD

DATA

Acknowledgement: The research is supported by National Key R&D Program of China (No. 2018YFB0504900, 2018YFB0504905).

• Evaluation:

1. Comparison with radiometric references: radiometric references : PICs (desert/ocean/DCC), reference

instrument(SNO).

2. Find instrumental characteristics.

• Re-calibration:

1. Correction for the response time variation: MST trending model.

2. Correction for other potential issues: stray light, nonlinearity,

temperature dependence.

3. Correction for the radiometric bias : MODISFY-3FY-1.

RESULTS

Band CW

(m) BW

(m) IFOV (m)

NEρor NET

Dynamic Range (ρ or T)

1 0.470 0.05 250 0.3% 100% 2 0.550 0.05 250 0.3% 100% 3 0.650 0.05 250 0.3% 100%

4 0.865 0.05 250 0.3% 100% 5 11.25 2.5 250 0.54K 330K 6 1.640 0.05 1000 0.08% 90% 7 2.130 0.05 1000 0.07% 90% 8 0.412 0.02 1000 0.1% 80% 9 0.443 0.02 1000 0.1% 80%

10 0.490 0.02 1000 0.05% 80% 11 0.520 0.02 1000 0.05% 80% 12 0.565 0.02 1000 0.05% 80% 13 0.650 0.02 1000 0.05% 80% 14 0.685 0.02 1000 0.05% 80% 15 0.765 0.02 1000 0.05% 80% 16 0.865 0.02 1000 0.05% 80% 17 0.905 0.02 1000 0.10% 90% 18 0.940 0.02 1000 0.10% 90% 19 0.980 0.02 1000 0.10% 90% 20 1.030 0.02 1000 0.10% 90%

CW: Central wavelengths; . BW: Bandwidths; IFOV: Instantaneous field of view (nadir).

1/ Ref RRPDif Mea

VIRR and MERSI are both cross-track scanning radiometer. FY-1A/B/C/D were launched on

Sept. 7, 1988, Sept. 3, 1990, May 10, 1999, and May 15, 2002, respectively. FY-3A/B/C were

launched on May 27, 2008, Nov. 5, 2010, and Sept. 23, 2013,respectively.

Table 2 FY-3A/B/C MERSI spectral specification.

• Sensor Normalized Response Sensor response was derived using MST and DCC methods. For VIRR, it showed faster attenuation at smaller wavelength and obvious seasonal variation at 865nm. For MERSI, it showed large degradation at short wavelength and 1030nm. For both VIRR and MERSI, there was larger seasonal change for FY-3B.

Figure 3 Normalized response of FY-3A/B/C VIRR using MST method

• Calibration Performance The dataset is re-calibrated using the daily coefficients derived by MST. The re-calibrated TOA reflectance was evaluated using SNO and stable targets. The lifetime stability and inter-platform consistency were improved.

Figure 6 PDif of operational and re-calibrated L1 TOA reflectance at desert targets

Figure 5 Normalized response of FY-1D VIRR, FY-3 VIRR & MERSI using MST method

Ban

d.

FY-1A/B

VIRR-1

FY-1C/D

VIRR-2

Dyna

mic

FY-3A/B/C

VIRR-3

Dynam

ic

1 0.58-0.68 0.58-0.68 90% 0.58-0.68 100%

2 0.725-1.10 0.84-0.89 90% 0.84-0.89 100%

3 0.43-0.53 3.55-3.95 3.55-3.95

4 0.53-0.58 10.3-11.3 10.3-11.3

5 10.5-12.5 11.5-12.5 11.5-12.5

6 1.56-1.64 80% 1.56-1.64 90%

7 0.43-0.48 50% 0.43-0.48 50%

8 0.48-0.53 50% 0.48-0.53 50%

9 0.53-0.58 50% 0.53-0.58 50%

10 0.900-0.960 90% 1.325-1.395 90%

Table 1 FY-1/3 VIRR spectral specification.

Figure 2 Time range of FY-1/3 dataset.

Figure 1 Fixed site positions of PICs.

7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1

0.6

0.8

1

2008 2009 2010 2011 2012 2013 2014

Date

No

rm

alized

R

esp

on

se

FY-3A VIRRX

7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1

0.6

0.8

1

1.2

2008 2009 2010 2011 2012 2013 2014

Date

No

rm

alized

R

esp

on

se

FY-3A VIRRX

B01

B02

B06

B07

B08

B09

B10

11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

0.6

0.8

1

2014 2015 2016 2017 2018

Date

No

rm

alized

R

esp

on

se

FY-3C VIRRX

11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 110.7

0.8

0.9

1

1.1

2014 2015 2016 2017 2018

Date

No

rm

alized

R

esp

on

se

FY-3C VIRRX

B01

B02

B06

B07

B08

B09

B10

1213579111357 91113 5791113579111357911135791113579111357 9110.7

0.8

0.9

1

1.1

2010 2011 2012 2013 2014 2015 2016 2017 2018

Date

No

rmal

ized

Res

po

nse

FY-3B MERSI

1213579111357 91113 5791113579111357911135791113579111357 9110.6

0.7

0.8

0.9

1

1.1

20102011 2012 2013 2014 2015 2016 2017 2018

Date

No

rmal

ized

Res

po

nse

FY-3B MERSI

1213579111357 91113 5791113579111357911135791113579111357 9110.7

0.8

0.9

1

1.1

20102011 2012 2013 2014 2015 2016 2017 2018

Date

No

rmal

ized

Res

po

nse

FY-3B MERSI

1213579111357 91113 5791113579111357911135791113579111357 9110.7

0.8

0.9

1

1.1

20102011 2012 2013 2014 2015 2016 2017 2018

Date

No

rmal

ized

Res

po

nse

FY-3B MERSI

B03

B04

B13

B14

B15

B16

B01

B02

B08

B09

B10

B11

B12

B20

B06

B07

B17

B19

79111357 91113 57911135 79111357 91113 57911135 79110.7

0.8

0.9

1

1.1

2008 2009 2010 2011 2012 2013 2014 2015

Date

Nor

mal

ized

Res

pons

e FY-3A MERSI

79111357 91113 57911135 79111357 91113 57911135 79110.4

0.6

0.8

1

2008 2009 2010 2011 2012 2013 2014

Date

Nor

mal

ized

Res

pons

e

FY-3A MERSI

79111357 91113 57911135 79111357 91113 57911135 79110.7

0.8

0.9

1

1.1

2008 2009 2010 2011 2012 2013 2014

Date

Nor

mal

ized

Res

pons

e FY-3A MERSI

79111357 91113 57911135 79111357 91113 57911135 79110.7

0.8

0.9

1

1.1

2008 2009 2010 2011 2012 2013 2014

Date

Nor

mal

ized

Res

pons

e FY-3A MERSI

B03

B04

B13

B14

B15

B16

B01

B02

B08

B09

B10

B11

B12

B20

B06

B07

B17

B19

79111357 91113 57911135 79111357 91113 57911135 79110.7

0.8

0.9

1

1.1

2008 2009 2010 2011 2012 2013 2014 2015

Date

Nor

mal

ized

Res

pons

e FY-3A MERSI

79111357 91113 57911135 79111357 91113 57911135 79110.4

0.6

0.8

1

2008 2009 2010 2011 2012 2013 2014

Date

Nor

mal

ized

Res

pons

e

FY-3A MERSI

79111357 91113 57911135 79111357 91113 57911135 79110.7

0.8

0.9

1

1.1

2008 2009 2010 2011 2012 2013 2014

Date

Nor

mal

ized

Res

pons

e FY-3A MERSI

79111357 91113 57911135 79111357 91113 57911135 79110.7

0.8

0.9

1

1.1

2008 2009 2010 2011 2012 2013 2014

Date

Nor

mal

ized

Res

pons

e FY-3A MERSI

B03

B04

B13

B14

B15

B16

B01

B02

B08

B09

B10

B11

B12

B20

B06

B07

B17

B19

121 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

0.6

0.8

1

2010 2011 2012 2013 2014 2015 2016 2017 2018

Date

No

rm

alized

R

esp

on

se

FY-3B VIRR

121 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11 1 3 5 7 9 11

0.6

0.8

1

1.2

2010 2011 2012 2013 2014 2015 2016 2017 2018

Date

No

rm

alized

R

esp

on

se

FY-3B VIRRX

B01

B02

B06

B07

B08

B09

B10

Figure 4 Normalized response of FY-3A/B MERSI using MST method

20002001200220032004200520062007200820092010201120122013201420152016 2017201820190.6

0.7

0.8

0.9

1

1.1

Date

No

rmal

ized

Res

po

nse

VIRRXMERSI VIRR B2 865nm MERSI B4 865nm

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

FY-3B MERSI

FY-3D MERSI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018-0.4

-0.35-0.3

-0.25-0.2

-0.15-0.1

-0.050

0.050.1

0.150.2

Date

PD

if

VIRRMERSI VB2

FY-1C VIRR

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

FY-3B MERSI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018-0.5

-0.45-0.4

-0.35-0.3

-0.25-0.2

-0.15-0.1

-0.050

0.050.1

0.150.2

Date

PD

if M

ean

VIRR B2 MERSI B4 865nm

FY-1C VIRR

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

FY-3B MERSI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20180

0.05

0.1

0.15

0.2

0.25

0.3

Date

PD

if S

td

VIRRMERSI VB2

FY-1C VIRR

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018-0.4

-0.35-0.3

-0.25-0.2

-0.15-0.1

-0.050

0.050.1

0.150.2

Date

PD

if

VIRRMERSI VB2

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

FY-3B MERSI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018-0.4

-0.35-0.3

-0.25-0.2

-0.15-0.1

-0.050

0.050.1

0.150.2

Date

PD

if M

ean

VIRR B2 MERSI B4 865nm

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

FY-3B MERSI

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 20180

0.05

0.1

0.15

0.2

0.25

0.3

Date

PD

if S

td

VIRRMERSI VB2

FY-1D VIRR

FY-3A VIRR

FY-3B VIRR

FY-3C VIRR

FY-3A MERSI

FY-3B MERSI

Re-processed V1

Operational

0.63 μm Operational DCC Ref

0.63 μm Re-processed V1 DCC Ref

SUMMARY

Vicarious methods are used to evaluate the FY-1/3 VIRR &MERSI RSB data performance and correct the time variation of instrument response. The data performance could be improved after re-calibration simply using the MST trending result, while the absolute accuracy may be improved. The time factor in re-calibration model needs to be adjusted , especially for the early phase in orbit and blue bands. The seasonal features in normalized response and PDif time series reveal unresolved issues related to instrumental characteristics, such as stray light, nonlinearity, temperature dependence, etc. Result differences between MST, DCC , SNO need be investigated to obtain consistency.

Figure 7 TOA reflectance of operational and re-calibrated L1 at DCC targets

Figure 8 Lifetime TOA reflectance histogram, reflectance and PDif time series of re-calibrated L1 at SNO targets against Aqua/MODIS